TRUE

1L BASIC

.

(reld Ed

The Or

-flbh

True BASIC Language System

Gold Edition Reference Guide

For the True BASIC Language System
Copyright © 2001-2010 by True BASIC

Edited by Thomas E. Kurtz, John Arscott, Anne Taggart
ISBN 9-939553-42-2

All rights reserved. No part of this manual or companion portable document, may be duplicated or
reproduced by any means, electronic, mechanical, or photocopying, without the prior written
permission of True BASIC, Inc. Address any request for using or reprinting portions of any
material contained in this documentation, listing the purpose of the reprint or citation, and the
expected edition size of the publication to True BASIC at the address listed below.

Trademarks and their owners: True BASIC, WebBASIC: True BASIC, Inc.; IBM: International Business Machines;
Apple Macintosh, MacOS: Apple Computer; MSDOS, Windows: Microsoft Corporation.

Published by:
True BASIC
Gaysville, VT 05746 USA

MANUAL No: 7232/M

http://www.truebasic.com True BASIC website

support@truebasic.com Technical questions and support
sales@truebasic.com e-mail sales address
1-888-282-9873 Phone/Fax (24-hour service)

Printed in the United States of America. 01/00

Contents

Using the True BASICEditor viB........ccoiiiiiiiieecenreescossssscesssnssns i
1. AWordon Style......ccviiiiiiiiiineineeeeocsescssscosscsssssscssssansons 1
2. Constants, Variables, and EXpressionsccceeeeeeceecosssescosssnsas 7
3. Output Statements.........ccviiiiiiiiieeteeecsssesscssscsssssscosssnnss 13
4. Input Statements........cooiiiiiieiiereerscosscescssscessssscsssssssonss 27
5.Decision Structuresc.ciiiiiiiieieititieeesssscscessscssssssssnns 35
6. LoOP StrucCtures . ..o vviiitieeteeecesceescosscsssssscsssssscsssssssonss 41
7.Dataas Partofthe Program.............ciiiiiiiiiiiriencnnrcenconsnnnes 47
8.Built-in Functionsc.oiiiiiiiiiiiiiiiiiiiiiiieeeneeeeressssssssnes 51
9. Arrays and MatriCesc.ceiieteereeotsescossssscsssccssssscssssnsas 61

10. User-defined Functionscititiiiiiiiiiiiieieeeeeessssacnsncnns 85

11. Librariesand Modulescciiiiiiiiiiiritieeeeescncesescsesasnas 99

12. Files for Datalnputand OQutputc.ciiiiiiiiiiiiriercencsnncnns 109

13, GraphicCs ...iviiiiiiiiineeeeeeeoeosscessosscosssssssssssssosscsnssnnas 131

14. Interface Elementscooiiiiiiiiiieieieieeecocncecssesesessnnas 151

15. Sound and MUSIC. « o v ot tvtitittieneeeeeeeeeessssssssssssssossssesasssoss 193

16. Error Handlingcciiiiiiiiiiiieineceescsocosscessssscasssnscans 197

17. Constants, Variables, Expressions, and Program Units 205

True BASIC Language System

18. Statements and Built-in Functions and Subroutines.................... 217
19. OBJECT Subroutinecociiiiiiiiiieiieeesneeocesencessnssacnsans 307
20. Sys_Event Subroutine...........ciiitiiiiiittietecccesscccssscccssscons 337
21. TBD Subroutinec.ciitiiiiiiiiiieneenenoceeensescessnssscnsans 345
22. Interface Library Routinescciiiiiiiiiiinrtieeescsenscccnnnas 351
23. Additional Library Procedures..ccciiiittieerccenscconssccnnns 407
24, Calling C Routines in True BASICciiiiitiiitrnrceoconscomnns 24-1
25. Using SOCKET Routinesin True BASICciiiiiiiiiierenrennn 25-1
26. True BASIC SQL Librariesccoveeeeeeeeeeeeceesescesossccsosscsnnes 26-1
27. True BASIC PostScript™ Supportccciieiiiiereeeeccecssccansscns 27-1
Appendices
A. Character Set........ciiiiiiiiiiiiiieieeeeeeteesesssssssssscssssssnsns 509
B. Error Numbers and Messages.cccveeeeeeecceesssccsosccsssccsssns 511
C. Explanation of Error Messages.......ccciiiiiiiirecenecccssscssssccnnsns 515
D. PRINT USING Specificationsccveiieieeeeeecescssscescssscescons 531
E. DO Programs........cccieeteeeeetecsssscsssssssssscssssscssssscssnsssns 541
F. Scopeand AlIiasingc.cietiiieeeeeseccsssscccsssccsssscsssscsnnans 543
G. True BASIC Limits and Specifications..........cciiiiiiiinceenscccnnns 547
H. Line Numbersciuiitiiiiiiieieieieiesesesososscscscscssssnsnsnsns 549
I. Index of True BASIC Statements, Functions, and Subroutines............ 555
J. Debugging and Correcting Errors..........cciiiiiiiiiinnreescescsnncens 599
K. Features for Advanced Programmersccceceeeeeesceoccesconss 605
627

Using the True BASIC 6.0 Editor

Even if you are familiar with word or text processors you are still advised to read these
notes because the new True BASIC editor contains a number of unique features that
are not available in previous TB editors or other text editors.

START UP

When you start True BASIC for the first time the screen will show an empty window
labelled “Untitled 1” in the top left corner of the screen. In earlier versions at start up,
True BASIC displayed a small file selector dialog box where you can click on the NEW
button to start with an empty, untitled window.

File Edit Run Window Settings Help For True BASIC

oo Oas Hels Al Sk Fie]

Line:l 1 Char:l 1 |Ready

There are several ways of starting the editor:
(1) Double click on the editor desk top icon.
(2) Set up a file association between TRU files and the editor.
(3) Drag file icons onto the editor icon
(4) Chain to the editor from another application

File associations can be set up from Windows control panel:

Select Folder Options.

Click the File types tab.

Scroll down the list of extensions and click TRU

Click the CHANGE button.

Click the BROWSE button and then navigate to TBeditor.exe in the folder where you
installed the editor.

DEFAULT SETTINGS (settings menu)

The following settings have been pre-set, but you can customize them at any time. Any
change in settings will remain in force until you next change them.

il

Save on close

The default setting is OFF, meaning that source code will NOT be saved automatically
when you close or exit the editor. Setting this feature ON means that when you close
the editor, then all currently open programs will be saved.

Back-up on save

The default setting is OFF, meaning that a back-up copy of your source code will NOT
be automatically created whenever you save your program code. Setting this feature
ON means that a back-up copy of your source program will be saved with the same
program name, but with the extension BAK.

Confirm quit

The default setting is ON, meaning that whenever you attempt to close or exit the
editor you will be asked if you are sure this is what you want to do. If this feature is
switched OFF then you will not be asked if you are sure. The editor will shut down as
requested.

Hotstart

The default setting is ON, meaning that when you start up the editor it will return to
exactly the same conditions as it was when you last shut down. The programs you had
open at the time will be re-opened and the last program you were using will be the
focus. The position of the cursor will be the same as you left it. If this feature is
switched OFF then the editor will start up with an empty ‘Untitled’ window.

This feature was incorporated in many earlier versions of the editor but never worked
consistently.

Binder

The program that runs, compiles and binds source code is called TBsystem.exe. The
default version is 5.5b19. This means that your executable programs do not need the 3
DLL files that older versions needed. However, there are certain features of the old
TBsystem file that you may prefer, in which case 531TBsystem.exe can be used.

Aliases

Previous versions of the editor allowed programs to use short filenames instead of the
full pathnames in LIBRARY statements. A list of alias pathnames was used by the
editor in order to locate the short filename. This principle is incorporated in the new
editor. The default list contains alias types {library}, {do} and {help}. A maximum of 9
alias types can be specified by the user. Aliases can only be used with literal filenames,
e.g. “{library}TrueCTRL.trc”

Function keys

The default setting is OFF. When the switch is on it means that the function keys F2
to F9 work in a similar way to the DOS version function keys, e.g. F4 marks or
highlights a block of text, F'5 copies and pastes this block, and F6 cuts and pastes this
block. If this feature is switched OFF then the editor will not respond to the function
keys. This feature has been enabled in this version.

il

Short cuts

The default setting is ON, meaning that all menu items will be shown with their short
cut keystrokes. If this option is turned OFF then the menu displays will only show the
menu item and not the equivalent short cut keystroke.

SINGLE WINDOW

Unlike earlier versions of the editor, this version only has one window, whereas
previous versions had one window for each open program. However, in the single
window you can open up to 10 programs simultaneously. The two green arrow buttons
allow you to switch between any of the open programs, just like the forwards and
backwards buttons on a browser. The window title bar shows the name of the current
program. You can also switch to a specific program by clicking your mouse on the
program name in the list under the WINDOW menu. Note that the current program is
ticked in this list. You can close any individual program by clicking the mouse on
the close program button at the right hand end of the toolbar (black cross on a

gray background). If you wish to compare two programs side by side, start two instances
of the program. The number of open windows is limited only by your computer's memory.

RECENT PROGRAMS

When you close a program it gets deleted from the list of open programs but at the
same time it gets added to the list of the 10 most recently used programs, which you
can see under the WINDOW menu. If you click the mouse on any program in the
recently used list, then this program will be opened and will become the focus.

COMMAND LINE

The command line in earlier versions appeared in its own window, called the command
window, but in every other respect the new command line works the same way, i.e. you
can type instructions on this line and the computer will execute them immediately
without the need to select RUN. For example, you can type the word FORMAT and
True BASIC will format (indent) your code. Similarly, if you type RUN then True
BASIC will run the current program. If you type VER (version) then your will see the
version number and date. Note that not all of the original commands will work in this
version, in particular the PRINT variablename which allowed the user to stop the
program and inspect the values of variables. This important feature has now been

added to the BREAKPOINT feature instead. The command line also allows the user to
specify alias names, e.g. ALIAS {myfolder} c:\Tbsilver. Aliases specified at the command line
are only valid for the current session. When you shut down the editor, these aliases will not be
remembered. The command line can also be used to specify a SCRIPT file, e.g.

SCRIPT myscript.txt.

SCRIPT FILES

When the editor first starts up it looks for a SCRIPT file called STARTUP.TRU. You can only use
this script file to LOAD libraries and to specify ALIAS commands. All the other commands in a
script file will be ignored. If STARTUP.TRU is not present in the same directory as the executable
editor, the editor will carry on as normal. You can also use the SCRIPT command on the command
line to specify a script file with another name, e.g. SCRIPT myscript.txt. Unlike the LIBRARY
statement, there are no quote marks around the file names.

iv

LOADING LIBRARIES

Loading libraries is an alternative to using the LIBRARY statement. You an use a script file to load
one or more libraries into the editor, or you can specify the library on the command line, e.g.
LOAD mylib.tru, yourlib.tru.

Unlike the LIBRARY statement, there are no quote marks around the file names. Loaded libraries
work as if the library routines have been incorporated into the main True BASIC language system.
Any routine in the loaded libraries is therefore available to your program, in fact the loaded
libraries are available to all your programs in the current session. When you shut down the editor
the loaded libraries are cleared from memory and forgotten. You can also clear all loaded libraries
by using the FORGET command on the command line.

CAUTION: if you are using line numbers in your program, remember to leave plenty of spaces
between line numbers because the editor inserts extra code into your program to achieve the LOAD

feature.

COMMENTS

An exclamation mark at the beginning of a line tells the computer to ignore the line
because it is NOT a program instruction. These reminder notes are called “comments”
and they can be used anywhere in your program. Indeed it is good practice to make
comments after certain lines of code to remind yourself what that line of code is
actually doing, because it is not always blindingly obvious. As an alternative to the
exclamation mark (!) you may type the word REM, short for reminder.

A feature of the new editor is that if you highlight a block of text by dragging your
mouse across the text, then you can comment all the lines in the text by typing the
exclamation mark just once. This is a toggle action feature in that you also un-
comment a block of lines by doing the same operation. The toggle action works on the
basis that if any line does not have a comment mark then it will add one, whereas if
the line already has a comment mark, it will be removed.

AUTO EXTENSIONS (TRU)

NEW or blank programs can be selected in the same way. By default the name of the
blank program is shown on the window title bar as ‘UNTITLED’. You can define an
appropriate name for the program when you save it. It is a feature of the new editor
that program names automatically have the extension TRU added to the name if no
other extension exists. This was a feature of the old DOS editor.

SWITCHING FILES

Existing programs can be opened by selecting OPEN from the FILE menu or by
selecting the OPEN button on the toolbar. In either case the new program will become
the focus in the window and the blue title bar will show the program name. Any
existing program previously displayed in the window will still remain open in a queue
behind the focus program. You can move easily between the queue of programs just by
clicking the green arrow buttons on the toolbar, or by selecting the program by name
from the list under the WINDOW menu.

The editor keeps track of each program in the queue, so that when you switch from one
to another, the cursor position is in the same place as it was when you last used the

program. A maximum of ten programs can be open at the same time.

UNDO and REDO

UNDO can be applied to:

CUT

COPY

PASTE

FUNCTION F4 (select text block)
FUNCTION F5 (copy and paste)
FUNCTION F6 (cut and paste)
DELETE

TYPING

KEEP

INCLUDE

DO....

FORMAT

UPPER

LOWER

FORMS

TBILT

The UNDO menu item shows the current action, e.g. UNDO delete.

In the case of typing, UNDO will restore the original text before CONTINUOUS typing
began. For example, suppose you type ABC anywhere on an existing line, then UNDO
will remove ABC. You can still use the back-space key to remove individual letters. You
might have typed say 20 lines of code, and when you press UNDO then all 20 lines will
be removed. To limit the amount of text in a single “UNDO typing” group, you can break
up the groups by highlighting a letter or word and then clear the highlight before carrying
on with your typing. By selecting a highlight you are effectively creating a new activity,
so the editor closes the current typing activity and opens a new activity called “Select”
and waits for you to decide what you are going to do next. If you carry on typing, then
the editor renames “Select” as “Typing”.

Each time you begin an activity such as typing, cut, copy, paste, DO FORMAT etc., the
editor takes a “photocopy” of the current program and keeps it in an internal array so that
you can return to this copy if you want to UNDO the activity. There are ten elements in
the internal array so you can use UNDO to backtrack ten times. It is unlikely that any
program will exceed 2MB so all 10 “photocopies” will only take up 20MB of memory.
Obviously you will perform more than just ten activities, so on the eleventh activity, the
first internal array is re-used. This first-in-first-out process continues indefinitely.

For example; suppose you have already done 9 different activities and you are now
typing, i.e. the tenth item in the undo list is typing. You now want to do a cut and paste
operation so your undo list will now have two more items — “cut” and “paste” as the
eleventh and twelfth activities. The internal array is limited to 10 elements so the whole
list moves up two places to allow cut and paste to occupy elements 9 and 10. Your
previous typing activity now occupies element 8. The two old elements at the top of the
list are discarded. You now decide to back track 5 places up the list with the UNDO
feature. Now you realize this is too far so you move down the list with the REDO feature
by two places, i.c. element 7. Ahead of you there are still typing, cut and paste, but you
decide that element 7 is where you want to be, so you begin typing your program again.
This typing operation will now OVER-WRITE element 8 and subsequent activities will
over-write elements 9 and 10. However, all the elements prior to element 7 will still be
preserved.

When you use the UNDO feature the internal arrays are restored in reverse order.
Likewise, when you use REDO, the internal arrays are used in forward order. The penalty
for having this extensive feature is a slight delay when switching from one program to
another as the internal arrays are downloaded to the hard drive. There are no significant
delays when editing individual programs.

When you change the current program, these internal arrays are downloaded onto your
hard drive, so that if you go back to this program, the undo features are still operational
by uploading these internal arrays. This applies to all ten possible open programs. All the
hard drive files associated with open programs are deleted when you EXIT the editor.
Only the relevant hard drive arrays are deleted when you CLOSE a program.

PRINTING HARDCOPY

The editor offers you two strategies for listing hardcopies of your programs. The first is a
legacy method sometimes referred to LTPR or line printer. The second method treats the
printer as a virtual window, which allows both PRINT and PLOT instructions. Some
commercial printer (HP) drivers have difficulty responding to both these print methods.
In version 6.007 an extra print method has been added, which uses a thirty party freeware
program called “prfile32.exe” to execute hard copy printing. The editor automatically
searches for this program. If it has been installed on your computer, then the editor will
use it.

There is another third party freeware program called “hardcopy.exe” which installs an
extra green printer icon in the top right corner of all windows. Clicking this button
produces a hardcopy graphics picture of the current window. This can be used to
hardcopy print the output window, for example, as well as visible portions of the current
program in the editor window.

TOOLBAR

In this version of the editor there is also a toolbar at the top that gives you quick
access to a number of frequently used features. When the cursor is in the toolbar zone
it changes shape to a pointer; tooltips also appear identifying the function of each
button on mouseover.

< | e

Line:| 1 Char| 1 | Empty file.

current lil(current cécter Information box (24‘1 command line)

The central area (you can change this color later) is your working page. Below this
page are two information boxes that tell you the current position of the cursor. The box
on the left gives you the line number and the box on the right gives the character
number counting from the left. On the right at the bottom of the window is an
information box. This box is also the command line where you can type instructions

vi

directly to the computer. If you click the mouse inside the information box it will turn
blue, and you can begin typing your instructions. For example, if you type the word
“version” in the blue box, the computer will immediately respond with the current

version number of this edition. Note that after v6.006 there is an additional red STOP
button on the toolbar, located between the PASTE and RUN icons. Clicking this icon
opens the dialog box that allows you to stop a running program.

UNWRAPPED TEXT

The most important difference between the True BASIC editor and other text editors is
that when you type your instructions, the lines of text are NOT WRAPPED, i.e. when
your typing reaches the right hand margin it just carries on and on. The text does not
automatically drop to the next line down. The only way you can drop to the next line
down is to press the RETURN key on your keyboard because this signifies the end of a
line. The reason behind this method of operation is that True BASIC only allows ONE
instruction per line, but that instruction may be too long to fit the width of the page, so
the editor will always allow you enough space for your instruction regardless of how
long it is. There is a scroll bar across the bottom of the editor page so that you can view
anywhere along very long lines.

If long lines worry you, and you would prefer to see your all of your program without
having to scroll across the page, then you can use the ampersand sign (&) to terminate
a line as long as you begin the continuation line with an ampersand too.

WRAPPED TEXT

Under the EDIT menu there is an option that allows you to view wrapped text. For
example you may wish to consult a text document during the course of writing a
program. Please note that you cannot use COMPILE, RUN or BIND when you are in
the WRAP mode. This feature has been enabled in this version.

OVER-TYPING

If you press the INSERT key the editor will change from inserting characters at the
cursor point to over-typing at the cursor point. If you press the INSERT key again then
insert typing will resume. Unlike all previous editors, this version indicates which of
these two modes is operational, by illuminating the over-type icon on the toolbar.

FORMATTING TEXT

The editor is very tolerant of the way you type the program instructions. You can use
upper case or lower case or both. You can also add spaces as often as you like if they
make things clearer to read. Indeed there is a utility feature built into True BASIC
that will “format” your code, i.e. it will indent certain keywords to make the program
easier to read and easier to understand the way it is structured. In a way it is a bit like
using paragraphs and bullet points in ordinary text. You will find the format feature
one of the most useful items on the True BASIC menu.

ERROR DETECTION

Whilst True BASIC is tolerant of the way you set your program out, like all other
computer languages it is not so tolerant about the instruction code itself. When you
type an instruction it has to be word perfect, and if there is any punctuation it has to
be perfect too. It is not good enough to get it nearly right; it has to be perfect.
Fortunately, True BASIC is wise enough to know that it is dealing with human beings

vil

that have a habit of making mistakes, so it has an extensive error detection system
built in. When you attempt to RUN your program, if you have made any mistakes then
True BASIC will almost certainly find them. In this version of the editor your source
code is subjected to the error detection process whether you compile, run or bind your
code.

Let us suppose that you have loaded the program SIMPLETEST.TRU and that we
have incorrectly spelled the word PAUSE and we have used the word PAWS instead. If
we attempt to RUN the program then we would expect the compiler to detect this error
and report it. This will give you an opportunity to see how the error detection system
works. Select RUN from the RUN menu.

File Edit Run Window Settings Help for True BASIC

R EE R E R EE N TR]

!SimpleTest program

FOR n=1 to 10
PRINT "Just a test"
PAWS .3

NEXT n

END

he:
im ERRORS

Program:Line:Char:Error
C:\Program Files (x86)\TBbronze6001\SIMPLETEST.TRU:9:5:I11legal statement.

< il |
Line:| Char:| | Ready

If the error detection process picks up an error or a series of errors, then these will be
presented on screen in a separate error window in the form of a scrollable list. If you
click your mouse on any line in the list then the corresponding error line in your code
will be highlighted.

The information box shows that there was an error while running the program. The
compiler detected the errors, and these are displayed in the error window in tabular
form. If you click on any line in the table of errors, then the corresponding line in your
program will be highlighted. The Preferences box allows the user to change the full
line highlight to just the first character.

If you correct the error, the program will run successfully and prints the phrase ‘Just a
test’ ten times in the output window. To exit from the program and return to the editor
you must press any key or click the window with the mouse.

viii

You are free to use upper or lower case but my advice would be to use lower case for all
your variables and upper case for keywords. The built-in DO FORMAT option will
automatically convert keywords to upper case for you, so you can use lower case for
everything. There is a strong body of evidence that suggests lower case is much easier
to read.

BREAKPOINTS

Breakpoints mark your program at the line where the cursor is positioned. The
BREAKPOINT option under the RUN menu is normally disabled (grayed out) and only
becomes active when you select DEBUG MODE from the SETTINGS menu. The
breakpoint will appear as the word <<<BREAKPOINT>>> surrounded by angle
brackets. If you RUN your program with breakpoints marked, the program will stop at
the first breakpoint. A dialog box will give you the opportunity to continue running
your program. All breakpoints are cleared when you toggle DEBUG MODE again.

If you add a series of variable names after a breakpoint, e.g.

<<<<BREAKPOINT>>>> a,b, string$

then when the program stops you will see a list of these variables and their current
value. This is a very useful feature for locating bugs. For example, the breakpoint can
be inserted inside a FOR.....NEXT loop to check how the value of variables change
with each increment of the loop. The variables list dialog box will give you the
opportunity to continue running your program.

FUNCTION KEYS

If the Function keys option under the SETTINGS menu is ticked then:

F2 will make the command line active (blue)

F3 will display the FIND window.

F4 will mark (highlight) the first line in a block of text. A second press of F4 will mark
the end of a block of text.

F5 will copy and paste the text marked by F4 to the current cursor position.
F6 will cut and paste the text marked by F4 to the current cursor position.
F7 will undo the last operation.

F8 will toggle a breakpoint on the current line.

F9 will run the current program.

(NB. This feature has been enabled in this version.)

ix

EXIT THE EDITOR

If you wish to exit the editor you must select EXIT under the FILE menu or you can
click on the ‘close window’ button (white cross on a red background). You will be asked
if you are sure you want to QUIT. You can eliminate this reminder by un-ticking the
‘Confirm quit’ option under the SETTINGS menu.

o RN
Are you sure you want to exit
the TrueBASIC editor?

Yes

If you click on YES (or press the <RETURN> key then you will be asked if you wish to
save your program if you have made any changes to the program since the last save
operation. If you have not made any changes you will not be asked if you wish to save.
Likewise if you have selected ‘Save on exit’ under the settings menu then your
program will be automatically saved without displaying this dialog box.

Do you want to save
CAProgram Files (xB6A\TBbronzeb00NSIMPLETEST. TRU?

Save | Discard | Cancel |

The same process will be applied to all currently opened programs before True BASIC
finally terminates.

PREFERENCES
Under the SETTINGS menu, the user can select Preferences to set up the editor to suit
the user.

Preferences
Windows
¢ Program window Set fonts |
¢ Help window Set back color |
" Whole line highlight Printer settings |
" Bold red cursor Restore defaults|

Cancel | OK | Apply |

To set the font or background color for the source program window, first click on the
radio button labelled Program window, and then click on the button for font or
background color.

If you want the whole line highlighted to indicate a compile error then click on the
check box. Otherwise only the first character in the line where the error is located will
be highlighted.

If you want the text cursor to change from a simple vertical black line to a bold red line
that is easier to see, then click on the check box.

If you want to save a change that you have made then click the APPLY button. This
will allow you to continue to make other changes. With each change you must click the
APPLY button to save the change. When you have completed all your changes you
must click the OK button to execute all your saved changes.

If you want the default settings to be restored then click on the appropriate button. If
you click on either the APPLY button or the OK button, the defaults will be restored
immediately.

If you click the CANCEL button at any time, then all saved changes will be ignored
and the current settings will remain in force.

The printer settings allow you to change the number of print characters across the
page and the number of lines down the page. The default is 80 characters and 60 lines.

X1

RIGHT CLICK /SHORTCUT MENU
By clicking the right hand mouse button you can reveal the shortcut menu.

File Edit Run ﬂindnw”E_E_I:_t?nlglsmHeI!JlFDrIrlL!gBFl_SIlC"_” B} R
oo Dia®E Mot A=) s 7l X

! Demilinl .

! This shows how windows are shown, erased (hidden), or mwade active.

LIBRARY "c:'LibshTrueCtrl.tre™
DECLARE PUELIC CTwin
DECLARE DEF walstr

DECLARE DEF debug Open
DIM menuss(4,0:3), wini3) Save
Save As
MAT READ menus$ cut
DATAL File, Quit, ', rr Copy
DATA Show, Show 1, Show 2, Show 3 Paste
DATA Hide, Hide 1, Hide 2, Hide 3 BT
DATAL Aetive, betive 1, Aetive 2, Aoetive 3 DoFormat
Uniclo
CALL TC Init Cursar

ColorText

! Make three tiled windows.

CALL TC Win Create [win(1), "CLOSE|SIZE|TITLE", .1, .45, .3, .7)

£ W

Line:l 7 Char:l 19 |Fleady

This menu works like the main menu. It will disappear as soon as you make a
selection from the menu.

SETTING ALIASES

SET ALIAS under the PREFERENCES menu allows you to create new aliases. There
are three default alias types, {library}, {do} and {help}.
You may add or edit more in the fields provided.

Note: it is important to used curly brackets around the alias type, followed
immediately by the directory pathname. Aliases added under SET ALIAS are
permanent, i.e. the editor will remember the aliases when you shut down so that when you
restart the editor the aliases will still be in effect. Temporary aliases can be added at the
command line or by means of a SCRIPT file. Temporary aliases are not remembered
when the editor shuts down.

Some previous versions of the TBeditor allowed users to ignore the alias group name in
curly brackets. The editor looked into the three default folders to see if the file was
located in these folders. This feature has been preserved for the benefit of legacy code.
In other words, as long as the file is in any of the three default alias folders then you
do not need to specify the alias group name in curly brackets.

ALIASES

Enter a new alias or edit existing aliases

or click RESET to restore defaults.

library}tblibs

[{do}tbdo

[{help}tbhelp

[{myfile}c:ADOSthword

0K | Cancel

Xil

The reset button restores the three default alias types and clears the remaining fields.

COLORTEXT

This new feature will color certain words in your True BASIC source code. Currently

these parts are:

Linenumbers (if any)

Comments

Keywords (i.e. statements)
Functions and definitions

CALLs and SUBs

Literal quotes and string variables
Aliases

Numeric variables and constants
Punctuation

Depending on the background color, a default set of 9 different colors is used to color

these parts. The standard color numbers are:

BLACK (or dark backgrounds)

7 (gray) for Linenumbers

10 (green) for Comments

9 (blue) for Keywords (i.e. statements)

13 (magenta) for Functions and definitions

12 (red) for CALLs and SUBs

11 (cyan) for Literal quotes and string variables
14 (yellow) for Aliases

xiii

24 (orange) for Numeric variables and constants
-2 (white) for Punctuation

WHITE (or light backgrounds)

8 (dark gray) for Linenumbers

2 (green) for Comments

9 (blue) for Keywords (i.e. statements)

13 (magenta) for Functions and definitions

12 (red) for CALLs and SUBs

3 (dark cyan) for Literal quotes and string variables
6 (dark yellow) for Aliases

25 (brown) for Numeric variables and constants

-1 (black) for Punctuation

Users are also free to create their own custom list of 9 colors in a simple text file.
However, these colors are applied regardless of the background color.

COLORTEXT can be activated from the SETTINGS menu or from the right click
menu.

Defined functions will only be colored correctly if the function has previously been
declared e.g. DECLARE DEF mydef.

Once COLORTEXT has been switched on, then all currently open source programs will
be colored, except wrapped files.

As you type, the text color may change with each keystroke until you press the space
bar or type a punctuation mark. At that point the text will take on a fixed color.

To switch COLORTEXT on click the ON button. To switch off COLORTEXT then click
the OFF button. If you leave the filename field blank then the default colors are used.
If you enter a filename (full pathname) then your list of custom colors will be used.

Enter a filename for your custom colors

or click ON or OFF

ON OFF |

LINE NUMBERS

Legacy code often uses line numbers, and some users may prefer to continue working with line numbers,
even though TrueBASIC does not require them. The TrueBASIC editor works with or without line
numbers. There are several utility programs which allow users to number, renumber and un-number
programs. It is important to note that programs are automatically re-numbered after CUT and PASTE
operations or when lines are deleted. GOTO and GOSUB references are also updated during re-
numbering.

AUTO LINE NUMBERING
The editor has a built-in feature that allows automatic line numbering. To invoke this feature the user must
insert the following line as the first line of their program:

100 'AUTOLINENUM

Note that the line must begin with a line number followed by a space, followed by a comment mark (!).
The keyword AUTOLINENUM is not case sensitive. The line number signifies the number you wish to
start at. All subsequent lines are numbered in increments of 10. By embedding the automatic line
numbering switch inside the program, means that the editor can detect which programs require numbering
and those that don’t. This leaves the user to move freely between programs without having to switch this
feature on or off for each program.

If the keyword line is removed, then the program becomes just a regular manually numbered program.
Likewise a manually numbered program can be made automatic by adding the keyword line at the
beginning, regardless of whether the current program is already numbered or not.

DELETING TEXT

From the current cursor position, the DEL key will delete single characters ahead of the cursor. The BS
(backspace) key will delete text behind the cursor. The DEL key will also delete any highlighted text.
Similarly, the back space key will also delete highlighted text.

If a block of text is already highlighted when you PASTE any text from the clipboard then the highlighted
text will be replaced by the pasted text.

Note that EDIT fields, i.e. input boxes such as those in the FIND box or the CHANGE box , will now
allow pasted text as well as typed text.

STOPPING PROGRAMS

There may be times during the course of developing programs that you will attempt to run a program that
has an error that hangs the computer, or in some other way doesn’t terminate properly. For example you
may have a DO.....LOOP statement with no EXIT DO to escape the loop. On the toolbar there is a red
STOP icon which produces an Emergency Stop dialog box containing a STOP button. When you click on
this button, the running process will abort immediately and you will be returned to the editor.

Emergency Stop

Press STOP to abort the process.

Cancel I

Note: if you are running a program, then it may produce a window that obscures the editor and the STOP
toolbar icon. To reveal the editor window, click on the editor label on the taskbar or slide the program
window out of the way to show the editor underneath.

HIGHLIGHTING TEXT
There are two ways to highlight text:

(1) By manually dragging the mouse across the text.
(2) By using the arrow keys in conjunction with SHIFT.

In the first method the highlighted text NEVER includes the end-of-line characters at the end of the last
line highlighted. As a result, when this text is pasted into your text there are no “returns” or extra lines
generated.

In the second case the end-of-line characters are ALWAY'S included. As a result, when this text is pasted
into your text then a new line is generated immediately after the end of the pasted text.

If you highlight any text prior to a paste operation, then the pasted text will replace the highlighted text.

If you highlight any text prior to typing at the keyboard, then the typed text will replace the highlighted
text.

PEN COLOR (for lines of text)

A new text coloring feature has now been added. If you are modifying a program, you may wish to print
the modifications in a different color so you can easily recognize what changes you have made. This
cannot be done by changing the pen color because this will change the color of the whole text. Individual
lines or blocks of text can now be colored by adding a color signature to each line. This done by
highlighting the block of modified text and pressing the keys (#) for blue or (%) for red. This is a toggle
action, so you can remove the color signatures by highlighting the same block of text and pressing either
(#) or (%). The signatures (!#) or (!%) can also be added manually. The colored text can be run, compiled
or bound in the normal way.

Xiv

The True BASIC Editor menus

Normally you would use the mouse to click on menu headings, and then to click on
items under the heading. Alternatively you can press the ALT key on the keyboard to
activate the menu bar. The side arrow keys can be used to drive the heading highlight
backwards and forwards across the menu headings. The up and down arrow keys can
then be used to highlight individual menu items. Pressing the <RETURN> key will
select the current menu item.

FILE MENU

NEW - this option opens a new empty editing page in the main window with
the default title “untitled” followed by a sequential number. A maximum of ten
new and existing windows can be open at the same, and you can switch
between them as often as you like.

OPEN - will raise an open file dialog box where you can navigate through
drives, folders and files to select the file of your choice. The list of files is
limited to program files only, i.e. those files with the extension TRU or TRC.
You can extend this by selecting ALL FILES in the file type box. When you
select a file it will displayed with the file name as the window title. The
information box will display the total number of lines in the program.

CLOSE — will close the current program in the main window. This action is
identical to clicking the mouse on the close button (black cross on a gray
background). You will be asked if you wish to save the contents of the window.
When a program is closed, the code is erased from the computer’s memory.

SAVE — will save the contents of the current window using the window title as
the file name. The file will be saved in the same folder as the original version
when the file was opened. In other words the new version will over-write the
existing version.

If the program is being saved for the first time, i.e. it is untitled, then you
should make sure you give your program a meaningful name because there is
every chance that in a matter of weeks you will forget what it is called, so you
will have to hunt through your programs folder to see if you recognize the
name. For example, if your program calculates the time of sunrise and sunset
at any geographical location, then SUNSET.TRU would be an appropriate
name. Calling your program MYPROG.TRU or ANYPROG.TRU is not very
helpful and will certainly not jog your memory as you glance through your
program folder. Clearly this advice becomes more important the greater the
number of program files you have saved. It is not unusual for True BASIC
programmers to have hundreds, if not thousands, of saved program files on
their hard drives, purely because it is so easy to write programs in this
language.

SAVE AS — will raise a save file dialog box that will let you specify any name
for the file and will allow you to save the file in a folder of your choice. The
default file name is the same as the window title, and the default destination
folder is the same as the original file when it was first opened.

XV

* UNSAVE - is a drastic measure because it will completely delete any file that
you specify. You will be asked if you are sure you want to delete the named file.
Once you delete a file there is no way to recover it. This is NOT the same as
dragging a file to the recycle bin.

¢ RENAME - changes the name of the current window. It does not send a copy of
the current source text to a file. If the current source has already been saved to
a file, then this existing file will remain unchanged. This corresponds to the
RENAME command that executes exactly the same action.

¢ PAGE SETUP - this option presents you with a special dialog box that allows
you to specify certain features of any printed output.

¢ PRINT - allows you to select all or a part of your program to be hard copy
printed. You select the text by dragging the mouse to highlight the required
text. You can also select text using the SHIFT KEY in combination with the
DOWN-ARROW key. This procedure uses a high definition print method more
suited to proportional fonts. At present this option only prints in COURIER 10
point font.

¢ LISTING - allows you to select all or a part of your program to be hard copy
printed. You select the text by dragging the mouse to highlight the required
text. You can also select text using the SHIFT KEY in combination with the
DOWN-ARROW key. This procedure uses a standard print quality with 80
characters per line and 60 lines per page as default values. These default
values can be changed under the SETTINGS menu. It is more suited to fixed
pitch fonts such as COURIER and LUCIDA CONSOLE.

e CHAIN TO....- allows the user to select an executable file, i.e. with the
extension .EXE, and to run this application directly from the editor. When the

application is shut down, the editor is re-activated and continues where it left
off.

¢ CHAIN WINDOWS APP - allows the user to select an application file, such as
a WORD document file (with the extension .DOC) or an Excel spreadsheet file
(with the extension .CSV). The editor will run the main application and will
automatically load the selected file. Both the Windows application and the
editor continue to be active.

e EXIT - will close all windows and shut down the True BASIC editor. You will
be asked if you wish to save the program as each window is closed if the SAVE
ON CLOSE menu option has NOT been selected.

EDIT MENU

UNDO - this option will re-instate the original program text prior to a CUT or
PASTE operation. In other words, if you perform a CUT or PASTE action
and you decide that you have made a mistake and want to return to the
original text before you made the mistake, then using UNDO will

achieve this. There are now ten levels of UNDO available to the user - in other
words, you can backtrack ten times. The menu is labeled with the operation that
can be undone, e.g. UNDO paste. The menu item is labeled "can't UNDO" when
you can no longer backtrack any further.

REDO - this option allows you to effectively undo a previous undo operation. In
other words you can reinstate the former text after you have done an UNDO
operation. As with UNDO, you can REDO repeatedly.

CUT - will copy any highlighted text to the clipboard, and will then erase thatvi
portion of text. Portions of text held on the clipboard can be inserted back into
your program with the PASTE option. CTRL-X can be used as an alternative
way to execute CUT.

COPY - will copy any highlighted text to the clipboard, but will not erase that
portion of text from your program. CTRL-C can be used as an alternative.
Portions of text held on the clipboard can be inserted back into your program
with the PASTE option.

PASTE — will transfer text from the clipboard to the point immediately after the
current cursor position in your program. CTRL-V can be used as an alternative.
You can position the cursor anywhere in your program by clicking the mouse at
that point. The cursor location boxes at the bottom of the editor window indicate
the current line and character position. If any text is highlighted, PASTE will
replace the highlighted text with textfrom the clipboard.

FIND - will raise the find dialog box that allows you to specify and locate any
word, part word or phrase in your program text. The search can be an exact
match including upper and lower case, or the search can be independent of
case. Normally the search begins at the current cursor position and proceeds to
the end of your program. Alternatively you can “wrap” the search to include
the whole of your program. The first instance of any text that matches your
specification will be highlighted. After a FIND operation the FIND window
stays on top, ready to be used again.

FIND AGAIN - is a quick alternative to the FIND dialog box. Once the FIND
search has located the first instance of a match, then you may use FIND
AGAIN to progressively locate all the other instances.

CHANGE - is similar to FIND except that when a match is found you have the
option to replace the match with a specified alternative. You can replace the
first instance of a match or you can replace all instances.

KEEP - will retain the highlighted portion of your program and discard the
rest. It is a quick way to delete large parts of your program.

INCLUDE - will allow you to specify the name of a program file. The contents
of this file will then be inserted in your program at the current cursor position.
SELECT ALL - is a quick way to highlight the whole of your program text
rather than dragging the mouse across all the text, which may occupy many
pages.

MOVE TO - this is a quick and useful way to place the cursor at a specific line
or a specific word in your program. Alternatively you can select the name of a
sub-routine from a list of all the sub-routines in your program, and the cursor
will move to the start of that routine.

WRAP - this option converts the current window to wrapped text, i.e. long
lines are truncated at the edge of the window and are continued on the next
line. In the WRAP mode the editor can be used as a general-purpose text
reader. CAUTION: None of the options under the RUN menu will work while
the window is in WRAP mode. Click the WRAP option again to restore normal
programming mode.

RUN MENU

RUN - this option will run the current program, i.e. the program in the front
page of the editor window. When the program has finished running the title
bar will tell you to click the mouse or press any key. Either action will return
you to the editor. If True BASIC encounters any errors, these will be shown as

Xvi
a list. You may select any of the listed errors and the cursor will immediately go
to the line and character position where the error occurred. Prior to running your
program, the editor adds a few extra lines of code to a copy of your source
program (this preserves the original) and it is this copy that is run. These extra
lines include adding any loaded libraries and aliases. In the case of MODULES
and EXTERNAL program units, no extra code is added and no loaded libraries
are added. Remember that the default directory is where the bound program is
launched from. CAUTION: if you are using line numbers, make sure to leave
plenty of space between your line numbers to allow the editor room for the extra
code between your lines. Intervals of 10 are normally sufficient.

BREAKPOINT - will mark your program at the line where the cursor is
positioned. BREAKPOINT is normally disabled (grayed out) and only becomes
active when you select DEBUG MODE from the SETTINGS menu. The
breakpoint will appear as the word <<<BREAKPOINT>>> surrounded angle
brackets. This is a toggle action feature, i.e. if the line already has a breakgoint
then it will be switched off, but if there is no breakpoint then one will be added.
If you RUN your program with breakpoints marked, the program will stop at
the first breakpoint. A dialog box will give you the opportunity to continue

running your program. All breakpoints are cleared when you toggle DEBUG
MODE again. If you insert a series of variable names immediately after the
breakpoint, e.g. <<<BREAKPOINT>>>a,n,string$,xyz,b

then when your program halts at the breakpoint a list of all these variables and their
current values will be displayed. In this way you can track the changing values of
any variable while the program is running. This is a valuable aid to debugging.
CAUTION: if you are using line numbers, make sure to leave plenty of space
between your line numbers (10 lines is usually sufficient) to allow the editor to
insert extra code between your lines to achieve this breakpoint feature.

COMPILE — will cause your program to be converted into a coded format that
the computer understands. Unlike earlier editors, your program will be

preserved. The compiled version will be automatically saved with the same file
name and in the same folder as your source program, but the extension will be

changed to TRC instead of TRU. Prior to the compiling process, the editor adds a
few extra lines of code to a copy of your source program (preserving the original)
and it is this copy which is compiled. These extra lines include adding any loaded
libraries and aliases. In other words, a compiled program will run exactly like a
source program. The exceptions to this rule are MODULES and EXTERNAL
program units. In these two cases, no extra code or loaded libraries are added.
Remember that the default directory is where the TRC program is launched from.
CAUTION: if you are using line numbers, make sure to leave plenty (10 is usually
sufficient) of space between your line numbers to allow the editor room for the
extra code between your lines.

BIND - is a special linking process that combines your program with any
library modules and other resources to produce a stand-alone executable
application. The default name of this application is the same as your original
source code except the extension is changed to EXE instead of TRU. A dialog
box allows you to change this name and to specify the folder where the
executable file will be saved. NOTE: this feature is NOT available in the

Bronze edition so the menu item is grayed out and disabled. Prior to the
binding process, the editor adds a few extra lines of code to a copy of your
source program (preserving the original) and it is this copy which is bound.
These extra lines include adding any loaded libraries and aliases, but DO NOT
include the code that retains the output window. In other words, when your
program reaches the END statement, the proram will stop and the screen will
clear. If you need to retain the output window, you must add the code yourself.
For example, immediately before the END statement add the following line:
CALL TBexitroutine

This will preserve your last screen until the user presses any key or clicks the
mouse.

Xviii

Remember that the default directory is where the bound program is launched
from. CAUTION: if you are using line numbers, make sure to leave plenty
(10 is usually sufficient) of space between your line numbers to allow the
editor room for the extra code between your lines.

* TRACE - is another feature that helps you locate errors in your program by
stepping through your program line by line. Essentially TRACE puts a
breakpoint on every line. TRACE is normally disabled (grayed out) and only
becomes active when you select DEBUG MODE from the SETTINGS menu. All
breakpoints are cleared when you toggle DEBUG MODE again.

* DO -is a general-purpose command in which you specify and run an
EXTERNAL program unit. A file selector dialog box will assist you in locating
the DO program of your choice. Note: the program RUNDO.TRU is NOT a DO
program and will generate errors if you attempt to run it. Do not move or delete
this file because you will no longer be able to run any DO programs.

¢ DO FORMAT - is a built-in routine that indents your program text depending
on certain keywords in order to make the text more readable. It also helps you
to locate errors because it aligns corresponding statements such as FOR...
NEXT and DO....LOOP. If these statements are not perfectly aligned then
there must be an error in the code between these statements. You will find
that this menu option is one of the most frequently used features in the editor.

* DO UPPER - is a built-in routine that will convert the text of any True BASIC
program to all upper case (capital letters).

* DO LOWER - is a built-in routine that will convert the text of any True BASIC
program to all lower case (small letters).

WINDOW MENU

¢ RECENT FILES - this option displays a rolling list of the ten most recently
closed files. As you close more files, older files will drop off the bottom of the
list.

NOTE: At the bottom of the WINDOW menu there will be a list of all the program files
that are currently OPEN. The list shows the full path name of each file. The current
program file will be ticked. You may click the mouse on any of these file names to force
the file to become the focus of the editor. When you close a program file it is removed
from this list.

SETTINGS MENU

* SAVE ON CLOSE - this option sets an internal toggle action switch that
automatically saves your program when you close the window. When the
internal switch is active a tick will appear against this item. Click on this item
again to cancel the internal switch and the tick will be erased. The default
condition is OFF. The True BASIC editor will try to help you avoid
catastrophic mistakes by presenting you with a dialog box that asks if you wish
to save your program every time you click on the close window button.

e BACKUP ON SAVE - this option allows you to set an internal switch that will
automatically produce a back-up copy of any program at the time you save the
program. The back-up copy has the same name as the original file except the
extension is BAK instead of TRU. When the internal switch is active a tick will
appear against this item. Click on this item again to cancel the internal switch
and the tick will be erased. This is known as a toggle action switch; click once
for ON and click again for OFF. The default condition is ON.

e DEBUG MODE - is a toggle action switch that enables the BREAKPOINTS
and TRACE options under the RUN menu. When DEBUG MODKE is switched
ON the item is ticked. When the switch is OFF the tick is erased and your
program will run as normal. All breakpoints are removed when DEBUG
MODKE is switched OFF. The default condition is OFF.

XixX

CONFIRM QUIT - is a toggle action switch that causes a dialog box to appear
whenever you attempt to shut down True BASIC. The dialog box requires that
you confirm your intention to shut down. This option will avoid shutting down
when you did not mean to do this. When the confirm switch is active a tick will
appear against this item. Click on this item again to cancel the internal switch
and the tick will be erased. The default condition is ON.

HOTSTART - is a toggle action switch that causes all the open files that you
were using in the previous session with True BASIC to be loaded automatically
when you start up True BASIC in the current session. When the hotstart
switch is active a tick will appear against this item. Click on this item again to
cancel the internal switch and the tick will be erased. The default condition is
ON.

PREFERENCES - raises a special dialog box where you can set the color of the
editor window, and the name and color of the font used to print the text in the
window. The default page color for the editor window is SAND. The default
font for all editor windows is ASTI MONO, 10 point PLAIN (regular) or
COURIER, 10 point PLAIN, and the standard default font color is BLACK. As
an alternative LUCIDA CONSOLE 10 point PLAIN can be used as a fixed

pitch font. The preferences dialog box also allows you to set the number of
characters that will be printed across the hard copy page and the number of

lines that will be printed per page. The default settings are 80 and 60
respectively. Code lines longer than 80 characters will be wrapped in the hard
copy print.

BINDER - allows you to select which binder you wish to use, i.e. the older
version binder that requires DLL files in order for executable programs to run,
or the new binder (5.5b19) which does not require DLL files to run executable
programs. Note that the new binder has a number of residual bugs that
prevent some TrueCtrl objects from working correctly.

ALIASES - this menu option allows you to add or edit the list of alias
pathnames used by the editor to locate filenames used in LIBRARY
statements. Note that when the file is located in a sub-folder of the directory
where the new editor is located, e.g. Tblibs, then only the sub-folder name is
used in the alias list. If the file is located in a different directory altogether,
then the full path to that directory must be given, e.g. c:\my documents\my

pictures. Do not use a trailing backslash.

Aliases can also be used with the OPEN file statement provided the file
already exists, i.e. CREATE OLD is specified. The filename must also be a
string %Iiteral within quote marks and not a string variable.

Legacy programs that used curly brackets and an alias group name, e.g.
{mygroup} will be handled by the new alias system, even though the group

name is ignored. Aliases that are added under the ALIAS menu are
permanent, i.e. the editor will remember them so that when you shut down and
restart, the aliases will still be in effect. Note that temporary aliases can be
added on the command line or by means of a SCRIPT file. Temporary aliases
are not remembered when the editor shuts down.

FUNCTION KEYS - is a toggle action switch that enables or disables the
function keys. This feature is now enabled in this version.

SHORT CUTS - is a toggle action switch that shows or hides short cut
keystrokes against each menu item. The default condition is ON, i.e. short cuts
are shown.

XX

¢ COLORTEXT - this feature uses different colors for line numbers (if any), key
words, calls and sub-routines, definitions and functions, punctuation, aliases,
strings and numeric variables. Two default color schemes are available
depending on the background page color (light or dark). The user can also
define a custom color scheme. This option allows the user to switch colortext on
or off. Note that when colortext is ON then all current open source files will use
color text except files that are wrapped. Colortext can be RUN, COMPILED
and BOUND in the normal way.

HELP FOR True BASIC

e HELP - this option shows a small text window with a drop down index and an
edit box that allows you to search the help file. You can resize this window to
suit your purpose and it will remain at this size for the remainder of the
session while you are working with True BASIC. The help files contain details
of all the functions and statements in True BASIC and how to use these
features. There are a number of other useful items of information in the help
files including extracts from this book. You can select which help file you want
to use from the CONTENTS menu. This help file will remain current until you
change to another help file.

The full alphabetical index will be shown when you click on the down arrow
button to the right of the topics title. When you select a topic from the index,
the text related to the topic will be shown in the main text box.

If you are uncertain what you are looking for, you can type an associated word
or concept in the search box then click on the green GO button. The program
will then search the whole text in the current HELP file for a match and will
display the results in the text box.

A unique feature of the HELP option is that you can edit, change or add items
to the help file using the EDIT or INSERT options under the HELP WINDOW
menu. COPY and PASTE options also allow you to copy code fragments
contained in the help text box and transfer these fragments direct to your
program

* FORMS - this option is grayed out (disabled) in all versions. It is a new option
to True BASIC but must be purchased separately. The application
automatically enables this menu option to make it fully integrated with the
editor. FORMS is not available in any earlier versions. This program allows
the user to design window layouts using a simple graphical drag-and-drop
interface. Most importantly, FORMS generates the program code to reproduce
your design, and includes this code in your own program. You can use FORMS
repeatedly to create or modify as many windows as you like. Each window may
contain as many controls and objects as you need. The code generated by
FORMS is a complete skeleton application that can be run immediately
without further intervention by the user. Included in the code are comments to
guide you to the point where you need to insert your own program code to
respond to user input.

¢ TBILT - this option is grayed out (disabled) in all versions except Gold. It is a
regular option to True BASIC but must be purchased separately. The
application automatically enables this menu option. This is a free standing
program that allows the user to design window layouts using a simple
graphical drag-and-drop interface. The editor automatically chains to TBILT.
Most importantly, TBILT generates the program code to reproduce your
design, and leaves this code on the clipboard for you to paste into your own
program.

¢ ABOUT True BASIC - will show you the version number, edition and release
date of the version of True BASIC currently running.

poel

MANUALS - will display a selection list containing details of all the manuals
available in the DOCS folder. When you select a manual from this list the
program will automatically start up an Adobe PDF file containing the selected
manual. When you close the Adobe Reader window, control is passed back to
the True BASIC editor. You can also add your own manuals to the DOCS
folder, provided the manual file itself is in PDF document format, and this
manual will be automatically added to the list in the editor.

HELP WINDOW MENU

FILE

EDIT

PRINT - the current help file topic that appears in the text box will be copied
to the hard copy printer.

RUN DEMOS - first select a demo file by highlighting the name (drag the
mouse across the name), then select RUN DEMOS. The file will be
automatically loaded into editor window ready for you to run.

CLOSE - this option closes the HELP window and returns the user to the
main True BASIC editor.

CUT - this option is normally disabled (grayed out). It only becomes active
when the MODIFY or INSERT options are selected. When active you can copy
any highlighted text to the clipboard, and that portion of text will then be
erased. Portions of text held on the clipboard can be inserted back into the help
file with the PASTE option.

COPY - will copy any highlighted text to the clipboard, but will not erase that
portion of text from the help file. Portions of text held on the clipboard can be
inserted into your program with the PASTE option on the editor menu.

PASTE - this option is normally disabled (grayed out). It only becomes active
when the MODIFY or INSET options are selected. When active you can
transfer text from the clipboard to the point immediately after the current
cursor position in the help file. You can position the cursor anywhere in the
text box by clicking the mouse at that point.

MODIFY - this is a toggle action option that allows you to edit the existing
help file text. For example, you may include additional explanatory notes or
more examples to the existing topic, or you may correct mistakes if you find
any. The options CUT and PASTE also become active. First select the topic you
wish to modify from the drop-down topics list, then click the MODIFY option.
When you have completed your changes select the MODIFY option again. This
will erase the active tick mark and will disable CUT and PASTE. At this point
you will be given the option to SAVE your modified topic or DISCARD it. You
must exit the HELP window for your modified topic to appear in the drop down
list.

ADD NEW - this is a toggle action option that allows you to add extra topics to
the help file. First select the ADDNEW option to clear the text window ready
for you to type in your topic. You must begin your topic with a title inside

Xxil

angle brackets, e.g. <TITLE> and this will ensure that your topic will then
appear in the alphabetical drop down list. Your topic can be of any length.
When you have finished, click the ADD NEW option again. At this point you
will be given the option to SAVE your new topic or DISCARD it. The ADD
NEW toggle option will then be turned OFF and CUT and PASTE will be
disabled. You must exit the HELP window for your new topic to appear in the
drop down list.

- IMPORT - is an alternative to ADD NEW. It allows you to import additional
help information that has been saved in an external file. In this instance
multiple help topics can be inserted in one operation. Each imported topic must
begin with a title in angle brackets. The import file can contain any number of
topics. A dialog box will request the name of the file and its entire contents will
be appended to the current help file. This is a very simple way to update your
help file using files generated by others, e.g. True BASIC Forum Members or
by True BASIC Inc. You must exit the HELP window for your imported topics
to appear in the drop down list.

CONTENTS

Selecting any one of the following items determines which help file the editor will use.
There are currently eight different help files that cover various aspects and library
modules included with True BASIC. In turn this determines the list of topics that you
can select from the drop-down list.

¢ USING THE EDITOR - is a series of topics related to using the editor and the
help feature. The topics are arranged alphabetically. This item is common to
all editions of True BASIC.

¢ FUNCTIONS - this section lists and explains all the built-in functions within
True BASIC and again it is common to all editions. Most topics contain code
that can be copied to your programs.

¢ STATEMENTS - this section lists and explains all the statements in True
BASIC. Most topics contain code that can be copied to your programs. This
section is common to all editions of True BASIC.

¢ TRUECTRL - this section details all the sub-routines in the library module
and explains the syntax and how to use each routine with code examples that
can be copied directly to your programs. This option is not available to users of
the Bronze edition. Instead, BronzeTC is included.

¢ TRUEDIAL - this section details all the sub-routines in the dialog box library
module and explains the syntax and how to use each routine with code
examples that can be copied directly to your programs. This option is not
available to users of the Bronze edition.

¢ TRUECTX - this section details all the sub-routines in the extended color and
text library module and explains the syntax and how to use each routine with
code examples that can be copied directly to your programs. This option is not
available to users of the Bronze edition.

¢ TRUETDX - this section details all the sub-routines in the extended dialog box
library module and explains the syntax and how to use each routine with code

Xxiil

examples that can be copied directly to your programs. This option is not
available to users of the Bronze edition.

¢ FORMS - this section describes how to use the FORMS program to create
windows and objects and automatically generate code. This option is not
available to users of the Bronze edition.

Note: The editor automatically reads all TXT files that reside in the TBhelp folder and
creates the CONTENTS list from these files. To add another help file to this list, all
you have to do is drop the file into the TBhelp folder and the editor will do the rest.

If you wish to add more help files you may use Notepad or the TB Editor to create
additional menu items.

CHAPTER

1

A Word on Style

Before you begin to program, you need to know something about the programming style of the language you plan
to use. A language’s style determines how you may arrange a program’s source code.

The style of a programming language is largely determined by rules. True BASIC, like most programming lan-
guages, supports two types of style: required style — rules you must obey— and conventional style — optional
standards that help make programs easier to read, understand, and adapt or expand. Take a look at the following
program that implements a simple guessing-game. This program shows the “flavor” of True BASIC style and
illustrates both required and conventional elements of the language:

! Set up the program and get initial number

CLEAR

RANDOMIZE
LET answer = Int(Rnd*10) + 1

! Display the title and instructions

PRINT "A guessing game."

PRINT "Enter your guess as number between 1 and 10."
PRINT "Enter 0 to quit."

! Allow the user to play an unlimited number of games

DO
INPUT PROMPT "Your guess: ": guess
LET guess = Int(guess) ! Use next lowest integer
IF guess < 1 then I User has quit
EXIT DO
ELSEIF guess > 10 then ! Guess out of range
PRINT "Your guess must be between 1 and 10!"
ELSEIF guess = answer then ! Correct guess
PRINT "Correct! What a guess!'"”
PRINT "I'm thinking of another number."
PAUSE 3 ' Act Like we're thinking
PRINT I Blank Lline to start series
LET answer = Int(Rnd*10) + 1 ! Get new answer
ELSE ! Incorrect guess
PRINT "Wrong! Try again!"
END IF
LOOP
' ALL done
PRINT "Thanks for playing."”
END
Required Style

There are certain rules you must obey if you want your True BASIC programs to run. Fortunately, True BASIC is
designed so that you do not need to know all the required style rules before you begin to program. You should, how-
ever, know the required style rules that apply to a particular structure before you attempt to use it in a program.

2 True BASIC Language System

Most of this manual describes the required style rules for each of True BASIC’s statements and structures. This
section introduces a few fundamental requirements that apply to all programs and all structures.

Look again at the simple guessing-game program at the beginning of this chapter. It illustrates several require-
ments of the True BASIC language.

[!] Note: Every True BASIC program must have one, and only one, END statement.

While it doesn'’t really “do” anything, the END statement is vital to the operation of a True BASIC program. The
END statement indicates the end of the main program; it tells True BASIC where to stop executing code.

As you'll see later (Chapter 10, “User-Defined Functions and Subroutines”) the END statement is not necessarily
the last statement in the document containing your program. You may have external structures stored in the same
document after the END statement, but the END statement must end the main program unit.

If you attempt to run a program with no END statement, the program halts with the message “Missing end state-
ment.” If you run a program containing more than one END statement, the program halts with the message
“Statement outside of program.”

[!] Note: Each True BASIC statement must begin with a keyword. If additional information
follows, there must be a space after the keyword.

Look at the sample program again. Some lines are blank or contain only comments (beginning with a !), but each “exe-
cutable statement” begins with a keyword. Some keywords stand by themselves, such as the CLEAR, RANDOMIZE,
and END statements. Others usually or always include additional information, such as the LET and PRINT state-
ments. A space must always follow a keyword used with additional information. The use of spaces in the rest of the
statement is generally optional. Throughout this manual we represent keywords in all uppercase letters so that they
are clearly distinguishable, but you are not required to do so.

Let’s look a bit more closely at the LET and PRINT statements — perhaps the two most commonly used state-
ments in True BASIC. Each statement has certain required style rules that it must follow.

The LET statement assigns a value to a variable. Each begins with the keyword LET followed by the name of the
variable to which the value is to be assigned. The variable name is followed by an equal sign (=) and the value to
be assigned to the specified variable. The value being assigned may be an expression containing mathematical or
string operators:

LET guess = Int(guess)
LET answer = Int(Rnd*10) + 1

Complete details about the rules for the LET statement and for constants, variables, and expressions are dis-
cussed in Chapter 2, “Constants, Variables, and Expressions.” (See also the OPTION NOLET statement later in
this section.)

The PRINT statement obeys required style rules of its own. The PRINT keyword is usually followed by one or
more items to be printed, and multiple items can be separated by commas or semicolons. The PRINT statements
in the sample program each print one string constant, as in:

PRINT “Thanks for playing.”

Notice that the sample program also uses a blank PRINT statement, which produces a blank line. The complete
required style rules for PRINT statements are discussed in Chapter 3, “Output Statements.”

A Word on Style 3

[!] Note: Names representing entities such as variables, arrays, and routines may be of any
length and contain letters, digits, and underscore characters. All names must start with a let-
ter and contain no spaces; all names representing string items must end with a dollar sign ($).

True BASIC makes no distinction between uppercase and lowercase. Here are some legal variable names:

guess name$
answer first_name$
V25 CityStateCode$

For complete information on variable names see Chapter 2, “Constants, Variables, and Expressions.”

[!] Note: True BASIC allows only one statement per line. Thus, the end of a line indicates the
end of a True BASIC statement.

The rules for some statements do allow multiple parts or serve dual purposes, but you can still put only one such
statement on a line. For example, the INPUT PROMPT statement combines the functionality of the PRINT and
INPUT statements by letting you specify a message to be printed when the program asks for input, but it is itself
a single statement:

INPUT PROMPT "Your guess: ": guess

The IF structure often occupies several lines as it does in the sample program where it uses two ELSEIF state-
ments and one ELSE statement. However, there is also a one-line IF statement for simpler decisions. For exam-
ple in the sample program, the single line:

PRINT "Wrong! Try Again!"
could be replaced by the single-line IF structure:
IF guess < answer then PRINT "Too low!" else PRINT "Too high!"

These are the fundamental elements of True BASIC’s required style: All programs must have one, and only one,
END statement. Each executable statement must begin with a keyword. Each keyword must be followed with a
space or end-of-line character, and there may be only one statement per line.

The one exception to the above is the OPTION NOLET statement that lets you omit the LET keyword from assign-
ment statements. We do not recommend you use the OPTION NOLET statement, as it “violates” the keyword rule
and can lead to confusing error messages.

There is one more element of required style that applies only when you elect to use line numbers. As you can see,
True BASIC does not require line numbers. Though we don’t recommend them (see the end of this chapter), you
may use them. But if you do so, be aware of this additional rule: If you use line numbers, every line in your pro-
gram — including blank and comment lines — must have a line number.

Conventional Style

As long as your programs obey both the general required style rules mentioned above and the specific rules asso-
ciated with the statements used, they will run. True BASIC does not pay any attention to the conventional style of
your programs. Conventional style, however, helps you create and maintain your programs with a minimum of
frustration.

There are many elements of conventional style, and there are also many philosophies of how best to apply them.
This section introduces you to some of the most common conventional style elements and philosophies. Be aware,
however, that this is primarily intended to introduce you to the options and give you some ideas. As you read it,
think about what makes the most sense to you. You should develop your own conventional style philosophy to
enhance the readability of your programs. If you implement your style philosophy from the outset, you can

4 True BASIC Language System

enhance your enjoyment and the productivity of your programming.

Let’s look again at the program from the beginning of the chapter, repeated here for your convenience:

! Set up the program and get initial number

CLEAR

RANDOMIZE

LET answer = Int(Rnd*10) + 1

! Display the title and instructions

PRINT "A guessing game."

PRINT "Enter your guess as number between 1 and 10."
PRINT "Enter 0 to quit."

! Allow the user to play an unlimited number of games

DO
INPUT PROMPT "Your guess: ": guess
LET guess = Int(guess) ! Use next lLowest integer
IF guess < 1 then ! User has quit
EXIT DO
ELSEIF guess > 10 then ! Guess out of range
PRINT "Your guess must be between 1 and 10!'"
ELSEIF guess = answer then ! Correct guess
PRINT "Correct! What a guess!"”
PRINT "I'm thinking of another number."
PAUSE 3 ' Act Like we're thinking
PRINT ! Blank Lline to start series
LET answer = Int(Rnd*10) + 1 ! Get new answer
ELSE ' Incorrect guess
PRINT "Wrong! Try again!"
END IF
LOOP
' ALl done
PRINT "“Thanks for playing."
END

Some things you might notice are the use of space, indenting, and comments to make the structure and function
of the program easier to follow.

True BASIC lets you add or omit spaces as you see fit, within certain required style rules. You may add spaces any-
where but in the middle of a keyword, name, or two-character symbol (such as >=). You may also omit spaces where
it causes no confusion, but you must be sure to have a space after each keyword.

You may also insert blank lines in the program. Often, blank lines are used to separate logical blocks in a program.
True BASIC simple ignores these additional lines when it runs the program.

True BASIC also allows any number of spaces to appear at the beginning of a line. (In line numbered programs,
the number must come first followed by any number of spaces.) True BASIC was designed this way to allow for a
variety of indentation styles. Typically, you will find that your programs are much easier to understand if you
indent the bodies of structures such as loops, decisions, and procedures. The “True BASIC Environment” chapter
in the Introduction section shows how the True BASIC editor can indent programs for you.

Comments are another powerful tool for making your programs easy to read. Comments are notes to yourself (and
anyone else who needs to understand your code) about how a program works. True BASIC ignores comments when
it runs your program.

True BASIC comments begin with an exclamation mark (!). You can place them on a separate line or at the end of
any line. True BASIC ignores anything to the right of an exclamation point (that is not part of a string constant).
Thus, inserting an explanation point at the beginning of a line is also an easy way to temporarily disable a state-

A Word on Style 5

ment. You may also use the REM statement to insert comments into your code, but the REM statement must
occupy a line of its own:

REM This is a guessing game program.

As mentioned in the above section, True BASIC lets you use names, or identifiers, of any length. Therefore, you
may use names that describe the purpose of your variables, subroutines, and functions. You will find that this
makes your programs much easier to understand and debug.

True BASIC ignores the case of letters, except as they appear in string constants. Thus, the keywords LET, Let,
and let are identical to True BASIC. Likewise, the variable names answer, Answer, and ANSWER are seen as
the same name.

In the sample code throughout this documentation, we use capital letters for keywords, begin the names of func-
tions and subroutines with a capital letter (and capitalize the beginning of each subsequent “word”), and start
variable names with a lowercase letter. We feel that this creates clear, readable programs, but you should feel free
to develop your own stylistic philosophy.

[!] Note: Unlike some other forms of the BASIC language, True BASIC does not penalize you
with a slower execution speed when you add spaces, comments, or blank lines or when you
use meaningful variable names. There is no advantage in squeezing as much as possible on
a single line. Feel free to write readable programs. Making a program understandable will
not make it slower.

Many of True BASIC’s structures themselves contribute to the readability of programs. The IF and DO structures
used in the sample program are two examples. Other structures such as FOR structures, SELECT CASE struc-
tures, subroutines, functions, and modules also help you organize your program into clearly understandable com-
partments. These structured programming features also make it easier to write programs, letting you divide the
task into smaller blocks that you can often test independently. Generous use of spaces and indenting make these
structures even easier to understand.

These structures also free True BASIC from the need for line numbers. Line numbers are required by older ver-
sions of the BASIC language, but they are optional in True BASIC. None of True BASIC's structures or statements
(described in the main parts of this manual) require line numbers, but you may number your programs and use
statements such as the GOTO or GOSUB statements from older forms of BASIC. While this makes it relatively
easy to run older programs, we don’t recommend line numbers as a desirable conventional style. Programs writ-
ten without line numbers are generally much easier to understand and maintain. Remember, however, that if you
do use line numbers, you must number all the lines in the source file. Appendix E describes how the older line-
number control statements work.

As a final illustration of conventional style, here is a program that is functionally identical to the sample program
earlier in this chapter, but it violates most of the conventional rules we've been discussing. It does obey all the
required rules, however, and True BASIC will run it without complaint:

1000 CLEAR

1010 RANDOMIZE

1020 LET ANSWER=INT(RND*10)+1

1030 PRINT "A GUESSING GAME."

1040 PRINT "ENTER YOUR GUESS AS A NUMBER BETWEEN 1 AND 10."
1050 PRINT "ENTER O TO QUIT."

1060 INPUT PROMPT “YOUR GUESS: ":GUESS
1070 LET GUESS=INT(GUESS)

1080 IF GUESS<1 THEN GOTO 1210

1090 IF GUESS>10 THEN GOTO 1130

1100 IF GUESS=ANSWER THEN GOTO 1150

6 True BASIC Language System

1110 PRINT "WRONG! TRY AGAIN'"

1120 GOTO 1060

1130 PRINT "YOUR GUESS MUST BE BETWEEN 1 AND 10!'"
1140 GOTO 1060

1150 PRINT "CORRECT! WHAT A GUESS!'"

1160 PRINT "I'M THINKING OF ANOTHER NUMBER."
1170 PAUSE 3

1180 PRINT

1190 LET ANSWER=INT(RND*10)+1

1200 GOTO 1060

1210 PRINT "THANKS FOR PLAYING."

1220 END

We hope you'll agree that the earlier program is much easier to understand. This is because the earlier program
uses a well defined conventional style philosophy. It uses comments to clarify the code; it uses case, blank lines,
and extra spaces to make the code easier to read; and it uses structured programming and consistent indentation
to make its logic easier to analyze.

The line-numbered program was not made deliberately complex. It merely uses structures that rely on line-num-
bers and ignores most of the conventions introduced in this chapter (though it does use multi-character variable
names).

In summary, the look and feel of a programming language is determined by both its required style and the conven-
tional style it allows. Exactly what you adopt as your own conventional style philosophy is not so important as the
fact that you develop a style that makes your programs easier to write, understand, and expand, and that you use
it consistently.

CHAPTER

2

Constants, Variables, and Expressions

The fundamental purpose of virtually all programs is to manipulate data — both numbers and letters. This data
is most often represented within the program in the form of constants and variables — and expressions that cal-
culate new values from constants and variables. Here’s a simple program that illustrates these three representa-
tions of data:

INPUT PROMPT "“Number of items? ": n
LET cost, price =0
FOR i =1 ton
INPUT PROMPT "Price of item? ": price
LET cost = cost + (price * 1.04) ! Include 4% sales tax
NEXT 1
PRINT "Your cost with the sales tax is ";
PRINT USING "$$$$#.#4": cost
PRINT "Press any key to end program."
GET KEY k ! Hold output until a key is pressed
END

Constants are data values you put directly into the source code. Since their values cannot change unless you change
the source code, constants remain unchanged during the running of the program. In the program above, the sales tax
is the constant 1.04 representing a 4% sales tax. To change this, you must change the program itself.

Variables are named representations of data. They associate a name with some data value. True BASIC provides
many ways for you to assign and change the values of a variable during a program run. This is why the names used to
represent the data are called variables. In the program above, the variable n retains the same value throughout the run,
but the values of price and cost change each time through the FOR loop (explained in Chapter 6 “Loop Structures”).

Constants and variables may be combined with operators and functions to create expressions. Expressions are
similar to formulas; they represent data values that are calculated during the program run based upon the values
of their elements at the time of calculation. In the program above, an expression computes a new value for cost
each time through the FOR loop. The program uses the previous value of cost on the right side of the equal sign;
the new value of cost equals the old value plus the new price plus the sales tax.

Many programming languages have several different data types. True BASIC, however, simplifies the program-
ming process by distinguishing between only two types of data: numbers and strings.

Thus, True BASIC uses numeric constants, numeric variables, and numeric expressions as well as string con-
stants, string variables, and string expressions. This chapter introduces you to each of these data representations.
You will find more formal definitions of these concepts in Chapter 17.

Numeric Values

As far as the programmer is concerned, True BASIC treats all numeric values equally. It does not force you to dis-
tinguish between integer and real values or limit the size of particular values.

If you are familiar with one of the many programming languages that forces these distinctions and limits, then you
can treat each numeric value in True BASIC as the equivalent of a double-precision floating value. If that value

8 True BASIC Language System

may be more appropriately interpreted as an integer value, True BASIC will convert it internally. For calculating
memory requirements, however, you should assume that each numeric value will occupy eight bytes (which is a
standard IEEE format for representing numbers).

Constants
Numeric constants must contain at least one digit. They may contain a decimal point, and they may start with a
plus or minus sign. Examples are:

12 3456543
3.1416 -123 -.0003

You may not use commas or spaces within numeric constants. Thus, 1,234,567 or 12 345 are not legal numeric con-
stants.

You may also use exponential notation (sometimes called scientific notation) to represent numeric constants. In
exponential notation, an ordinary numeric constant is followed by the letter e and an integer. The integer desig-
nates the power of 10 that multiplies the number. Here are some examples of this, along with the same number in
ordinary notation:

1e3 1000

12.3e10 123000000000

1e-3 .001

1.234e-5 .00001234
Variables

(= [(

A numeric variable represents a numeric value, as do the letters “x” or “y” in algebra. The name of the numeric vari-
able may be as long as necessary. Numeric variable names must start with a letter and may contain digits and the
underscore character (_). Since spaces and hyphens are not allowed in variable names, the underscore character is
often used to create hyphenated or multi-word names. Some examples of valid numeric variable names are:

.i

last

x3

FirstNumber

next_in_Lline
The same rules apply for names of numeric arrays, numeric functions, and subroutines, but you may not use the
same name to represent two different things. In other words, if you have a numeric variable called score, you may
not also have a numeric array or function with the same name. Remember that True BASIC treats capital and low-
ercase letters identically, so that last and Last are the same variable.

When you run a program, True BASIC sets the initial value of all numeric variables to 0. You may of course use the
LET statement or other assignment statements to “initialize” variables to any value you wish. In fact, it is a good
habit to initialize all variables near the beginning of the program, even if you set them equal to 0.

Expressions
You may use constants and variables to build numerical expressions. The following arithmetic operators are available:
Arithmetic Operators
Operator Meaning
+ addition
- subtraction
* multiplication
/ division
A exponentiation

() parentheses

Constants, Variables, and Expressions 9

True BASIC follows the usual algebraic conventions. And, as in algebra, you may use the plus and minus signs as
in +5 or —(x+y).

The following are examples of numeric expressions:

last - first + 1
numerator / denominator
-(z+2.35) + abc*def”*2
(x*2-3) / (a+5)

The order of evaluation is the order in which operations within an expression are carried out. In True BASIC,
the order of evaluation follows a common mathematical convention. Exponentiations are carried out first, from left
to right. Multiplications and divisions are computed next, from left to right. Additions and subtractions, from left
to right, are carried out last. You may use parentheses to achieve a different order (or simply to clarify the con-
ventional computation). The following examples illustrate these rules:

Order of Evaluation
Expression Computed As Result
5-4*3 5—(4*3) -7
21372 (213)"2 64
372 —(372) -9
6/2*%3 (6/2)*3 9
6/(2*3) 6/(2*%3) 1
6+4/2+3 (6+(4/2))+3 11
(6+4)/(2+3) (6+4)/(2+3) 2

Compare the last two examples in particular. Omission of parentheses in the denominator is a common error.

The precision with which True BASIC evaluates numeric expressions may vary from machine to machine, but gen-
erally adheres to the IEEE eigh-byte standard, which yields about 15 significant digits. The range of numeric val-
ues that can be handled also may vary, but at least is in the range 1e-300 to 1e300.

When a computed value is too large to be represented by True BASIC, an overflow error occurs. If the value com-
puted is too close to 0, True BASIC substitutes 0, and no error occurs.

The program at the beginning of this chapter used numeric constants, variable, and expressions. Here is another
simple program illustrating various representations of numeric data:

LET cord = 4 * 4 * § ! Cubic feet
LET width = 7.25 ! Feet

LET height = 5.5 ! Feet

LET Llog_Llength = 16 ! Inches

LET depth = (log_Llength/12) * 3

PRINT "Your woodpile contains";

PRINT (depth * height * width) / cord ; "cords of wood."

GET KEY k ! Press any key to end program
END

When run, this program produces the output:
Your woodpile contains 1.24609 cords of wood.

String Values

String values are composed of characters. A character is a single letter, digit, punctuation mark, or other mark
as allowed by your computer. You may use any character available on your computer as part of a string, although
you may not be able to type all the available characters from your keyboard. For a listing of the set of characters
available on your computer, see Appendix A.

10 True BASIC Language System

Each character occupies one byte of memory, and the size of a string in bytes is equal to the number of characters
it contains. True BASIC allows strings to be as long as necessary, limited only by the available memory. On most
operating systems the upper limit is more than four gigabytes; on Windows 3.1 it is about sixteen million charac-
ters.

Constants

A string constant is any sequence of characters enclosed in quotation marks. The PRINT and INPUT PROMPT
statements in the two sample programs earlier in this chapter contain string constants. Other examples are “x”,
“first”, “2001”, “This is a sentence.” and “X#*q30m”. Within string constants, True BASIC does distinguish
between capital and lowercase letters. Thus, “last” and “Last” are different string values.

A null string (or empty string) is a string that contains no characters. You represent a null string as a pair of quo-
tation marks with no space between them: “”. A space between the quotation marks represents a string contain-
ing a single space character, not the null string.

({30

To include a quotation mark within a string constant, you must enter the quotation mark twice. Thus, “x™y” is a
three-character string, with a quotation mark as the middle character. A more interesting example is:

"He said ""I don't believe it!"" and smiled."

Variables
The names of string variables differ from numeric variable names simply in that they end with a dollar sign ($).
Otherwise, the rules for naming them are the same. Examples are:

name$
first_name$
week31$
Who_knows_what$

You use the same rules for names of string arrays and string-valued functions, but you may use a particular name
for only one kind of object. In other words, if you have a string variable called name$, you may not also have an
array with that name.

When you run a program, True BASIC sets the initial value of all string variables to the null string (“”). As with
numeric variables, it is a good habit to initialize all your string variables at the beginning of a program, even if you
set them to the null string.

Expressions
Two operations let you build more complex string expressions out of constants and variables: concatenation and
substrings.

Concatenation is the process of adding one string to the end of another, or gluing strings together. You use the
ampersand sign (&) for concatenating two string values. Thus the string expression:
"Mo" & "men" & "tum"
produces the string “Momentum”.
You may also use a substring expression to specify a portion of a string. A substring expression consists of a

string constant, variable, or expression followed by [a:b], where a indicates the starting character of the substring
and b the ending character. Thus,

"Momentum"[3:5]
represents the string “men”. You may use parentheses instead of square brackets, as in:
"Momentum"(3:5)

In the expression [a:b], if b is larger than the number of characters in the string, then True BASIC uses the length

Constants, Variables, and Expressions 11

of the string in place of b. If a is less than 1, then True BASIC substitutes a value of 1. If a is larger than the length
of the string, or a is greater than b, the result is an empty string. Thus, any values of a and b are legal. For exam-
ple, the program:

PRINT "House"[3:1001]

PRINT "House"[-5:201

PRINT "House"[4:4]

PRINT "House"[5:31]

PRINT "Done"

END
produces the following output:

use

House

s

Done

Note that the substring expression in the fourth line returns the null string because a is larger than b, and thus a
blank line is printed.

You may use parentheses to control the order of evaluation when combining substring expressions with other
string expressions. If you don’t use parentheses, substring extraction occurs before concatenation. Thus,

“"Abcde" & "fghijklm"[3:71]
equals“ Abcdehijkl”, while
("Abcde" & "fghijklm")[3:71]
equals“ cdefg”.
Here’s a simple program that uses string constants, variables, and expressions:

LET first_name$ = "Abraham"

LET Llast_name$ = "Lincoln"

PRINT first_name$ & " " & last_name$ & ", 16th President of the US"
PRINT "Subscription Code: " & last_name$[1:41 & first_name$C1:1]
END

It produces the following output:

Abraham Lincoln, 16th President of the US
Subscription Code: LincA

Assignment Statements

The LET statement is the primary means of assigning values to variables. In assigning values you must assign
numeric values to numeric variables and string values to string variables. (True BASIC does not perform auto-
matic type conversions.) Examples of numeric assignments are:

LET e = 2.718282828

LET answer = Sin(pi/2) * Exp(-x*2)

LET Llength = last - first + 1

LET k = k + 1

LET i, j = 2
In an assignment statement, the expression to the right of the equal sign (=) is evaluated first, and the resulting
value is assigned to the variable to the left of the equal sign. This means that you can use the variable appearing
on the left in the expression on the right, and its old value will be used in the expression. In the next to the last
example above, the present value of k increases by one and becomes the new value of k.

12 True BASIC Language System

Note that a simple variable may only contain a single value. Thus, assigning a value to a variable will completely
overwrite that variable’s previous value. (See Chapter 9 on “Arrays and Matrices” for information on variable
structures that contain multiple values.)

You may specify more than one variable name to the left of the equal sign, as long as you separate names by com-
mas. In this case, the resulting value of the expression on the right will be assigned to each variable listed on the
left. In the last example above, both i and j are set equal to 2.

Similarly, values of string expressions may be assigned to string variables:

LET name$ = "George Washington"
LET b$ = a$[3:71]

LET answer$ = answer$ & def$
LET a$, bs = ""

You may also use the LET statement to change a portion of a string. To do so, you simply put a substring expres-
sion to the left of the equal sign. For example, the code fragment:

LET a$ = "bookkeeper"
LET a$[2:4]1 = "ee"

creates the string “beekeeper”. The string “ee” replaces the second through fourth characters “ook”.
If, in an assignment to x$[a:b], the value of b is less than the value of a, then True BASIC makes an insertion before
character number a. For example, the code fragment:

LET x$ = "hose"
LET x$CL3:2]1 = "u"
LET x$L1:01 = "The "

will result in the string x§ with the value “The house”. Note that when you make assignments to substrings, the
length of the string may change.

If you start your program with an OPTION NOLET statement, you can omit the LET keyword in assignment
statements.

[!] Note: We urge caution in the use of the OPTION NOLET statement, since error messages
may be less clear when it is in effect. The OPTION NOLET statement also destroys the simple
structure of True BASIC, in which each statement starts with a keyword.

Although the LET statement is the most straightforward and commonly used method of assigning values to vari-
ables, True BASIC provides several additional ways to assign values to variables. There are several forms of the
INPUT statement, which allow the person running the program to specify values for variables. The READ state-
ment lets the program read data that exists elsewhere in the source code. And the MAT statement assigns values
to entire arrays. In addition, the INPUT and READ statements may be used to assign values to variables based
upon the contents of data files. These statements are described in greater detail in later chapters.

13

CHAPTER

3

Output Statements

Generally, a program produces some form of output to let the user know what the “answer” is. In True BASIC the
primary mechanism for generating output is the PRINT statement.

The PRINT statement displays textual output on the computer screen. This textual (as opposed to graphical) out-
put may be string constants; the values of variables, arrays, functions, or expressions; or any combination you
specify. You may also use the PRINT statement to send output to a printer or a file.

The PRINT USING statement lets you format your output in a more careful, sophisticated way. For instance, it
lets you specify the number of digits to use for printing numeric values or the exact alignment for printing string
values.

This chapter introduces some simple options for sending textual output to the computer screen, a printer, or a file
using the PRINT and PRINT USING statements. Other methods of producing output are described in Chapter 12
“Files for Data Input and Output,” Chapter 13 “Graphics,” and Chapter 14 “Interface Elements.”

Basic Printing

To understand how the PRINT statement works, you must first understand the concept of the text cursor. The
text cursor is the point on the screen at which the next text to be printed will appear. When True BASIC first
opens a window, the text cursor is in the upper left-hand corner of that window. Thus, if your program prints to
that window, the text starts in the upper left-hand corner.

[!] Note: True BASIC automatically opens an output window for simple programs; Chapters
13 “Graphics” and 14 “Interface Elements” describe how you can create and open additional
windows. The text cursor itself is normally not visible although you can control its location.
The text cursor appears on the screen only when an input statement expects a response
from the user; the next chapter describes input statements.

The PRINT statement displays the value of expressions at the current text cursor. For example, the code frag-
ment:

LET name$ = "Rumplestiltskin"
LET abcd = 1999

LET x = 48

LET y = 24

PRINT name$

PRINT abcd

PRINT (x+y)/2

will print a string and two numbers:

Rumplestiltskin
1999
36

14 True BASIC Language System

Each of these items, the string and the two numbers, appears on a separate line. This is because each PRINT
statement normally prints an end-of-line character after printing the specified value. This end-of-line character
moves the text cursor to the beginning of the next line.

Controlling Line Breaks

You may also use semicolons or commas to combine several items in one PRINT statement and to prevent the
automatic end-of-line character after a PRINT statement. The use of the semicolon to print items consecutively is
described below; the use of the comma to print in columns is described in the next section.

At the end of the PRINT statement, the semicolon suppresses the end-of-line character. For example, the code
segment:

PRINT "The numbers are ";
PRINT (x-y)/2;

PRINT "and “;

PRINT (x+y)/2

would print the following output if x equals 3 and y equals 7:
The numbers are -2 and 5

You may also use semicolons to combine expressions to be printed consecutively by one PRINT statement. When
several numeric and/or string expressions are listed in a single PRINT statement, they are often referred to as that
statement’s print items. The punctuation mark used to separate the print items (in this case the semicolon) is
called a print separator. For example, the following statement, which contains four print items and three print
separators, is equivalent to the four PRINT statements in the preceding example:

PRINT "The numbers are "; (x-y)/2; "and "; (x+y)/2

Since there is no punctuation at the end of the last PRINT statement in the first example or the at the end of the
PRINT statement in the second example, True BASIC will move the text cursor to the beginning of the next line
after it carries out those statements. Therefore, the output of the next PRINT statement would start on the next
line.

PRINT statements are often used inside a loop to print a series of values. (Loops are discussed in detail in Chap-
ter 6 “Loop Structures.”) Here is a simple example:

FOR n =1 to 100 step 2
PRINT n;

NEXT n

PRINT

PRINT "Done"

END

The semicolon used at the end of the first PRINT statement tells True BASIC to leave the text cursor at the end
of each number printed, causing the odd numbers to appear, one after the other, on the same line. (True BASIC
puts spaces around numbers as described below.) If the next number would go beyond the current margin, True
BASIC prints it on a new line.

The second PRINT statement, which has nothing after it, simply prints the end-of-line character, moving the text
cursor to a new line. Without it, future output would continue at the end of the list of odd numbers, which may be
in the middle of a line. Because of this blank, or vacuous, PRINT statement, the word “Done” appears on a new
line.

The output of this program would look something like this:

1T 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39
41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77
79 81 83 85 87 89 91 93 95 97 99

Done

Output Statements 15

Printing Blank Lines

You can also use vacuous PRINT statements to insert blank lines into your output. Because each PRINT state-
ment with no ending punctuation moves the text cursor to the beginning of the next line, such statements are
equivalent to adding extra “line-feed” characters. In the following version of the loop that prints odd numbers,
there would be a blank line before the string “Done”:

FOR n = 1 to 100 step 2

PRINT n;
NEXT n
PRINT ' "Turns off" semicolon
PRINT ' Prints blank line
PRINT "Done"

END

Conventions for Printing Numbers and Strings

True BASIC follows certain conventions to print numbers in a convenient format. Positive numbers and zero start
with a space, while negative numbers start with a minus sign. All numbers end with a space, so that they do not
run together when you use semicolons to separate output.

If a number can be represented as an integer of no more than twelve digits, the number is printed as an integer. If
a number that is not an integer can be represented by eight digits and a decimal point, that form is used, but trail-
ing zeroes after the decimal point are not printed. If none of the above apply, then the number is printed in expo-
nential (scientific) notation, as explained in Chapter 2 “Constants, Variable, and Expressions.” Values repre-
sented in decimal format that contain many decimal places are rounded to eight significant digits before printing.
The following examples show how all these cases would be printed:

Printing of Numeric Values

Value PRINT output
123456789012 123456789012
1234567890123 1.2345679e+12

0.12345678 12345678
0.123456789 12345679
12345.6789123 12345.679

Occasionally, you may see a numeric value printed as an integer followed solely by a decimal point; this indicates
that the value is not a “true” integer, but is rather a real value that is extremely close to the displayed integer
value. You should interpret such values as approximations.

If you need numeric values printed with greater accuracy or in a different format, use the PRINT USING state-
ment, discussed later in this chapter.

[!] Note: These formatting rules simply govern the printed accuracy of numeric values; they do
not affect the accuracy of the values’ internal representations. True BASIC always maintains
the highest possible degree of accuracy for its internal representations of numeric values.

In contrast to numbers, strings are always printed “as is.” For example, the following program fragment:

DIM day$(7)
MAT READ day$
DATA Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday
FOR i =1 to 7
PRINT day$(i);
NEXT i
PRINT

16 True BASIC Language System

prints the names of the days of the week all run together:
SundayMondayTuesdayWednesdayThursdayFridaySaturday

If you want spaces, you should include them in the string, or you may print a string made up of one or more spaces,
as in the example below. This version of the program fragment inserts spaces to make sure that the days do not
run together:

DIM day$(7)

MAT READ day$

DATA Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday

FOR i =1 to 7

PRINT day$(i); " ";
NEXT i
PRINT

It would produce the following output:
Sunday Monday Tuesday Wednesday Thursday Friday Saturday

Erasing Output

If printed output reaches the bottom of the output window, lines are automatically scrolled off the top of the win-
dow to make room for more text at the bottom. You can erase the output window at any time with a CLEAR state-
ment:

CLEAR

The CLEAR statement erases all existing output and moves the text cursor back to the upper-left corner of the
output window. If a new background color has been set (see Chapter 13, “Graphics”), CLEAR also fills the win-
dow with that new color.

Printing in Columns

Along with the semicolon, True BASIC allows the comma as a print separator. The comma instructs True BASIC
to move the text cursor to the beginning of the next print zone before printing the next print item. Thus, you can
use commas to generate columns of textual output.

Print zones are logical divisions of the current window that divide the area between the left edge of the current
window and the margin into equal sized “columns.” The margin of a window is the maximum length of a line of
text in that window. Both margins and print zones are specified as a number of fixed-width characters. (True
BASIC normally prints output using fixed-width fonts rather than the variable-spaced fonts used with many word
processors.)

Unless a program specifies otherwise, True BASIC examines the output window, establishes a default margin at
its right edge, and sets up print zones with a width of sixteen characters each. If the margin is not evenly divisible
by sixteen, then the right-most print zone will be less than sixteen characters wide.

Print zones are very convenient for tabular output. For instance, if you replace the semicolon with a comma in the
earlier example that prints odd numbers, the numbers are printed in columns. Another example program is:

PRINT "Number", "Square", "Cube"
FOR n =1 to 15
PRINT n, n*2, n*3
NEXT n
END

The output of this program would be displayed in three columns, with the header labels lined up with the corre-
sponding numbers (remember that True BASIC prints a space before each positive number):

Number Square Cube
1 1 1
2 A 8

Output Statements 17

9 27
16 64

3

4
If you attempt to print past the margin on a given line, True BASIC prints as much as possible on the line, then
moves to the next line.

The SET MARGIN and SET ZONEWIDTH statements let you customize the default settings. For example,

SET MARGIN 70
SET ZONEWIDTH 10

will limit a line to 70 characters and provide seven zones of 10 characters each. You may specify the margin by as
large a positive integer as you wish. The zonewidth cannot be greater than the margin.

The margin may exceed the limits of the current window. In such a case, True BASIC will continue printing on a
line as required until it reaches the margin, but you will not be able to see any text that lies beyond the right edge
of the window.

You may use the ASK MARGIN and ASK ZONEWIDTH statements to find out the current settings, as in:

ASK MARGIN m
ASK ZONEWIDTH z

If you had issued the two SET statements above, these two ASK statements would set m equal to 70 and z equal
to 10.

Printing at Specific Screen Locations

As you have seen, True BASIC prints text at the text cursor location, and semicolons and commas in the PRINT
statement control the placement of the text cursor after an item is printed. These PRINT conventions are quite
useful for controlling the cursor when you want the next text to follow the current text.

Often, however, you may want to print text at particular positions on the screen that may not relate sequentially to
other text items. The SET CURSOR statement and the TAB function let you move the text cursor location to con-
trol where the next PRINT statement output will appear; these are described in this section. Other methods of
printing text at specific screen locations are provided by the PLOT AT statement described in Chapter 13 “Graph-
ics” and the True Controls routines described in Chapter 14 “Interface Elements.”

The SET CURSOR statement lets you put the text cursor anywhere you wish. With the SET CURSOR state-
ment, you specify the row and column (or character) position of the text cursor within the current window. For
example, the statement:

SET CURSOR 10, 43
will move the text cursor to row 10 and column 43 (or the 43rd character position in the 10th row) of the current
window. The statement:

SET CURSOR 1, 1
moves the cursor to the upper left-hand corner of the current window. Rows are counted from the top and columns

from the left. Each row is as high as necessary to accommodate the highest character in the character set, and each
column is wide enough to accommodate the widest character, if you are using a variable-spaced font.

You can find the current cursor location with the following form of the ASK CURSOR statement:
ASK CURSOR row, col

Here row and col are assigned the current row and column position of the text cursor.

Remember that the text cursor itself — normally a flashing line or box — is visible only when the program expects
the user to provide some input. Chapter 4 on “Input Statements” explains how you can use the SET CURSOR
statement to turn the cursor on or off; Chapter 14 on “Interface Elements” describes library routines that let you
change the shape of the cursor.

18 True BASIC Language System

Ifyou specify a row or column number that is outside the current window, an error results. If you need to know how
many rows and columns exist in the current window, the ASK MAX CURSOR statement will tell you:

ASK MAX CURSOR maxrow, maxcol
This statement will set maxrow to the largest row number and maxcol to the largest column number possible for

the current window. Because window size can vary depending on the computer running the program, and can
sometimes be altered by the user, this statement lets you avoid “Cursor out of bound” errors.

Here is an example program that specifically positions the text cursor. It fills the window with birthday greetings,
with each line indented more than the line above.

ASK MAX CURSOR maxrow, maxcol ! Number rows, columns
LET text$ = "Happy Birthday!"
LET slack = maxcol - Len(text$) ! Extra spaces on line
LET ind = Int(slack / maxrow) ' Indentation
FOR row = 1 to maxrow ' Use every row
SET CURSOR row, row*ind ' Each line indented
PRINT text$;
NEXT row
END

Notice the semicolon that ends the PRINT statement. This is necessary to allow the final birthday greeting to
appear in the last row of the window. Without it, True BASIC moves the text cursor to the beginning of the fol-
lowing line after printing the last greeting, forcing the window’s contents to scroll. Try running the program with
and without this semicolon to see the difference.

Sometimes you wish to position the text cursor in the midst of a PRINT statement. You can use the TAB function
to do this, as in the following example:

PRINT name$; Tab(4, 20); x

This statement will print the value of name$, then set the cursor to row 4 and column 20 and print the value of x
there. The semicolon after the TAB function indicates that the cursor should stay at the desired position.

The TAB function with a single value moves the cursor to the specified column on the present line. If it is already
past this column, the cursor moves to that column on the next line. This version of TAB is useful for creating vari-
able-width zones. (Remember that print zones are of equal width.) For example, the following code segment:

PRINT "Name"; tab(25); "Age"; tab(30); "Phone number"

PRINT

FOR i =1 to n

PRINT name$(i); tab(25); age(i); tab(30); phone$(i)
NEXT i

creates output in three columns. The first column may contain up to 24 characters, the second up to 5 characters,
and the third column may extend to the current margin. Some possible output follows:

Name Age Phone number
Sallie Smythe 12 907-333-4352
Olaf Larsen 56 703-256-2626
Juan Martinez 43 802-778-9991 extension 445
Pierre La Fontaine 27 602-664-1221

Formatted Printing

True BASIC also provides the PRINT USING statement as a sophisticated and flexible way of formatting output.
The PRINT USING statement works differently from the PRINT statement in that it ignores print zones and fol-
lows only the format string you specify with it. A format string is a string expression that determines the format
of the output exactly, using fields (composed of place holders) and, possibly, constants (composed of characters).

Output Statements 19

This section illustrates some of the more common uses of the PRINT USING statement. Appendix D contains a
more formal discussion of the details.

Numeric Format Fields
First consider a simple example of formatting numeric values:
PRINT USING "-#HHH# . #HHH#": -Pi, 973

The format string “-### . ###” causes the PRINT USING statement to print a numeric value with exactly three
decimal places, adding zeroes or rounding if necessary. It allows up to three places before the decimal point and
reserves a space for the sign if the value is negative. Leading zeroes will not be printed. Thus, the output for the
above statement would appear as:

- 3.142 729.000

You may define the format string within the PRINT USING statement, or you may define a string variable for
use with PRINT USING. The following two statements produce the same output as the example above:

LET format$ = "-H###.#H44"
PRINT USING format$: -Pi, 973

In these examples, the format string contains only one field. A field is the format specification for a single print
item. Since there is only one field but two print items, the field is used twice — once for each print item. Notice that
each item uses eight spaces with no extra spaces separating the two print items. True BASIC follows the format
string precisely and adds no additional spaces regardless of data type or punctuation between print items. If you
want spaces to precede or follow each number you must include those spaces within the format string:

LET format$ = " -H##.#44 "
PRINT USING format$: -Pi, 973

The field length is the number of character positions that the value will occupy when printed. In the format string
“###.###, the field length is eight spaces, which includes the spaces reserved for the sign and the decimal point.
Numeric values are aligned with the decimal within a field (that is, they are printed decimal justified). This means
that if several numbers are printed with the same format string, one under the other, any decimal points (or com-
mas) will line up. If no decimal point is present in the field, numeric values are aligned with the right edge of the
field (right justified).

In the format string “-### ###”, the first position in the field is reserved for a negative sign; it may not be occupied
by a digit. Here are some examples; notice the last one in particular.

Examples of Output Formatted with the String: “-###.###”

Number Output
17 17.000
17.1234 17.123
-123.4687 -123.469
-17.2 - 17.200
12345 kkkkkkk*%

If a number cannot be printed in the specified format, asterisks are printed instead, as in the last example. The
field’s length determines the number of asterisks printed.

Format fields are composed of place holders. Place holders are characters that reserve space within the field for a
specific character or range of characters that may appear in the printed value. The format string “-###.###” contains
three different place holders: the minus sign (), the pound sign (#), and the decimal point (.).

There are other place holders that you may use to compose fields in format strings. The following table summa-
rizes all the place-holder characters valid for numeric values:

20 True BASIC Language System

PRINT USING Place Holders

Place Holder Reserves Space For

Leading Characters
minus sign if required, blank for positive numbers; repeat for “floating” minus sign
+ plus or minus sign always printed; repeat for “floating” sign
$ dollar sign; repeat for “floating” dollar sign

Digit Characters
digit or leading space (or negative sign if no leading sign in format string)
% digit or leading zero
* digit or leading asterisk (*)
Other Characters
decimal point; digits to the right of the decimal point are always printed, rounded if necessary
, comma or blank if there are no digits to the left
A exponent part of scientific notation; must use from three to five carets ()

Here are some examples showing how place holders would print the variable answer with the value 1234.5:
Examples of PRINT USING Place Holders

PRINT USING Statement Output
PRINT USING "# , HHH# HHH" answer 1,235
PRINT USING "-#H#HH . HHE" answer 1234.50
PRINT USING "+HHHHH.HH" answer + 1234.50
PRINT USING "+HHHHH . HHE" -answer - 1234.50
PRINT USING "SHH #HH#HH . HH" : answer $ 1,234.50
PRINT USING "S$-#,###.##" : -answer $-1,234.50
PRINT USING "“Z%%4%,%hh . hh" answer 001,234.50
PRINT USING "#*¥*kkx! . answer *%1235
PRINT USING "#.#ArA" answer 1.2e+3

Like the minus (-) sign, the plus (+) and dollar ($) signs reserve spaces for leading characters. When you use the
plus sign, the appropriate sign — positive or negative — is always printed. You may use the dollar sign along with
the plus or minus sign.

Like the number (or pound) sign (#), the percent (%) and asterisk (*) characters reserve spaces for digits and a lead-
ing minus sign if required. But they also tell True BASIC to always print something in that space: the percent
character prints leading zeroes and the asterisk prints leading asterisks if necessary. You may not mix different
digit characters within one format item. Thus, “####” and “%%%%” describe four-character fields, the first with
leading spaces and the second with leading zeroes, but “%%##” is not allowed.

The comma reserves a place for a comma if appropriate; it is printed only when there are digits to the left of the
comma. The caret (") reserves spaces for scientific notation. You must reserve from three to five spaces — for the
“e”, the plus or minus sign, and one to three digits. Notice that True BASIC rounds the numeric value when nec-
essary to fit the format

On occasion, you may want a leading sign to appear immediately to the left of the left-most digit, rather than in a
fixed position as in the examples above. You can easily do this using a floating place holder. To indicate a float-
ing place holder, you use a place holder that normally reserves a particular space for a single character, such as the
plus or dollar sign, but you repeat it over a range of spaces. The position of the specified character “floats” within
this range as needed so that it always appears as far right in the range as possible.

Consider these examples where the value of answer is 2.34:

Output Statements 21

Examples of Floating Place Holders

PRINT USING Statement Output
PRINT USING "-###.##": —-answer - 2.34
PRINT USING "---#.##": -answer -2.34
PRINT USING "S#H##.##": answer $ 2.34
PRINT USING "$$$S$.##": answer $2.34

Constants and Multiple Fields in Format Strings
Any character that is not a valid place holder (including a space) that appears in a format string is interpreted lit-
erally (with the exception of the string place holders < and > discussed below). Thus, you can include text as a con-
stant in a format string, as in:

PRINT USING "The answer is #,###.#H##": answer

Here the constant text is printed as it appears, and the value of the numeric variable answer is printed according
to the format field. For example:

The answer is 5,439.780

You can also include more than one field in a format string. The print items will be inserted into the fields in rela-
tive order from left to right. For example, the following formats print a table of sines and cosines:
LET format$ = "-#.##4 -H.#HHH#H -H. HEHARE"

FOR x = 0 to 9 step 2
PRINT USING format$: x, sin(x), cos(x)

NEXT x
The spaces between the format fields provide equal spacing between the columns of output:
.000 .000000 1.000000
2.000 .909297 - 416147
4,000 - .756802 - .653644
6.000 - 279415 .960170
8.000 .989358 - .145500

If there are more print items than there are fields, then the fields will be reused from left to right until all of the
print items have been printed. If there are more fields than there are print items, then the format string will end
at the beginning of the unused field. For example:

LET tot4 = 796
LET tot5 = 1113
PRINT USING "Fiscal Yr ##H#H: $$# , H#HHK "1 1994, toth, 1995, tot5, 1996

produces the following output:
Fiscal Yr 1994: $ 796K Fiscal Yr 1995: $1,113K Fiscal Yr 1996:

Here are some more examples of PRINT USING formats that use multiple fields:
Examples of Multiple PRINT USING Fields

Statement Output
PRINT USING "+#.# on S$#, ###.#4"; i, d +9.5 on $3,527.30
PRINT USING "## and ": 12.3, 12.7, 14 12 and 13 and 14 and
PRINT USING %% plus 7%%": 3 03 plus

Do take care in designing your format strings and the PRINT USING statements that use them. Consider the fol-
lowing nonsense program:

PRINT USING "Answer #1 is ##.#. Good job!": 2.6
END

22 True BASIC Language System

When run, this program produces the unexpected output:
Answer 31 is

The reason for this output is quite simple: the pound sign before the digit 1 (intended to represent the number sign)
is interpreted as the first numeric field. Therefore, True BASIC rounds the value of 2.6 to 3 and prints it in this
field. Other characters, including the 1, are printed as constants. Since no second print item is available for the
second field (which we intended to be the only field), the format string is printed only to the first character in that
field.

Now consider the following potential solution:

PRINT "Answer #1 is ";
PRINT USING "##.#. Good job!": 2.6
END

Since the problematic pound sign is no longer part of the PRINT USING statement, this form of the program
solves that part of the problem, but it also brings up another problem. When you try to run this program, you get
an error message claiming that you have a “Badly formed USING string.” This means there is now something ille-
gal in the format string.

This problem is a little trickier to find, but it makes sense. The second period (intended to end the first sentence)
is directly adjacent to the format field. Since it is a valid place holder, True BASIC considers it part of the field.
However, this results in a field with two decimal points which is not possible, so True BASIC generates the error.
(This error didn’t occur in the first example because True BASIC stopped using the string before it reached that
point.)

To fix this problem, modify the program as follows:

PRINT "Answer #1 is ";
PRINT USING "##.#": 2.6;
PRINT ". Good job!"

END

When you run this version of the program it produces the output originally intended:
Answer #1 is 2.6. Good job!

Notice that a semicolon at the end of a PRINT USING statement has the same effect as at the end of a PRINT
statement.

String Format Fields

True BASIC also lets you format string values with the PRINT USING statement, but the options are more lim-
ited. The PRINT USING statement with string values is most useful if you wish to define fixed length fields and
control the justification (alignment) of the string values within those fields.

You may print strings with any numeric format item. Unless you specify otherwise, True BASIC centers the string
within the field, adding spaces if needed. (If necessary, there will be one more space to the right than to the left.)
If the string is too long to fit the format field, asterisks are printed instead, just as with numbers.

You may also tell True BASIC to align a string to the left or right within the format field using two special string
place holders, “<” and “>™:

String PRINT USING Place Holders

Place Holder Reserves Space For
character or space
< character or space; left justifies string value in field
> character or space; right justifies string value in field

In case of more than one “<” and/or “>”, the left most one decides.

Output Statements 23

Here are some examples:

LET name$ = "zebra"
PRINT USING "HHEHH#HHHHHAH": "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
PRINT USING "HHHHHHHAHA": name$! Center string
PRINT USING ">HHHAHHHHAH#A": name$ ' Align to right
PRINT USING "<HHHHHHHHH": name$ I Align to left
These statements produce the following output
kkkkkhkkkkk
zebra
zebra
zebra

The ability to format strings with any valid numeric format field gives you added flexibility. The following code
fragment shows how you can print titles over columns:

LET form$ = "<HHHHHHHHAHHHHHHRARE HEH SHHEH HHH"
PRINT USING form$: "Name", "Age", "Salary"
FOR i =1 to n

PRINT USING form$: name$(i), age(i), salary(i)

NEXT i
This would produce output like the following:
Name Age Salary
Frank Williams 56 $ 57,999
Vicki Mantle 49 $113,400
Rudy Garland 32 $ 85,000

Whenever possible, True BASIC will try to fit the print items to the format fields. However, you must remember
that print items are associated with fields from left to right. True BASIC will not match string values with string
fields and numeric values with numeric fields. It is up to you to ensure that print items appear in the appropriate
order for the format fields.

The PRINT USING statement can be tremendously useful. Although this section introduces most common uses,
you may wish to review the formal specifications in Appendix D at some point.

Printing to a Printer

At times, it is necessary or convenient for your programs to print to a printer rather than a window on the screen.
Just as you can use the PRINT or PRINT USING statement to display the values of numeric and string expres-
sions on the screen, you can instruct True BASIC to send that information to the printer instead. Before you do so,
however, you must first open a channel to the printer.

A channel is a connection between your program and an input or output device, such as a printer or a file. Within
your program, you can open channels to several such devices. The program distinguishes between the channels by
channel numbers. A channel number is any integer value between 0 and 999, preceded by a pound sign (#); it indi-
cates a specific channel to a device. Note that channel #0 is reserved for the default logical window (where True
BASIC automatically sends output unless you specify otherwise) as discussed in Chapters 13 “Graphics” and 14
“Interface Elements.” Each open channel must have a unique channel number.

To use a channel, you must first open it with the OPEN statement. The following program opens a channel to the
printer and prints to it:

OPEN #1: PRINTER
PRINT #1: "Beginning of list:"
FOR i =1 to 20

PRINT #1: i

24 True BASIC Language System

NEXT i

PRINT #1: "End of Llist"
CLOSE #1

END

When you run this program, it sends all of its output to the printer; nothing appears on the screen. If you wanted
the same information to appear on the screen as well, you would need to modify the program as follows:

OPEN #1: PRINTER

PRINT #1: "Beginning of Llist:" ! Print to printer
PRINT "Beginning of Llist:" ! Print to screen
FOR i =1 to 20
PRINT #1: i ' .. to printer
PRINT i ! .. to screen
NEXT i
PRINT #1: "End of Llist"
CLOSE #1
PRINT "End of Llist"
END

In this program, the PRINT statements without a channel number send their output to the screen, while those
that specify channel #1 send their output to the printer (because the OPEN statement associated channel #1 with
the printer).

Some operating systems limit the number of channels that may be open simultaneously. Therefore it is good prac-
tice to use the CLOSE statement as shown above to close channels when you no longer need them. Once you close
a channel, you may reuse that channel number for a different channel.

You may also use the PRINT USING statement to send formatted output to a printer. Consider the following pro-
gram that prints a table of natural logarithms for the numbers 1 to 100 on a printer:

OPEN #1: PRINTER

LET form$ = " Hi# Bt HER"

PRINT #1, USING form$: "Num", "Log"

FOR i =1 to 100

PRINT #1, USING form$: i, Log(i)

NEXT i

PRINT #1: "End of table"

END

You cannot use the SET CURSOR statement to position the printer’s print head, nor does the CLEAR statement
have any effect on printer output. You may, however, adjust the margin and zone width, and you may use print
separators and the single-argument TAB function to position your output when sending it to the printer. The fol-
lowing lines demonstrate the proper formats:

PRINT #1: name$; Tab(25); age; Tab(30); phone$
PRINT #1: name$, age, phone$

SET #1: MARGIN 60

SET #1: ZONEWIDTH 6

Output Statements 25

Printing to a File

You may also use the PRINT statement to send textual output to a file. This is very similar to using the PRINT
statement with a printer (as described in the previous section); the only major difference is the form of the OPEN
statement used.

Consider the following variation on the example from the previous section:

OPEN #1: NAME "MyFile", CREATE NEWOLD
ERASE #1

PRINT #1: "Beginning of Llist:"

FOR i =1 to 20

PRINT #1: i
NEXT i
PRINT #1: "End of Llist"
CLOSE #1

END

This program opens a channel to the file named MyFile in the current directory (normally the directory in which
the program is saved). If a file with this name already exists in the current directory, then it will be used; other-
wise, a file with the name MyFile will be created. The CREATE NEWOLD clause in the OPEN statement speci-

fies this behavior.

Since the program may have opened an existing file, you can be sure you are working with a “blank slate” by using
the ERASE statement to erase the file’s current contents before continuing.

As with printing to a printer, you cannot use SET CURSOR to arbitrarily position the cursor within a file — and
you must use an ERASE statement rather than CLEAR to remove the contents of a file. You may use the single-
argument TAB function and the SET MARGIN and SET ZONEWIDTH statements to control spacing across
each line of printing to a file. You may also use the PRINT USING statement to further control printing to files.

You will find much more information on using files in Chapter 12, “Files for Data Input and Output.”

26

True BASIC Language System

27

CHAPTER

A

Input Statements

Most useful programs have some flexibility built into them; that is, they can produce different results when pro-
vided with different data. Commonly, the user of the program provides this data and thus has some control over
the program’s behavior.

In True BASIC, the simplest way to obtain data from the user is the INPUT statement. The data provided by the
user may consist of numeric or string values, and it may come from the keyboard or a file.

This chapter introduces the fundamentals of user input. It discusses the INPUT statement, the LINE INPUT
statement, and the GET KEY statement for getting single keystrokes. For information on graphical input from
the GET MOUSE and GET POINT statements, see Chapter 13 “Graphics.” For input from menus, buttons, check
boxes, special edit fields, and dialog boxes, see Chapter 14 “Interface Elements.”

Basic Input

Chapter 2 on “Constants, Variables, and Expressions” illustrates the use of the LET statement to assign data values
to variables. Although it is extremely useful, the LET statement is limited in that you must know the value you wish
to assign when you are writing the program. To change the value, you must change the program.

Since it is impractical and undesirable for the user to change the source code before each run, True BASIC provides
the INPUT statement to let the user assign values to variables during the run. The INPUT statement complements
the PRINT statement. While the PRINT statement lets your program give information (the “answer”) to the user,
the INPUT statement lets the user give information (the “question”) to your program.

The INPUT statement pauses the program, prints a question mark (?) at the current text cursor position, and then
displays the text cursor (if it is turned on). A visible text cursor indicates that the user must enter data before the
program will continue.

The number and type of variables specified as input items determine the number and type of values the user must
supply. The program may include as many input items as necessary in an INPUT statement, separating them
with commas. Consider the following example lines:

INPUT a

INPUT x, vy
INPUT name$, age, phone$

The first line expects the user to enter a single number, the second line expects two numbers, and the third expects
three pieces of information — a string, a number, and another string (in that order).

The user must enter the proper number of items, of the proper types, in the proper order, and then press the Enter
(or Return) key to tell the program to continue. Before continuing, the program matches the values entered with
the list of input items from left to right. If the number and types of items do not match exactly, then True BASIC
prints a message and asks the user to re-enter the data. If they do match, True BASIC assigns each entered value
to the corresponding input item. Thus, if a user responds to the third example line above by typing:

? Chris Jones, 32, 555-4321

then the program will assign the string value “Chris Jones” to name$, the numeric value 32 to age, and the string
value “555-4321” to phone$. Notice that the user must separate multiple items by commas.

28 True BASIC Language System

Prompting the User
Although the user must enter the data correctly, the INPUT statement does not tell the user how many items to
enter or what type they must be. You can help the user of your program by printing a prompt or description of the
data expected before the INPUT statement. Here’s an example:
FOR i =1 to 10
PRINT "Numerator, denominator";
INPUT n, d
PRINT n/d
NEXT i
The first PRINT statement prints the prompt, indicating that two numeric values are expected and that they
should be separated by a comma. The prompt also tells the user that the first value will be used as the numerator,
and the second as the denominator. The semicolon at the end of this PRINT statement ensures that the question
mark printed by INPUT immediately follows the prompt. Thus, the program prints:
Numerator, denominator?

The pairing of PRINT and INPUT statements is so common that True BASIC provides a single statement that
accomplishes both:
INPUT PROMPT "Numerator, denominator? ": n, d

The INPUT PROMPT statement prints the specified prompt in place of a question mark. The space after the
question mark at the end of the prompt string helps to make the input easier to read on the screen.

Supplying Input
As noted above, the user must enter the correct number and type of responses, separating multiple items with a
comma and ending with the Return or Enter key. In response to the following statement:

INPUT PROMPT "Item, number purchased, cost? ": item$, num, price
the user must enter three items — one string and two numbers:
Item, number purchased, cost? apples, 6, .49

True BASIC can handle common incorrect responses to INPUT statements. If the user enters too few or too many
items or enters something other than a number for a numeric item, True BASIC prints a message stating the prob-
lem and asking the user to retype the entire input. For example, here are some incorrect replies to the above exam-
ple:

Input Error Messages for: INPUT item$, num, price

User Response Error Message

apples, 6 Too few input items. Please reenter input Lline.
apples, 6, $.49 String given instead of number. Please reenter input line.
apples, 6 , .20 Too many input items. Please reenter input line.

=~ &

’

Notice that the error messages are fairly general. You as programmer should use prompts to make input requests
as clear as possible.

If so many input items are requested that the input does not fit on a single line, the user may end the line with a
comma. True BASIC will display a question mark at the beginning of the next line so the user can continue typing
input.

You can also write the program so that the user can anticipate future input requests. If an INPUT statement ends
with a comma, True BASIC does not complain about excess input; it saves any extra input, and uses it to fulfill future

input requests. In the following example, the user may respond to the first prompt by typing ten numbers (separated
by commas) and the program will work five division problems without any further prompt:

FOR example =1 to 5

Input Statements 29

INPUT PROMPT "Numerator, denominator? ": n, d,
PRINT n; "/"; d; "="; n/d
NEXT example
True BASIC strips off leading and trailing spaces from input items. If you wish to furnish a string that has either
leading or trailing spaces, you must enclose the string value in quotes:

7 February

A similar situation exists with a string that contains a comma. Since commas separate input items, you must use
quotes around a string that contains commas. For example:

? "Washington, George"
If you omit the quotes, True BASIC would treat this as two separate input items.

The INPUT statement also requires repeated quotes if you wish to use quotes within a string enclosed in quotes.
For example:

? "Eisenhower, Dwight David ""Ike"""

The LINE INPUT statement described below can alleviate some of the problems of entering complex strings.
Whatever form of input statement you use, you must keep in mind the rules that govern the input of data and
ensure that the user of your program is aware of these rules. Printed documentation is helpful, but PRINT state-
ments and clearly worded input prompts are usually the best methods for assisting users unfamiliar with pro-
gramming or True BASIC.

Programming for Errors

We've mentioned True BASIC's ability to recognize errors that violate the rules for supplying input and the program-
mer’s responsibility for supplying adequate input prompts to prevent such errors. Allowing the user to assign values
to variables during a run increases your responsibilities as a programmer in other ways as well.

When your program is “closed” to user input (such as a program that relies exclusively on LET statements), you
have complete control. If errors are going to occur, it is quite likely that you will find them during the testing phase.
When your program is open to user input, however, you have no control over the user’s actions. Therefore, your
program must be prepared for any eventuality; it should make every reasonable attempt to protect its users from
their own folly.

As an illustration, consider the division program discussed above. This program works fine, until the user enters
a value of 0 as the denominator. Since division by zero is mathematically undefined, True BASIC generates an
error if your program attempts such an operation. Thus, if the user enters 0 for the denominator in this example,
the program will stop and display the message “Division by zero.”

This program could, and probably should, be rewritten to check for a denominator value of zero. If the program
encounters such a value, it can simply print a message indicating that division by zero is undefined and skip that
particular division problem:

FOR i =1 to 10
PRINT "Numerator, denominator";
INPUT n, d
IF d = 0 then
PRINT "Denominator cannot be zero; please re-enter."
ELSE
PRINT n/d
END IF
NEXT i

This process is known as “handling” the error, and it is discussed in detail in Chapter 16 “Error Handling.”

30 True BASIC Language System

Inputting Complete Lines

The previous sections show how you must use quotes to enter complex string values for the INPUT statement. How-
ever, those rules can be unnecessarily burdensome to the user of a program. When properly used, the LINE INPUT
statement can simplify the process of entering strings with commas, quotes, or leading and trailing spaces.

The LINE INPUT statement can get input for string variables only. It expects the user to enter one line for each
input item, signaling the end of a line with the Return (or Enter) key. The LINE INPUT statement assigns the
entire contents of each line, including spaces and punctuation marks, to the corresponding string variable in the
input list. For example, the statement:

LINE INPUT name$, street$, city_state_zip$
prints three question marks for the three lines of input it expects. The user need not be concerned with spaces,
commas, or quotes within the lines:

? Joshua "Skip" Silverstein

? 1154 Wise Avenue, No. 16B
? Fairview, MA 01077

The LINE INPUT PROMPT statement is a variation that lets you specify a prompt string to be printed in place
of the default question mark, as in the following example:

LINE INPUT PROMPT "Type a sentence: ": sent$

LINE INPUT statements also let the user input nothing by simply pressing the Return (or Enter) key. In the
above request for name and address for example, the user could press just Return (or Enter) to enter a null (empty)
string for street$ if they have no street address:

? Joshua "Skip" Silverstein
2

? Fairview, MA 01077

Because it can accept empty input, you can use the LINE INPUT statement to make the program pause until the
user is ready:

LINE INPUT PROMPT "Press Return to continue.": s$
Here, it doesn’t matter what the user enters; once they press the Return (or Enter) key, the program will continue.

Inputting Keys

With both the INPUT and the LINE INPUT statements, the user must press the Return (or Enter) key at the end
of the input. Often, however, you want the user to press a single key as input, perhaps to determine what the pro-
gram does next. The GET KEY statement lets your program obtain a single keystroke from the user.

The statement:
GET KEY z

waits until the user presses a key, then translates that key into a corresponding number and assigns that number
to the variable z. The GET KEY statement does not display anything on the screen — it does not display a prompt,
nor does it echo the value of the key pressed. However, if the cursor is currently on, it will be displayed while the
GET KEY statement waits for a keystroke.

If the key pressed directly corresponds to an element of the current character set, the numeric code for that char-
acter is assigned to the specified variable. Special keys that do not correspond to elements of the standard charac-
ter set, such as function and cursor keys, are assigned a number above 255.

Since all the operating systems under which True BASIC runs support the ASCII character set, you can assume
that the standard character and punctuation keys on the “main” keyboard will return the same values regardless
of the operating systems. Appendix A lists the ASCII character set with numeric code values. For example, if the
user presses a lowercase “q”, the number 113 is assigned to the GET KEY variable. (Note that lowercase and
uppercase letters have different codes.)

Input Statements 31

Special keys such as function and cursor keys, however, may vary among types of computers. Also some operating
environments use key combinations for accented or other special characters. For example, for some accented char-
acters you would hold down the appropriate modifier key and press an associated key. You may then need to press
a third key without holding the modifier key. The accented letter or special character will then appear. See the doc-
umentation supplied with your operating environment for a complete list of the characters you can type in this
way. All such characters are represented by a unique character code and count as a single keystroke for the GET
KEY statement.

You can use the following program to identify code numbers for special keys or key combinations under any oper-
ating system:
DO
GET KEY k
PRINT k
LOOP UNTIL k = 27 ! Escape key stops program
END

Run this program and press any key or modifier and key combination. The number corresponding to that key will
appear on your screen. Remember that the Shift, Option, Alt, Control, and Command (C) keys can be used as mod-
ifier keys. Hold down the modifier key while you press another key to get the modified values. If you press a key
before the GET KEY statement is executed, True BASIC will save it for later use — provided, of course, there is
room in the key buffer as explained below.

You cannot read keystrokes that are shortcuts for active menu items; True BASIC executes the menu item
instead. (Menus are described in Chapter 14 on “Interface Elements.”)

Useful Built-in Functions

The CHR$ and ORD functions are often used with the GET KEY statement. The CHR$ function returns the
string character that corresponds to the numeric code provided as its argument. Thus, you can “translate” GET
KEY input back to the character typed:

DO
GET KEY k
IF 32 < k and k < 127 then
PRINT Chr$(k),; " is"; k
ELSE
PRINT "Key is not a printable character"
END IF
LOOP UNTIL k = 32 ! Space bar stops program
END

The ORD function returns the numeric character code of the single-character string provided as its argument. The
resulting value matches the value returned by the GET KEY statement for printable characters. For example, if
you want to stop the program when the user presses a “Q” or “q” you could use the ORD function to test the user
input:

PRINT "Press Q@ if you wish to quit; any other key to continue.";

GET KEY quit
IF quit = 0rd("Q") or quit = Ord("g") then STOP

For more about built-in functions, see Chapter 8 “Built-in Functions.”

An Example

Because the GET KEY statement pauses the program until the user responds, you can use it to force a program
to pause until the user is ready to continue. Although you have already seen how to use the LINE INPUT state-
ment for the same purpose, the GET KEY statement is particularly well suited to this task because the user may
press any single key without a following Return (or Enter) key, and the input is not displayed on the screen.

32 True BASIC Language System

If you want the program’s future action to be based on which key the user presses, use a GET KEY statement in
conjunction with a SELECT CASE structure as described in Chapter 5 on “Decision Structures.” For example:

PRINT "Self-study menu. Press the appropriate letter"

PRINT " (A)ddition (S)ubtraction"
PRINT " (Multiplication (D)jvision"
SET CURSOR "off" ! Don't show text cursor for input
GET KEY choice
LET test$ = Lcase$ (Chr$(choice)) ! Translate to lowercase character
SELECT CASE test$
CASE "a"
CALL Add ! User-defined subroutine
CASE "s"
CALL Subtract ! User-defined subroutine
CASE "m"
CALL Multiply ! User-defined subroutine
CASE "d"
CALL Div ! User-defined subroutine
CASE ELSE
STOP
END SELECT
Testing for Key Input

Ifthe user response is optional, you want to test whether the user has pressed a key without stopping the program.
You can do this by testing the special logical expression, KEY INPUT. KEY INPUT is true if there is a character
waiting in the key buffer, and false otherwise. Characters go into the key buffer when the user presses a key before
being prompted to do so (see below).

The following example lets the user end a long tabular output by pressing the escape key. Note that the escape key
corresponds to ASCII number 27.
FOR x = 0 to 10 step .1

PRINT x, Sin(x)
IF KEY INPUT then

GET KEY z
IF z = 27 then STOP ! Escape key pressed
END IF
NEXT x

Once the user presses a key, KEY INPUT will be true until a GET KEY or some form of the INPUT statement is
executed (since those are the only statements that remove keys from the key buffer).

The Key Buffer

The GET KEY statement actually gets the value of the key pressed from the key buffer, not directly from the key-
board. The key buffer is a reserved portion of memory that stores keystrokes as the user enters them. Because
keystrokes go into the key buffer the instant they occur, you generally need not worry about a fast typist getting
ahead of your program. Thus, the GET KEY statement waits for a keystroke only when the buffer is empty; if
there is a keystroke in the buffer, GET KEY uses that keystroke. Each time it is executed, the GET KEY state-
ment removes the “oldest” keystroke from the buffer.

Occasionally, you may want your program to clear out, or “flush,” the keyboard buffer. This is useful if you are wor-
ried that the user may press more than one key, or if you want to eliminate the possibility of a stray keystroke being
accepted as valid input. Whenever you need to flush the key buffer, you may use code similar to the following:

DO WHILE KEY INPUT

GET KEY k
LOOP

Input Statements 33

Turning the Text Cursor On and Off

Along with a question mark and any prompt the program may print, True BASIC normally displays the text cur-
sor as a flashing line or box when it expects input. The text cursor is displayed at its current position, which you
can control with the SET CURSOR statement (see Chapter 3 “Output Statements”). If you use an INPUT
PROMPT or LINE INPUT PROMPT statement, the prompt is printed at the text cursor, and the text cursor is
moved to the right of the prompt string.

You can use a form of the SET CURSOR statement to control whether the cursor is displayed when input is
required. The statement:

SET CURSOR "OFF"
makes the cursor invisible during input, while the statement:
SET CURSOR "ON"

makes it visible again when user input is expected.

The ASK CURSOR statement:
ASK CURSOR c$

lets you find the current state of the cursor. True BASIC assigns to the variable c$ the value “ON” or “OFF”. See
Chapter 14 “Interface Elements” for a routine that lets you change the shape of the text cursor.

Inputting from a File

As with the PRINT statement, you can use the INPUT and LINE INPUT statements to obtain input from files.
To do so, you need simply open a channel to a text file and specify that channel number with the INPUT state-
ments that should take their input from the file rather than the keyboard. (See Chapter 3 for an introduction to
opening a channel to a file; Chapter 13 “Files for Data Input and Output” describes the use of files in greater
detail.)

As an illustration, consider the following program that displays the contents of a text file on the screen:

INPUT PROMPT "Name of file to display: ": fname$
OPEN #1: NAME fname$
DO WHILE MORE #1
LINE INPUT #1: Lline$
PRINT Lline$
LOOP
END

This program obtains a file name from the user (at the keyboard) and uses that value in the OPEN statement to open
a channel to that file. Once the channel is open, the DO loop will repeat as long as there is more information on that
channel. Each pass through the loop reads a line from the file with the LINE INPUT statement (note the channel
number), and prints it to the current window with the PRINT statement (note the lack of a channel number).

You will find much more information on using files in Chapter 13 “Files for Data Input and Output.”

Other Forms of Input

You may find that typed text input is inappropriate for certain applications. For instance, you may want to allow
the user to specify a particular spot on the screen, or you may want to track the current position of the mouse.
Chapter 13 “Graphics” describes the GET MOUSE statement and the GET POINT statement that provide

graphical coordinate input.

You can also create elements such as menus, radio buttons, check boxes, push button, edit fields, and dialog
boxes to enhance the appearance and ease-of-use of your programs. Chapter 14 “Interface Elements” explains
how to create such elements and how to process input from them.

34

True BASIC Language System

35

CHAPTER

S

Decision Structures

True BASIC carries out most statements in the order in which they appear in the source code. This means that
most simple programs proceed from “top” to “bottom” when run. With this sort of “linear execution,” each state-
ment is used once and only once.

However, many problems require more flexibility than strict linear execution allows. The best solutions may
require that certain statements execute more than once or perhaps not at all under some circumstances.

True BASIC uses structures to achieve this flexibility. A structure is a specialized construct that allows the program
to control which statements get executed and when. This chapter introduces decision structures — a structure that
lets your program decide which statements to execute and which statements to ignore. Later chapters introduce other
structures, including loops, defined functions, subroutines, pictures, and error handlers.

True BASIC has two different decision structures: the IF structure and the SELECT CASE structure. Both struc-
tures let you “branch” to a specific set of statements and ignore others. Thus, you can write programs that proceed
in different ways depending upon the value of logical expressions.

Logical Expressions

True BASIC allows you to compare the values of numeric and string expressions using logical expressions. A log-
ical expression (sometimes called a Boolean expression) is an expression that can be evaluated as having either
atrue or false value. You form a logical expression by using a relational operator to compare two numerical expres-
sions or two string expressions. The relational operators are:

Relational Operators
Operator Meaning
= equal to
< Less than
<= less than or equal to
> greater than
>= greater than or equal to
<> not equal to

When you compare two expressions with a relational operator, the resulting logical expression is either true or
false — either the relation holds or it doesn’t. For instance, two numeric values are either equal or not; there is no
“maybe.”

When comparing numeric values, True BASIC uses standard mathematical conventions. When comparing string
values, True BASIC uses the order of characters specified by the character set. (Since most operating systems use
the ASCII character set, this manual assumes that set for all examples. For an ordered listing of the ASCII char-
acter set, see Appendix A.)

The ASCII character set ranks all letters alphabetically, but all uppercase letters come before lowercase letters,
so that “Z” is earlier in the alphabet than “a”. Most other characters, such as punctuation marks and digits, come
before letters in the ASCII character set. (Exceptions include { | } ~ and the delete character.) A few examples
should clarify these concepts:

36

Examples of Comparisons

True BASIC Language System

Expression Value

b -2 =1+ 1 true

3.5 > 222 false

2.35 <= 2.35 true
"Apple" < "Pear" true
"apple" < "Pear" false
"tree"[3:4]1 < "grass" true
"123" > "abc" false

More complex logical expressions, called compound conditions, may be built using the logical operators NOT,
AND, and OR.

Logical Operators

NOT reverses the value of the logical expression given as its operand. For instance, if the NOT operator
is applied to an expression with a true value, the value of the resulting compound condition will
be false. Therefore,

(3+2 = 5)

not (3+2 =5)

is true and
is false.

AND evaluates the logical expression on its left and the one on its right and returns a value of true only

if both logical expressions are true.

OR evaluates the logical expression on its left and the one on its right and returns a value of false
only if both logical expressions are false.

[!] Note: True BASIC evaluates a compound condition from left to right but only as far as is necessary to
determine whether it is true. This process is known as short circuiting and is very useful in avoiding
errors. For example, the complex condition

b <> 0 and a/b > 10
is safe. That is, no error will result if b is 0 because a/b will not be evaluated: if the first expression in
an AND condition is false then the entire expression must be false, so True BASIC stops evaluating
the compound condition. Similarly, if the first expression in an OR condition is true then the entire
expression must be true so True BASIC evaluates no further.

To illustrate the behavior of the logical operators consider how True BASIC would evaluate the following complex
condition:

X <y or not(x-2 = z) and (a$ = "Yes" or b$ = "No")

First, the complex condition would be broken down into the operands of the first OR operator as follows:

x <y

not(x-2 = z) and (a$ = "Yes" or b$ = "No")

The expression x < vy, as the left operand, would be evaluated first. If its value is true, then the value of the
entire expression is true, and True BASIC stops evaluating. In such a case, the right operand is not even
considered.

However, if the value of x < y is false, then the value of the complex condition
z) and (a$ = “Yes" or b$ = "No")
must be evaluated. To do so, this complex condition is broken down into the operands of the AND operator as follows:

not(x=-2 =

Decision Structures 37

not(x-2 = z)

(a$ = "Yes" or b$ = "No")
Again the left operand is evaluated first. The left operand is the complex condition not(x-2 = z). This complex
condition has only one operand, (x-2 = z),and the NOT operator serves to reverse the value of this expression.
Thus, if the value of the expression (x-2 = z) is true, then the value of the complex condition not(x-2 = z)
is false. If the first operand is false, then the AND condition must be false and the second operand is ignored.

However, if the first operand of the AND operator is true, then the second operand must be evaluated to determine
the value of the AND condition. This operand consists of another complex condition which may be broken down as
operands of the OR operator:

a$ "Yes"
b$ IINOII

If the expression a$ = “Yes” is true, then the entire OR condition is true and the right operand is ignored. However,
if the left operand is false, then the right operand must be evaluated to determine the value of the OR condition.

The value of the OR condition within the parentheses is then used to resolve the value of the AND condition. In
turn, the value of the AND condition is used to resolve the value of the initial OR condition. This then provides the
value of the original complex condition.

The IF Structure

Logical expressions are commonly used in the IF structure, which lets your program make decisions. Simple IF struc-
tures choose between only two options, while more complex IF structures can select from several choices.

Single-branch IF Structures

The simplest form of the IF structure simply determines whether a particular block of statements will be exe-
cuted. For example:

IF age >= 100 then
PRINT "Congratulations!"
END IF

In this code segment, the “Congratulations!” message will be printed only when the value of age is greater than or
equal to 100. The IF structure begins with an IF statement containing a logical expression and the keyword
THEN. An END IF statement marks the end of the structure.

Because of its simplicity, this IF structure could also be written as the following single-line IF statement:
IF age >= 100 then PRINT "Congratulations!”
Single-line IF statements may have only one statement following THEN, and they have no END IF statement.

The IF structure is usually more flexible, however, since you can specify any number of statements to be executed
if the logical expression is true. For example:
IF age >= 100 then
PRINT "Congratulations!"
LET bonus = 10
END IF

Everything between the IF and END IF statements will be executed if the condition is true.

Two-branch IF Structures

A slightly more complicated form of the IF structure allows you to specify two different blocks of statements; one
to be executed if the logical expression is true, and another to be executed if it is false.

For example, suppose you are playing a guessing game. The computer has picked a number and stored it in the
variable n. Your guess is stored in the variable guess. You could then use the following IF structure to determine
whether the guess is correct:

38 True BASIC Language System

IF guess = n then
PRINT "Right"

ELSE
PRINT "Wrong"
PRINT "It was "; n

END IF

This structure, like the earlier example, starts with an IF statement and ends with an END IF statement. Notice
that the position of the ELSE statement defines two distinct blocks of statements; one for a correct answer, and
another for an incorrect answer. If you guessed correctly, the logical expression is true so the program uses the
first block to print the “Right” message and ignores the second block. If you were wrong, the logical expression is
false and the program ignores the first block and uses the second to print “Wrong” and give you the correct answer.
Thus, the program follows one of two different courses of action, depending on the values of the variables guess and
n. The indentation used here, which helps to display the structure, is based on the style conventions discussed in
Chapter 1 “A Word on Style.”

You may use the single-line form of the IF statement with a two-way decision as long as the THEN and ELSE key-
words each have just one statement:

IF guess = n then PRINT "Right" else PRINT "Wrong"

Notice that again there is no END IF statement with a single-line IF statement. Single-line IF statements may
have only one statement after the THEN keyword and one statement after the optional ELSE keyword. True
BASIC interprets any IF statement with a statement following the THEN keyword on the same line as a single-
line IF statement.

Multiple-branch IF Structures
You may use the ELSEIF statement to create more intricate branches. To illustrate a three-way branch, here is
a short program for quadratic equations:

PRINT "Enter the three coefficients: "

INPUT a, b, ¢ ! The coefficients
LET discr = b*2 = 4*%a*c ' The discriminant
IF discr = 0 then ! One root

PRINT "The root is:"
PRINT -b/(2*a)
ELSEIF discr > 0 then ' Two roots
LET s = Sqr(discr) ! Take square root
PRINT "The roots are:"
PRINT (-b+s)/(2%*a)
PRINT (-b-s)/(2%*a)
ELSE ! Complex roots
PRINT “No real roots"
END IF
END

In this example, the IF structure defines three distinct blocks of statements. It is important to remember that,
regardless of the number of blocks it contains, a single IF structure will execute one, and only one, of these blocks.
Once a condition is satisfied, its associated block of statements is executed and the program continues with the line
following the END IF statement; all other blocks in the IF structure are ignored.

You may use as many ELSEIF statements as necessary within an IF structure, but you may include only one
ELSE statement (which should appear as the last option). Each ELSEIF statement must specify its own logical
expression followed by the keyword THEN. As you have seen, each IF structure must begin with an IF statement
(ending with the keyword THEN) and end with an END IF statement.

There is no form of the single-line IF statement that lets you include more than two possible actions. You must use
a multi-line IF structure for three or more possible branches.

Decision Structures 39

Nested IF Structures

The flexibility of the IF structure may be further enhanced by nesting — the process of defining one structure
within another. The inner structure is said to be “nested” within the outer structure. The nested structure must
be completed before the containing structure can be completed.

Here is an example of nesting. First, note that the above three-way branch for quadratic equations did not check
whether ais 0. You could solve that problem by expanding the original IF structure to a four-way branch beginning
with a test for a = 0 and nesting another IF structure in that new first branch as shown below:

PRINT "Enter the three coefficients
INPUT a, b, ¢

I The coefficients

LET discr = b*2 - 4*a*c I The discriminant
IF a = 0 then I New test with nested structure
IF b =0 and ¢c =0 then ! Begin nested structure

PRINT "Any number is a solution
ELSEIF b = 0 then
PRINT "There is no solution."

ELSE
PRINT "The root is:"
PRINT -c/b
END IF ! End nested structure
ELSEIF discr = 0 then I (continue as above)
PRINT "“The root is:" I One root
PRINT -b/(2%*a)
ELSEIF discr > 0 then I Two roots
LET s = Sqr(discr) ! Take square root

PRINT “The roots are:"
PRINT (-b+s)/(2*a)
PRINT (-b-s)/(2%*a)

ELSE ! Complex roots
PRINT "No real roots"
END IF

END

The SELECT CASE Structure

If all the choices in the decision structure are based on the value of a single numeric or string expression, it is often
more convenient to use a SELECT CASE structure.

The formation of a SELECT CASE structure is similar to that of an IF structure. The SELECT CASE statement,
which indicates the beginning of the structure, contains the expression to be evaluated. An END SELECT state-
ment indicates the end of the structure. Within the structure, you may use as many CASE statements as neces-
sary to define blocks of statements that will be executed for specific values of the specified expression. True BASIC
evaluates the expression and then executes the block of statements indicated by the first appropriate CASE state-
ment; any remaining blocks are ignored. For example:

SELECT CASE n

CASE 2 ' If the number is 2
PRINT "Even prime"

CASE 3, 5, 7 ' If the number is 3, 5, or 7
PRINT "0dd prime"

CASE 1, &4, 9 ' If the number is 1, 4, or 9

PRINT "Perfect square"
CASE else ' If anything else

40 True BASIC Language System

PRINT "Composite, not a square:"
END SELECT

When executing this segment of code, True BASIC determines the value of n and looks for the first CASE state-
ment that specifies a matching value. When it encounters an appropriate CASE statement, it executes the block
of statements immediately following that statement (up to the next CASE statement) and continues with the line
following the END SELECT statement. If there is no CASE statement that specifically matches the value of n,
then the block of statements following the CASE ELSE statement is executed. If there is no CASE ELSE state-
ment, then an error occurs and the program stops.

The CASE ELSE statement is optional, but if used it must be the last case in the structure. Since a CASE state-
ment is not required to have a block of statements associated with it, a program can “ignore” a particular case sim-

ply by having no statements between that CASE and the next. Thus, you may wish to include an empty CASE
ELSE block to avoid errors.

The CASE statements may specify only constant values; variables and expressions may be used only in the
SELECT CASE statement. While the above example demonstrates the use of discrete constants in the CASE
statements, you can build much more powerful SELECT CASE structures using ranges and relations on the
CASE statements.

A range specifies a range of values for which the CASE statement holds true. To specify a range, use the keyword
TO with constants specifying the low and high ends of the range, as in:
CASE 10 T0 20

Ranges are inclusive. For instance, the above example would hold true for values of 10, 20, or any value greater
than 10 and less than 20.

A relation specifies a relationship between the value of the expression specified in the SELECT CASE statement
and a constant value for which the CASE statement holds true. To specify a relation, use the keyword IS followed
by one of the relational operators and a constant value, as in:

CASE IS < 0

This CASE statement holds true for any SELECT CASE expression whose value is less than 0.
Consider the following example that demonstrates the use of ranges and relations with a string expression. This

program counts characters of various types. It uses the facts that space is the first regular character and that con-
trol characters (carriage returns, line feeds, etc.) come before regular characters in the ASCII character order.

LINE INPUT PROMPT "Enter a Lline of text: ": Lline$
FOR ¢ = 1 to Len(line$)
SELECT CASE line$LCc:c] ' Current character
CASE "0" to "9" V'If it is a digit
LET number = number + 1
CASE "A" to "Z" ' If it is uppercase
LET uc = uc + 1
CASE "a" to "z" ' If it is lowercase
LET Llc = lc + 1
CASE is < " " ' If a control character
LET control = control + 1
CASE else
LET other = other + 1
END SELECT
NEXT c¢

PRINT "The Lline contained:"; number; "numbers and"; uc + lc;

PRINT "characters."

PRINT "There were"; other + control; "other characters in the Lline."
END

Loop Structures 41

CHAPTER

&

Loop Structures

Often, you will find that you want to repeat a block of statements many times. True BASIC provides two loop
structures that let your programs execute the same statements several times. FOR structures, often called FOR
loops, repeat a block of statements a specified number of times. DO structures, or DO loops, repeat a block of
statements until a certain condition is satisfied.

This chapter introduces FOR and DO loops, as well as the EXIT statements that allow you to escape from the
body of a loop.

FOR Loops

A FOR structure, or FOR loop, executes a block of statements a predetermined number of times. You form a FOR
structure using a FOR statement and a NEXT statement.

The FOR statement controls the number of times the loop will be repeated by defining the index variable, its ini-
tial value, its ending or limit value, and its increment. The structure uses the index variable to monitor the
number of passes through the loop. After each time through the loop, True BASIC increases the index variable by
the value of the increment. As soon as the index variable becomes greater than its limit value, the program goes to
the statement following the NEXT statement.

Here is a simple example using the PLOT statement, which is explained in more detail in Chapter 13 “Graphics.”

! Plot the square root function
SET WINDOW O, 10, 0, 4
FOR x = 0 to 10 step .1
PLOT x, Sqr(x);
NEXT x
END

Here the index variable x starts with value 0 and increases in steps of 0.1 until its value reaches 10. The NEXT
statement that indicates the end of the loop’s body must specify the same index variable as the FOR statement
that begins the loop. For each value of x, the body of the loop (the statements between the FOR and NEXT
statements) executes exactly once. The STEP clause may be omitted from the FOR statement, in which case an
increment of 1 1is used:

! Table of square roots

PRINT "Number", "Square Root"

FOR number = 1 to 10

PRINT number, Sqr(number)
NEXT number
END

Note that the index variable is increased at the NEXT statement. Thus, upon completion of the loop, the index
variable equals the first value that exceeds the limit value. Hence in the first example, x has a value of 10.1 upon
completion of the loop, while in the second example, number is equal to 11 after the loop.

42 True BASIC Language System

If the initial value of the index is greater than the limit value, the loop is not executed. For example:
I Sum of odd numbers to n

INPUT n

LET sum = 0

FOR i =1 to n step 2 ! 0dd numbers only
LET sum = sum + i ! Add them up

NEXT i

PRINT sum I Answer

END

If a value of 0 is supplied for n, then the body of the loop is not executed at all, and an answer of 0 is printed —
which is correct!

Negative increments are also allowed, in which case the loop continues until the value of the index variable is less
than the limit value. For example,

FOR x = 3.2 to 1.3 step -0.5
executes the loop with x = 3.2, 2.7, 2.2, 1.7 and exits with x = 1.2. In the case of a loop with a negative increment,
the loop body will not be executed at all if the initial value is less than the limit value.

Beware of unintentionally changing the value of the index variable inside the body of the loop. Although you may
do so, it can lead to unexpected results.

Occasionally, you may want to exit from a FOR loop before the index variable completes its defined sequence. True
BASIC provides the EXIT FOR statement for exactly this purpose. When an EXIT FOR statement is executed,
True BASIC immediately skips to the line following the NEXT statement. Upon such an exit, the index variable
retains the value it had when the EXIT FOR statement was executed.

The EXIT FOR statement is typically used as part of a decision structure. For example, you may want to examine
a series of values until some condition is met:

' Find smallest integer whose 5th power
! is greater than a billion

FOR n =1 to 100 ! Examine each integer
IF n?5 > 1e9 then EXIT FOR
NEXT n
PRINT n ! First integer to satisfy condition
END

If you find yourself using an EXIT FOR statement that is not part of a decision structure, then you most likely
don’t need the loop that contains it.

DO Loops

Often, you do not know how many times you will need to execute the body of a loop. Instead, you want to repeat
the loop until a condition is met. The DO loop fulfills this need.

ADO structure, or DO loop, starts with a DO statement and ends with a LOOP statement. The following program
illustrates the simplest form of the DO structure:
DO
PRINT "Happy Birthday!"
PRINT "And many happy returns.”
LOOP
END

The DO loop in this program will repeat forever — that is, until the user stops the program. (To stop a running
program, see the “True BASIC Environment” chapter in the Introduction section.) Loops that run forever are
called infinite loops.

Loop Structures 43

Although infinite loops are useful sometimes, you will usually want a loop that ends once a condition is met. True
BASIC provides three ways of ending a DO loop. You may attach a condition to the DO statement or to the LOOP
statement, or you may use an EXIT DO statement within the loop.

You have two options for attaching a condition to the DO statement: the WHILE clause and the UNTIL clause.
The WHILE clause follows the DO keyword and specifies a condition as a logical expression:

INPUT PROMPT "Initial sum, annual interest rate? ": sum, interest
LET mo_rate = interest/12

DO WHILE sum < 1000
LET sum = sum * (1 + mo_rate)
LET months = months + 1

LOOP

PRINT "It will take"; months; "months at"; interest; "to earn $1,000."
END

As long as the value of the logical expression is true, the body of the loop will be executed repeatedly. Before each
pass through the body of the loop, True BASIC checks the value of the condition; as soon as it becomes false, the
program continues with the line immediately following the LOOP statement.

The UNTIL clause is used the same way, except that the loop continues until the condition becomes true. Thus,
the following two DO statements have the same effect:

DO WHILE sum < 1000
DO UNTIL sum >= 1000

You may also attach a WHILE or UNTIL clause to the LOOP statement. The behavior of the loop will differ only
in when the condition is checked. With the WHILE or UNTIL on the DO statement, the condition will be checked
before each pass through the loop. Thus, there is a possibility that the body may never be executed. In the above
example, if the user enters an initial value greater than 1000, the program will skip the body of the loop.

On the other hand, when the WHILE or UNTIL clause is on the LOOP statement, the condition will be checked
after each pass through the loop. This guarantees that the body of the loop is always executed at least once. For
instance:
! Ask whether we should continue
DO
CALL Game_Sub ! User-defined subroutine
PRINT “Shall I continue"; ! Ask question
INPUT answer$
LOOP WHILE answer$ = "yes"

Here the LOOP statement contains the WHILE clause since the loop’s body must be executed at least once before
there is an answer to check.

While it is possible to specify a WHILE or UNTIL clause for both the DO and LOOP statements, this is seldom
necessary. Adding clauses to the top and bottom of a loop makes the loop’s behavior difficult to understand, and
you should avoid this technique in all but exceptional circumstances.

Occasionally, you may want to exit from the body of a DO loop without waiting until the next pass. To do so, use
the EXIT DO statement. When an EXIT DO statement is executed, True BASIC immediately skips to the line
following the next LOOP statement.

As with the EXIT FOR statement, you will typically use an EXIT DO statement as part of a decision structure,
as in the following code segment:

44 True BASIC Language System

! Ask whether we should continue

DO
CALL Step_One ! User-defined subroutine
INPUT PROMPT "Shall I continue": answer$! Ask question
IF answer$ = "no" then EXIT DO
CALL Step_Two ! User-defined subroutine
LOOP

You may find it convenient to use an EXIT DO statement as well as a WHILE or UNTIL clause attached to the
LOOP or DO statement. One might represent the normal termination, while the other may be an exit under
special conditions.

Nested Loops

As with decision structures, you may nest a loop within another loop structure, and you may nest loops within
decision structures or vice versa. You may nest loops and decision structures several layers deep; in other words,
a nested structure may in turn contain another nested structure. The important rule is that the nested structure
must be completed before the containing structure continues.

Here’s an example of nested loops and decision structures:

' Print triangular patterns of letters
FOR row = 1 to 6
FOR triangle =1 to 3
FOR xcount = 1 to row
IF triangle = 1 then

PRINT "a";
ELSEIF triangle = 2 then
PRINT "b";
ELSE
PRINT "c";
END IF
NEXT xcount
PRINT, ! Move to next column for next triangle
NEXT triangle
PRINT ! Move to next row
NEXT row
END
This program uses three nested loops and a decision structure to produce the following output:
a b c
aa bb cc
aaa bbb ccc
aaaa bbbb cccce
aaaaa bbbbb cceccece
aaaaaa bbbbbb cececccc

To better understand the operation of these structures, it is worthwhile to study this code in detail.

The program contains three nested FOR loops and one IF structure. Notice how the indentation helps identify
the nested structures. One loop governs the number of rows of text contained in each triangle. One loop controls
the number of triangles. And the third loop forms the triangular shapes by varying the number of characters
printed on each line. The decision structure determines which letter is used for each triangle.

The outer-most loop uses row as its index variable. As you can infer from the name of its index variable, this is the
loop that controls the number of rows printed. To change the number of rows used in the printed figure, simply

Loop Structures 45

change the limit value of this loop. Each pass through the body of this loop is responsible for printing one row of
the final image.

The body of this outer-most loop contains the middle loop and a vacuous PRINT statement that ensures that each
row starts on a new line. The middle loop uses triangle as its index variable and controls how many triangles are
printed — changing the limit value of this loop will change the number of triangles. Each pass through the body
of this middle loop prints the current row of a single triangle.

To accomplish this, the body of the middle loop contains the third and final loop plus a PRINT statement
containing nothing but a comma to force the text cursor to the next print zone. The inner-most loop uses count as
its index variable and the current value of row as its limit value. Since the value of row increases by one with each
pass through the outer-most loop, using it as the limit value of the inner-most loop results in the inner-most loop
being executed once on the first pass through the outer-most loop, twice on the second pass, and so forth. Each
pass through this loop prints one character in the current row of the current triangle.

The body of the inner-most loop contains an IF structure that determines which letter to print based upon the
value of triangle. Since the value of triangle changes with each pass through the middle loop, its value is used to
print a different letter for each triangle.

Nested structures give you lots of power and flexibility; however, they can also create extremely complex programs
that are difficult to debug and maintain. While nested structures provide the best solution to many programming
needs, it is important that you understand how such nesting works before you use it.

46

True BASIC Language System

a7

CHAPTER

e

Data as Part of the Program

Earlier chapters illustrate two methods for assigning values to variables. You can use the LET statement for
direct assignments or use the various input statements to let the user make assignments while the program is
running. A third method allows your program to assign values to variables from blocks of data stored in the pro-
gram itself. This assignment method consists of two statements: the DATA statement, which defines the values,
and the READ statement, which assigns those values to variables.

As with the INPUT statement, the READ statement can also assign values read from a data file. This chapter
discusses only built-in data (data stored in the program itself). You will find a discussion of data files in Chapter
12 “Files for Data Input and Output.”

Data Blocks

A DATA statement consists of the keyword DATA followed by a data list. A data list is a series of numeric
and/or string constants separated by commas. The items in the data list should follow the same rules as data
entered in response to an INPUT statement. String constants containing leading or trailing spaces, commas,
quotation marks, or an exclamation point must be enclosed in quotes. Quotation marks that are not part of the
data must be doubled. The null (or empty) string (") is a valid string constant and may be used as a data item.

DATA statements are simply storage areas for information used by the program; they are not executed. Thus,
you may put them anywhere in the program; common placements are just before the END statement to keep
them out of the way, or near their associated READ statements to make the program easier to understand.
Before it runs the program, True BASIC collects all the data items into a single data pool. The data pool will
contain each of the data lists in the order in which they appear in the program.

When you start writing programs with several program units, the rules for DATA statements get a bit more
complicated. For now, it will suffice to note that each program unit has its own separate data pool, which con-
tains only the contents of the DATA statements located within that program unit. For more information on data
pools and program units, refer to Chapter 11 “Libraries and Modules.”

Reading Data

The READ statement assigns values from the data pool to specific variables. It is similar to the INPUT state-
ment, except that it obtains its information from the data pool rather than from the user. READ statements,
like most True BASIC statements, are executed as they are encountered, and they always take the next data
item from the data pool.

To understand the concept of the next data item, you must first understand the concept of the data pointer. The
data pointer indicates which data item in the data pool should be used next. True BASIC handles the data
pointer automatically, so you don’t need to worry about it. When the data pool is created, the data pointer
“points to” the first data item in the pool. Each time a READ statement uses a data item, True BASIC automati-
cally moves the data pointer to the next item. When the last item in the pool has been read, the pointer is set
beyond the end of the pool. If your program tries to execute a READ statement when the pointer points beyond
the end of the pool, True BASIC generates an error.

48 True BASIC Language System

Consider this example:

READ x, y

PRINT x + y

READ x, Yy

READ a$, z

PRINT a$; (x +y) * z
GET KEY k

DATA 3, 4, 2

DATA 3, Answer is, &4
END

3, 4

7

2, 3

"Answer is," 4

"Answer is, " (2 + 3) x &4

Hold output until a key is pressed

This program has two DATA statements, which are combined to form the data pool:

3
4
2
3
Answer is
4

The first READ statement reads the first two items from the data pool and leaves the data pointer at the third
item. Thus, the variable x will be assigned the value 3, and y will be assigned the value 4. The program prints
the sum of these values (7) before it executes the second READ statement.

The second READ statement reads the value 2 into x and the value 3 into y, leaving the data pointer pointing at
the fifth data item. Notice that the fifth data item is not a valid numeric constant; it must be read into a string
variable. The third READ statement does just that, reading that value into the string variable a$ and reading
the sixth item into the variable z. These variables are then used to produce the second line of output.

Thus, the entire output of the program will be:

7
Answer is 20

Note that the DATA statements must list items in the precise order in which they will be read by the READ
statements. You may not read a non-numeric value into a numeric variable, but you may read any value into a
string variable. And while you may read fewer items than are contained in the data pool, you may not read more
items than are in the data pool.

Checking for More Data

Since READ statements are often used inside loop structures to repeat the same block of statements with sev-
eral different values, True BASIC provides two special logical expressions that your program may use to avoid
reading past the end of the data pool. These expressions are MORE DATA and END DATA.

The logical expression MORE DATA is true as long as the data pointer is not pointing beyond the last data item in
the pool. The logical expression END DATA is true only when the data pointer has passed the last item in the
pool. You may use these anywhere you can use a logical expression, such as the condition in an IF statement or as
the condition in a WHILE or UNTIL clause. For example, consider the following program:

PRINT "Number", "Square Root"
DO WHILE MORE DATA

READ x

PRINT x, Sqr(x) ! Show square root
LOOP

DATA 1,2,3,5,6,7,8,10,11,12
END

Data as Part of the Program 49

Because of the flexible way in which this program is written, extending the printed table is a simple matter of
adding additional data items.

Another mechanism for detecting the end of the data pool is the IF MISSING clause in the READ statement, as
in:

DO
READ IF MISSING then EXIT DO: x
PRINT x

LOOP

In this example, the EXIT DO statement will be executed only if the data pointer has passed the last data item
in the pool.

Reusing Data

Sometimes, your program will need to use the same data pool more than once. The RESTORE statement sets
the data pointer back to the first item in the pool, allowing its reuse. For example, the program:
FOR n =1 to 1000
READ x
PRINT x;
IF END DATA then RESTORE
NEXT n

DATA 1, 2,3, 4,5,6,7,8,9,10
DATA 99, 98, 97, 96, 95
END

will print 1,000 numbers, using the 15 numbers in the data pool repeatedly.

If your program uses line numbers, then you may specify a line number with the RESTORE statement. In that
case, True BASIC moves the data pointer to the item in the data pool that corresponds to the first item in the
DATA statement at that line number.

50

True BASIC Language System

51

CHAPTER

3

Built-in Functions

True BASIC provides built-in, or pre-defined, functions that perform a wide range of operations. This chapter
introduces many commonly used built-in functions; additional functions are introduced in other chapters as
appropriate. If you cannot find a built-in function that performs the operation you require, you can define your own
functions as described in Chapter 10 “User-defined Functions and Subroutines.”

Function Basics

A function is a structure that simplifies a complex operation into a single step. Functions act as “black boxes.”
They accept some input value or values and process that input in a defined manner to produce or “return” an out-
put value. As long as you know how and when to use a particular function, you need not be bothered by how it actu-
ally works.

Consider, for example, the process of taking the square root of a numeric value. If you had to define this process in
your program every time you needed a square root, your programs would require extra code and you would prob-
ably tire of entering the same code over and over.

Fortunately, True BASIC has a built-in function that compresses the entire square root operation into a single
step. Using the SQR function, your program can easily find the square root of any number greater than or equal
to zero:

DO

INPUT PROMPT "Enter a number: ": n

IF n < 0 then EXIT DO

PRINT "The square root of"; n; "is"; Sqr(n)
LOOP
END

The SQR function displays the square root of a numeric value provided by the user.

If a function returns a numeric value, as the SQR function does, it is a numeric function. Functions that return
a string value are string functions. Other functions may return logical values or entire arrays (as discussed in
the following chapter). A function’s name reflects the type of value it returns; a function returning string values
has a name that ends with a dollar sign ($).

The input values that you provide when you use a function are called its arguments, and the value the function
returns is called its return value. Often a function’s return value is referred to simply as that function’s value.
Note that even though functions may require several arguments as input, a function returns one and only one
value (except for the special array functions).

In the program example above, the variable n is the argument to the SQR function. The SQR function takes the
value of n and returns its square root. True BASIC uses the function’s return value at the place where the function
is invoked. In the above example that value is displayed by the PRINT statement; it could also be part of an
expression used in an assignment statement:

LET x = (Sqr(z) +y) [/ z

Not all functions require arguments, but those that do follow very strict rules. The function’s definition
determines the number, type, and order of its arguments. A function definition works with specific parameters.
When you invoke the function, you usually must supply matching arguments as input for those parameters. You

52 True BASIC Language System

specify the argument list for a function in parentheses after the function’s name, separating multiple
arguments by commas.

For example, the REPEATS function uses a string parameter and a numeric parameter, in that order. It returns
a string formed by the string parameter repeated the number of times specified by the numeric parameter. When
you use the function you must provide a string argument followed by a numeric argument:

PRINT Repeat$("Tra Lla! ", 4)
The function will then substitute the values of the arguments for the parameters to compute its return value:
Tra Lla! Tra la! Tra Lla! Tra la!

Some of True BASIC’s built-in functions are defined with optional parameters. They assume some default value
for these optional parameters if you do not supply matching arguments when you invoke the function. For exam-
ple, the ROUND function rounds numeric values. It uses two numeric parameters: the value to be rounded and
the number of places it should be rounded to the right or left of the decimal point. If you omit the second argument,
ROUND assumes 0 for that parameter. For example:

PRINT Round (123.4567, 3), Round (123.4567), Round (123.4566, -2)
prints the following:
123.457 123 100

True BASIC matches the arguments you specify when you invoke a function with the parameters in that function’s
definition based solely on their position in the argument list. In other words, the value of the first argument in the
invocation will be used as the value of the first parameter in the definition, and so on. If the type of an argument does
not match the type of the corresponding parameter, then True BASIC generates an error.

You may use a function anywhere you would use an expression. A function invocation, along with its associated argu-
ment list, is itself an expression and may be used to build more complex expressions. Here are some typical uses of
numeric and string functions (the functions themselves are introduced in the following sections):

LET answer = 3 * Log(2%z - 7.2)

LET z = Exp(-x) * Cos(2*t - 1)

DO WHILE Sin(x) < .5

LET reply$ = Lcase$(input$)

IF Ucase$(continue$C1:11) = "Q" then STOP

Arguments to functions may be constants, variables, or expressions — as long as they are the correct type. Because
functions are themselves expressions, you may use them as arguments to other functions. Here are some examples:

LET n = Int(Rnd * 10) + 1 ! Random integer between 1 and 10
LET answer = Round(Sqr(x), 2) ! Round square root to 2 decimal
places

PRINT Repeat$ (echo$, Int(Rnd*5)+1) ! Repeat a random no. of times

Numeric Functions

Many of True BASIC’s built-in numeric functions, like the SQR function, perform mathematical operations that
would be difficult or impossible to implement with the mathematical operators discussed in Chapter 2 “Constants,
Variables, and Expressions.” This section introduces most of the built-in mathematical and trigonometric func-
tions along with two other functions that examine the numeric capabilities of the computer running your program.
(Other functions that return numeric values are introduced in the “String-handling Functions” and “Time and
Date Functions” sections of this chapter.)

Most numeric functions take one or two arguments which may be numeric constants, numeric variables, or any
other numeric expression. As noted above, numeric functions are themselves numeric expressions so they may be
used as arguments to other functions:

LET answer = Max(Sin(x), Cos(2*x)) ! Larger of sine or cosine

Built-in Functions

Mathematical Functions

The following table summarizes the built-in mathematical functions. The numeric arguments in the table are rep-
resented by x, y, or n.

Mathematical Functions

53

Function

ABS(x)

SGN(x)

SQR(x)

EXP(x)

MIN(x,y)
MAX(x,y)
MOD(x,y)
REMAINDER(x,y)
ROUND(x,n)
TRUNCATE(x,n)
RND

LOG(x)
LOG10(x)
LOG2(x)

INT(x)

IP(x)

FP(x)

CEIL(x)

Result
Absolute value of x
Sign of x; returns 1 if positive, -1 if negative, 0 if x = 0
Square root of x
The natural exponent of x, or ex where e = 2.718281828...
Smaller of two numbers
Larger of two numbers
Remainder when x is divided by y
Remainder when x is divided by y
Value of x rounded to n decimal places; n assumed to be 0 if not specified
Value of x truncated to n decimal places; n assumed to be 0 if not specified
A pseudo-random number greater than or equal to 0 and less than 1
Natural logarithm of x
Common logarithm of x (base 10)
Logarithm to the base 2 of x
Greatest integer <=x
Integer part of x
Fractional part of x
Ceiling of x or least integer >=x

While most of these functions are direct parallels of their mathematical counterparts, a few warrant special attention.

The SGN, or signum, function is often used in mathematics and is very useful for programming. The value of
Sgn(x) is+1,0, or -1, depending on whether x is positive, zero, or negative.

The MOD function has many uses. One use is to test whether one number is a multiple of another, in which case
the MOD function returns a value of zero. Consider the following program that finds out if a number is odd or even:

DO
INPUT PROMPT "Enter a number (0 to quit): ": n
IF n=20 then
EXIT DO
ELSEIF Mod(n,2) = 0 then
PRINT "The number "; n; "is even."
ELSE
PRINT "The number "; n; "is odd."
END IF
LOOP
END

The REMAINDER function is a variant of the MOD function that uses a different convention for negative num-
bers. For more details on the subtle differences between these two functions see their formal descriptions in Chap-
ter 18 “True BASIC Statements and Built-in Functions and Subroutines.”

When you want to round off a numeric value, use the ROUND function which rounds x to n decimal places. If the
value of n is 0, or if the second argument is omitted, then x is rounded to an integer. To round to the left of the dec-
imal point, use a negative value for n. For example, -3 will round x to the nearest thousand. The TRUNCATE
function is similar, but simply drops any extra digits. The number 1.7 rounded to an integer becomes 2, but when
truncated, the .7 is dropped and it becomes 1.

The RND function requires no arguments. It generates a pseudo-random number greater than or equal to 0 and
less than 1. Each time the RND function is invoked, a new number is returned. While the numbers are not truly

54 True BASIC Language System

random, True BASIC’s random numbers stand up well under statistical tests and hence allow the simulation of
chance events.

To simulate a game with a 37% probability of winning, you could use the following code segment:

IF Rnd <= .37 then
PRINT “"You win"
ELSE
PRINT "You lose"
END IF

The RND function can also simulate the rolling of a die. Since the result of rolling a die is always an integer rang-
ing from one to six, you could use the statement:

LET die = Int(6*Rnd) + 1
If executed repeatedly, this statement will produce integers from one to six with equal probabilities.

To facilitate debugging, True BASIC produces the same sequence of pseudo-random numbers each time you run a
program. Once the program is debugged, however, you will almost certainly want it to behave differently each time
itis run.

To force the program to produce a different sequence of pseudo-random numbers each time it is run, simply insert
a RANDOMIZE statement near the beginning of your program. This statement produces a new “seed” for the ran-
dom-number generator, resulting in a new series of pseudo-random numbers. Please note that the RANDOMIZE
statement need only be executed once; it is neither necessary nor desirable for a program to execute it repeatedly.

The INT function returns the greatest integer that is less than or equal to its argument, and the CEIL function
returns the least integer that is greater than or equal to its argument. For instance, Int(2.34) returns 2 while
Ceil(2.34) returns 3. Similarly, Int (-2.34) equals -3and Ceil(-2.34) equals -2.

A variant of the INT function is the IP function, which returns the integer part of its argument. The two functions
work differently for negative numbers, however: IP essentially strips the decimal part of the number away return-
ing the value to the left of the decimal point, while INT returns the greatest integer less than or equal to its argu-
ment. Thus, both Int(3.267) and Ip(3.267) equal 3,but Int(-3.267) equals -4 and Ip(-3.267)
equals -3. The FP function returns the fractional part of a number. It is always true that Ip(x) + Fp(x) = x.

[!] Note: True BASIC also provides some built-in subroutines. Subroutines differ from functions in that
they do not return a value in the same way and must be invoked with a CALL statement. Subroutines
are discussed in detail in Chapter 10 “User-defined Functions and Subroutines.”

However, here we introduce the DIVIDE subroutine, which may be invoked as follows:

CALL DIVIDE(x, y, q, r)
The DIVIDE subroutine performs integer division of x by y and assigns the value of the quotient to g
and the remainder to r.

Trigonometric Functions

Trigonometric functions are summarized in the following table. Most take one or two numeric arguments, indi-
cated by x and y in the table.

Examples of Trigomonetric Functions

Function Result

PI The constant 3.1415...
SIN(x) Sine

COS(x) Cosine

TAN(x) Tangent

Built-in Functions 55

SEC(x) Secant

CSC(x Cosecant

COT(x) Cotangent

ATN(x) Arctangent

ACOS(x) Arccosine

ASIN(x) Arcsine

COSH(x) Hyperbolic cosine

SINH(x) Hyperbolic sine

TANH(x) Hyperbolic tangent

DEG(x) Converts x from radians to degrees
RAD(x) Converts x from degrees to radians
ANGLE(x,y) Counter-clockwise angle between positive x-axis and point (x, y)

The PI function requires no argument and always returns the value of that famous constant (3.1415...). It is a
function and not a variable; it would not make sense to assign a value to it. The PI function is useful in trigono-
metric formulas such as:

LET z = Sin(x + Pi/4)

Unless your program specifies otherwise, True BASIC assumes that values representing angles in trigonometric func-
tions are measured in radians. If you want to work with angles measured in degrees, you can change True BASIC’s
behavior with the OPTION ANGLE statement. This statement takes two forms. The form

OPTION ANGLE degrees

instructs True BASIC to assume degrees for the arguments to all subsequent trigonometric functions. The angle
measure set by the OPTION ANGLE statement remains in effect until the end of the program (or the current pro-
gram unit) or until another OPTION ANGLE statement changes the setting. You may use

OPTION ANGLE radians
to return to radian measures if necessary.

If you need to convert a single value from radians to degrees, use the DEG function, which takes the radian value
to be converted as its only argument. Use the RAD function to convert a single value from degrees to radians.

The ANGLE function returns the angle measured counterclockwise between the positive x-axis and the point spec-
ified by its arguments. The first argument represents the x-coordinate of the point, and the second the y-coordinate.
The return value is in radians or degrees depending upon the current angle measure option.

While any numeric expression may serve as a numeric argument, certain mathematical functions specify values that
are illegal when used as arguments. For example, Log(-2), Tan(Pi/2) and Angle(0,0) will produce errors.

The accuracy of the trigonometric and transcendental functions on most operating systems is the full accuracy
spedified by the IEEE standard for eigh-byte arithmetic, that is, about 15 significant digits.

Range-of-numbers Functions
True BASIC provides two numeric functions — the MAXNUM and EPS functions — that help you discover the
range of numbers available on your computer. The values of these functions depend on what computer you use.

The MAXNUM function, which does not accept an argument, returns the largest positive number expressible by
the computer currently running the program.

The EPS function returns the smallest positive number that “makes a difference” when added to or subtracted
from the value of the argument. Thus, Eps(0) isthe smallest positive number expressible by the computer cur-
rently running the program. Similarly, if Eps (1e15) equals 4 on your computer, then adding or subtracting 3 to
1e15 will not change its value, and you know that the fractional part of your number is meaningless — and even
the last digit of the integer part is suspect.

56 True BASIC Language System

String-handling Functions

True BASIC also provides several functions to help you work with strings. Some string-handling functions trans-
form a string argument into another string. Other string-handling functions, however, search for values within
strings and are actually considered numeric functions because they return numeric values. This section intro-
duces these two groups of functions plus the USING$ function. (See the section on “Time and Date Functions” for
two more functions that return string values.)

String Search Functions
The following table lists those string-handling functions that return a numeric variable. These are generally clas-
sified as string search functions:

Examples of String Search Functions

Function Result

LEN(x$) Number of characters in x$

POS(x$,a$,c) First occurrence of a$ in x$ at or after character number ¢

CPOS(x$,ch$,c) First occurrence of a character in x$ from string ch$ at or after
character number ¢

NCPOS(x$,ch$,c) First occurrence of a character in x$ not from string ch$ at or after
character number ¢

POSR(x$,a$,c) Last occurrence of a$ in x$ at or before character number ¢

CPOSR(x$,ch$,c) Last occurrence of a character in x$ from string ch$ at or before
character number ¢

NCPOSR(x$,ch$,c) Last occurrence of a character in x$ not from string ch$ at or before
character number ¢

The LEN function finds the number of characters in the string value supplied as its argument. The LEN function
used with substring expressions is extremely useful when you need to process a string one character at a time. For
example, the following program:

LINE INPUT PROMPT "“Enter a line of text: ": line$

LET count =0

FOR i =1 to Len(line$)

IF line$Ci:i1 = "," then LET count = count + 1

NEXT i

PRINT "Number of commas in line:"; count

END

counts the number of commas in a line input by the user. Notice how the LEN function limits the FOR loop so that
the body is executed once for each character in line$. Within the body of the loop, a substring expression uses the
index variable i to examine the i-th character of the string, counting it if it is a comma.

The other functions in the above list allow your program to search for the occurrence of one string inside another.

Pos(x$,a$,c) searches in x$ for the next occurrence of the substring a$. The search can start at a specific character
position in x$, specified by c. However, if ¢ is omitted, the search starts at the beginning of the string. The POS
function can be very useful for parsing a string. Parsing is the process of breaking a string into its separate com-
ponents. For instance, the following program parses a line into individual words:

LINE INPUT PROMPT "Enter a Lline: ": Line$

LET Lline$ = Line$ & " "

LET start = 0

DO
LET end = Pos(line$," ",start) -1 ' End of 1st word from 'start'
PRINT line$[start:endl] ' Print from 'start' to end of word
LET start = end + 2 ! Reset value of 'start'

IF start > Len(line$) then EXIT DO

Built-in Functions 57

LOOP
END

As it finds each word, it prints that word on a line by itself, as follows:

Enter a Lline: Hello, who are you?

Hello,

who

are

you?
This simplified implementation of the parsing process assumes that words are separated by exactly one space. A
slightly more comprehensive version can be written using the CPOS and NCPOS functions.

Cpos(x$,ch$,c) and Ncpos(x$,ch$,c) treat the string ch$ as a list of characters. The CPOS function
searches x$ for the first occurrence of any character from this list, while the NCPOS function searches x$ for the
first occurrence of any character not from the list. As with the POS function, the final numeric argument, c, is
optional; if ¢ is specified, the search begins at that character position.

Thus, the parsing program could be written as follows:

LET delim$ =" ,.2';-()"

LINE INPUT PROMPT "Enter a line: ": Lline$
LET Lline$ = Lline$ & " "

LET start = Ncpos(line$,delim$)

DO
LET end = Cpos(line$,delim$,start) - 1
PRINT Lline$[start:endl]
LET start = Ncpos(line$,delim$,end+1)
IF start = 0 then EXIT DO

LOOP

END

This version of the parsing program is significantly more flexible. It allows several standard punctuation charac-
ters to act as the separators between words (such characters are typically called delimiters), and it will ignore
multiple separators between words.

The POSR, CPOSR, and NCPOSR functions search in reverse; that is, they work backwards from the end of the
string to be searched.

The following table illustrates the behavior of the seven string search functions. For each function, the return value is
the number (or position) of a character where a match is found. If no match is found, the return value is 0:

Examples of String Search Functions

Example Returns Interpretation
LEN("Hello there!") 12 Number of characters in “Hello there!”
POS("Harvard","ar") First occurrence of “ar”
POS("Harvard","ar",3) First occurrence of “ar” at or after character 3
POS("Harvard","ra") First occurrence of “ra”
POSR("Harvard","ar") First occurrence starting from the end
CPOS("Harvard","dv") First occurrence of a character from the string”dv”
CPOSR("Harvard","dv") First occurrence starting from the end
NCPOS("Harvard","dv") First occurrence of a character not in the string “dv”
NCPOSR("Harvard","dv") Ditto, but starting from the end

NCPOS("Harvard","adrv",2) First occurrence of a character not in “adrv”
at or after the second character

ooN—_ NP~ uUTo v

58 True BASIC Language System

String Transform Functions
Along with the numeric string-search functions, True BASIC has several built-in string functions that transform
their string argument in some way:

String Transform Functions

Function Result

LCASE$(x$) Change all letters to lowercase
UCASE$(x$) Change all letters to uppercase
LTRIMS(x$) Remove leading blanks
RTRIMS$(x$) Remove trailing blanks
TRIM$(x$) Remove leading & trailing blanks
REPEAT$(x$,n) Return x$ repeated n times

[!] Note: Functions do not actually change the values of their arguments. Thus, when a function is
referred to as transforming or changing its argument, the statement should be interpreted as meaning
that the function returns a value that represents a transformation of the value of its argument. After
the function invocation, however, the value of the actual argument remains unchanged.

The LCASE$ and UCASES$ functions can be useful for testing user input. Consider, for example, a situation
where you expect the user to answer a prompt with the input “Yes”. If you use the test:

IF Lcase$(answer$) = "yes" then

then it does not matter whether the user types YES, Yes, yEs, or yes in response to your prompt. Allowing the user
to ignore case when not important makes your programs more user friendly.

The LTRIM$, RTRIM$, and TRIMS$ functions are handy when you are using substring expressions. For exam-
ple, if you are testing the user’s input based on its first character, you might strip off leading spaces to ensure that
you are testing the first real character. The following variation on the previous example would accept Y, vy,
Yes, yep!, " Yes, sir " andanyother phrase beginning with the letter “y” as an affirmative response:

IF Lcase$(Trim$Canswer$)L1:11) = "y" then

As shown earlier, the REPEATS$ function generates strings with repeating patterns. The string specified as the
first argument is repeated the number of times specified by the second (numeric) argument.

The USING$ Function

Another useful string function is the USING$ function, which is related to the PRINT USING statement. The
USINGS function returns a string formatted by a format string according to the same rules as the PRINT USING
statement. The USINGS$ function does not print the resulting string, however. For example,

LET result$ = Using$S("##.###", 13.756812)

assigns the string value "13.757" to the variable resul t$. The value returned by the USING$ function may
be displayed anywhere on the screen, stored in a file, or further manipulated.

Converting Between Strings and Numbers

True BASIC maintains a strict distinction between numeric and string values. Most operations and functions are
specific to one or the other. For instance, you cannot subtract two strings, nor can you concatenate two numbers.
Sometimes, however, you need to work around these distinctions by converting between strings and numbers.

True BASIC provides several built-in functions that allow you to convert between data types. The simplest of these
are the STR$ and VAL functions.

The STRS$ function returns the string representation of the numeric value given as its argument. The form of the
string representation is the same as would be produced by a PRINT statement, except that leading and trailing

Built-in Functions 59

spaces are not included. Thus, the STR$ function lets you print a numeric value without its leading or trailing
spaces. For instance:

LET n = 2

LET m =3

PRINT Str$(n); "+"; Str$(m); "="; Str$(n+m)

would produce the output:

2+3=5
Ifthe value of a string expression follows the rules for a numeric constant, then the VAL function can convert that
string value into its equivalent numeric value. This can be useful when you are processing numeric input entered

as strings. Consider the following variation on the earlier parsing example that takes a delimited list of numbers
and prints their sum:

LET delim$ =" ,.2!1;-()"

LINE INPUT PROMPT "Enter a series of numbers: ": Line$

LET Lline$ = line$ & " "

LET sum = 0

LET start = Ncpos(line$,delim$)

DO
LET end = Cpos(line$,delim$,start) - 1
LET sum = sum + Val(line$[start:endl)
LET start = Ncpos(line$,delim$,end+1)
IF start = 0 then EXIT DO

LOOP

PRINT "Their sum is"; sum

END

The CHR$ and ORD functions play a similar role for single characters. The ORD function translates a single
character string into its corresponding code number in the current character set — usually the ASCII character
set. If ¢$ is a one-character string, then 0rd (¢ $) returns the code number corresponding to that character in the
current character set. For example,

GET KEY z
IF z = 0rd(".") then EXIT DO

will jump out of a DO loop when the user types a period. ORD also accepts longer names for some ASCII charac-
ters. Thus, ORD ("BS") returns 8, which is the character code for the “back space” character; see Appendix A for
a list of ASCII codes and names. When its argument is the null string, the ORD function returns a value of -1.

The CHRS function goes the other way, converting a code number into its corresponding character. If n is a num-
ber in the range 0 to 255, Chr$(n) returns the character corresponding to that number in the current character
set. You can use CHRS$ to translate GET KEY input into a string value:
DO
GET KEY k
IF 32 < k and k < 127 then
PRINT Chr$(k); " is"; k

ELSE
PRINT "Key is not a printable character"”
END IF
LOOP UNTIL k = Ord(" ") ! Space bar stops program
END

You can also use CHRS$ to introduce non-printing characters into your program. For instance, Chr$(9) returns
the tab character, and Chr$(27) returns the escape character.

Advanced programmers may wish to “pack” numeric values into string variables. This technique can save mem-
ory and is often required when working with the machine at a lower level. The PACKB subroutine allows you to
pack a numeric value into a specific set of bits within a string variable. A call to this built-in subroutine takes the
following form:

CALL Packb(s$,b,nb,number)

60 True BASIC Language System

This call instructs True BASIC to represent the numeric value of numbe r (rounded) using nb bits and to store the
result into s$ beginning at bit position b. (The value of number is rounded to an integer if necessary, and special
conventions apply to negative integers and to integers that do not fit into the specified number of bits.) You can
save large amounts of memory space (at the expense of computation speed) by packing integers into a string.

If the bit position b is larger than the length of the string, the packed number is added to the end of the string.
This can be useful because if you keep appending to a given string, you don’t have to keep track of the bit position
— instead, just use a very large number for b, such as the MAXNUM function.
To recover the numeric value from the string, use the UNPACKB function:

LET number = Unpackb(s$,b,nb)

This statement reverses the operation of the previous call to the PACKB subroutine. It converts nb bits from s $
beginning at bit position b and returns the resulting integer value.

An example of packing and unpacking is included in the section on byte files in Chapter 12 “Files for Data Input
and Output.” For a more detailed description of the PACKB subroutine and the UNPACKB function see Chapter
18 “True BASIC Statements and Built-in Functions and Subroutines.”

Time and Date Functions

True BASIC provides two string and two numeric functions that let you get time and date values from your com-
puter’s internal clock.

The TIME function returns the time as the number of seconds since midnight (so use caution when using it in pro-
grams that may be run overnight). This makes it easy to time a program:

LET t1 = Time ! Starting time in seconds
DO
CALL RunQuiz (score) ! User-defined subroutine
LOOP until score > 90.
LET t2 = Time ' Time at completion

PRINT "Time elapsed:"; t2-t1; "seconds"

The TIMES function returns the time measured by the 24-hour clock as a string in the format "HH:MM:SS",
where HH represents the hour, MM the minute, and SS the second. For example: "08:05:45" or "15:16:10".

The DATE function returns a numerical representation of the current date consisting of the last two digits of the
year followed by the ordinal number of the current day within the year. For example, DATE would return the
value 95041 on February 10, 1995. Because earlier dates always have lower numerical values, this format is use-
ful for sorting date values.

The DATES$ function returns the date as a string in the format "YYYYMMDD", where YYYY represents the year,
MM the month, and DD the day. Thus, DATE$ would return "19960714" ondJuly 14,1996. Although not the stan-
dard date format, dates in this format can be easily sorted. You can also print substrings of these functions to pro-
duce desired output. For example:

LET today$ = DATES$[C5:61 & "/" & DATE$L7:81 & "/" & DATES$[3:4]

PRINT "Today is "; today$

END
would produce output such as:

Today is 07/14/94

[!] Note: For any calculations involving dates cross the year 2000 boundary, we recomment using
DATES. The DATE function will not work properly, as it supplies only the last two digits of the year
number.

Built-in Functions 61

CHAPTER

O

Arrays and Matrices

An array is a data structure that allows you to group several numeric or string variables under a single name. It
may be one-dimensional list or vector or a two-dimensional table or matrix, or it may have several dimensions.
An array may contain either string or numeric values, but a given array may not contain both types of values.

Arrays are an extremely powerful tool for organizing the data used by your program. This chapter introduces the
basics of arrays and matrices, as well as several advanced topics, to help you use these powerful data structures
efficiently and effectively.

Array Basics

Often, your programs will use a large number of logically related values. Consider, for example, a program to work
with a teacher’s grade book for a class of 15 students over the course of a semester.

Such a program would need to manipulate several values, including the names of the students and their grades. Using
simple variables, sometimes called scalars, the program would need 15 variables to store the names. If there are ten
grades per semester, then the program would need another 150 simple variables to store the grades. As you can imag-
ine, building such a program using simple variables would be a real headache.

Fortunately, True BASIC offers arrays for the temporary storage and manipulation of related values. An array is
a named collection of numeric or string values. You can think of an array as a group of variables with the same
name. For instance, the grade-book program might use two arrays — one named name s $ containing the student
names and another named grades containing their grades.

[!] Note: Like any variable, values stored in an array remain there only during the program run. You
must supply the values to your program as some form of input — from the keyboard, from DATA state-
ments, or from a file. If you wish to preserve array data for future use, you should have the program
write the array contents to a file. Using arrays along with data files gives you a powerful tool for manip-
ulating large amounts of data. This chapter gets you started with arrays; see Chapter 13 “Files for Data
Input and Output” for more information on using data files.

The individual variables contained in an array are called its elements. All of the elements of a given array must
be of the same type — either numbers or strings. Thus, arrays are often referred to as numeric arrays or string
arrays, depending upon the values they can contain. You may use any valid numeric variable name for a numeric
array, asin grades, or any valid string variable name for a string array, as in name s $. However, you may not
use the same name for both a simple variable and an array.

Before you can use an array, you must define it in a DIM (dimension) statement. A DIM statement tells True
BASIC that you will be using the specified name as an array variable. The form of the name tells True BASIC
whether you will be using the array to store string or numeric values, and what follows specifies the number of
dimensions and the size of each dimension. For example:

DIM names$(15), grades(15, 10)

defines the string array names$ as a list of 15 elements. Each element in name s$ may be treated as a separate
string value. It also defines the numeric matrix grades as a table with 15 rows (in the first dimension) and 10

62 True BASIC Language System

columns (in the second dimension). The array dimensions specified in a DIM statement must be numeric con-
stants, not variables or expressions.

Each element in an array is assigned a number called a subseript. Unless you specify otherwise, these numbers
begin at 1. For instance, the fifteen items in the name s $ array would be numbered 1 through 15. Likewise, the fif-
teen rows in the grades matrix would be numbered 1 through 15, and the 10 columns would be numbered 1
through 10.

You use subscripts to refer to specific elements within an array. You specify the subscript in parentheses after the
array name. For instance, names$ (5) represents the fifth item in the name s$ array. With multi-dimensional
arrays, you must specify a subscript for each dimension. For instance, grades (5,3) represents the item in the
third column of the fifth row of the grades matrix. You may use any valid numeric expression as a subscript; if
the value of the subscript is not an integer, True BASIC will round it to the nearest integer.

When you use a subscript to refer to a specific element of an array, you may use that array element as you would
a simple variable of the same type:
LET score(i) =i * x

LET cost(n) = october(n,3) * d(3)
PRINT name$(7), age(k)

To better understand the use of arrays, let’s consider an example. The following program sets up a multiplication
table and uses it:

DIM product(10,10)

FOR i =1 to 10 ' For each row
FOR j =1 to 10 ! For each column in current row
LET product(i,j) = i*j
NEXT j
NEXT i
DO
INPUT PROMPT "Enter two integers to multiply; use 0,0 to end: ": a, b

IFa=0andb =20 then EXIT DO
PRINT a; "*"; b; "="; product(a,b)
LOOP
END

The two FOR loops assign values to each element of the two-dimensional array produc t. The value for each ele-
ment equals its row subscript multiplied by its column subscript. The INPUT PROMPT statement gets two
numeric values from the user. The program then uses those values as subscripts and prints the value of the cor-
responding element in product — which is the product of the two subscripts.

If one of the input numbers (rounded if necessary) is less than 1 or greater than 10, then a “Subscript out of bounds”
error results and the program stops. You can usually adapt your programs to avoid such errors. For example, you
could modify this program by placing the PRINT statement in an IF structure:
DIM product(10,10)
FOR i =1 to 10
FOR j =1 to 10
LET product (i,j) = i*j

NEXT j
NEXT i
DO
INPUT PROMPT "Enter two integers to multiply; use 0,0 to end: ": a, b
IFa=0andb =20 then
EXIT DO

ELSEIF a < 1 or a > 10 or b <1 or b > 10 then

PRINT "Please re-enter, using two numbers from 1 to 10"
ELSE

PRINT a; "*"; b; "="; product(a,b)
END IF

Arrays and Matrices 63

LOOP
END

There are other ways of preventing errors from stopping your program. For more information see Chapter 16
“Error Handling.”

The lowest valued subscript in each dimension is that dimension’s lower bound. The highest valued subscript in
each dimension is that dimension’s upper bound. If a DIM statement specifies only one numeric constant per
dimension, True BASIC uses that number as the dimension’s upper bound and assumes 1 as the lower bound. How-
ever, you may also specify a dimension’s lower bound in a DIM statement. For example:

DIM profit(1980 to 1995), count(-10 to 10, 3)

defines the numeric array prof it as having a lower bound of 1980 and an upper bound of 1995. Thus, profit has
16 elements, which you may refer to using the year as the subscript. In a similar fashion, this statement defines the
numeric matrix count as having a lower bound of -10 and an upper bound of 10 in the first dimension and a lower
bound of 1 and an upper bound of 3 in the second dimension. Thus, the matrix count has 63 elements divided into
21 rows of 3 columns each. Note that you may use a colon (:) in place of the word TO in array dimensions.

Once an array has been defined to have a certain number of dimensions, the number of dimensions cannot be
changed. However, you can change the size of each dimension. Several ways of altering the size of a dimension are
discussed in the sections that follow.

It isimportant to realize that the DIM statement reserves memory (RAM) for each array that it defines. Thus, you
should avoid dimensioning arrays you don’t need or making arrays much larger than required. Even if you never
use them, every element in every array contains a value (0 or the null string if you haven’t assigned a specific
value) and thus takes up space in memory. The size of your arrays is limited only by the amount of memory avail-
able; however, if you are not careful, you may find yourself running out of memory.

Memory considerations are especially important with multi-dimensional arrays. True BASIC lets you create
arrays of many, many dimensions, but you should avoid them unless you have good reason to use them. Multi-
dimensional arrays can use up memory very quickly. The number of elements in a multi-dimensional array is the
product of the sizes of its dimensions. For example:

DIM big(20,20,20,20)

defines a four-dimensional numeric array b i g. Doing the math, we get 20 x 20 x 20 x 20 = 160,000 elements! Since
each numeric value in True BASIC takes up eight bytes, the number of bytes of memory required for b i g equals
(roughly) the number of elements times 8, or well over a megabyte of memory. Although it might look relatively
innocent, the array b 1 g could easily cause your program to run out of memory.

As a more extreme example, consider this: a 20-dimensional numeric array, even if each subscript could take on
only two values, would require eight megabytes. The point is, quite simply, don’t add extra dimensions to an array
unless they are absolutely necessary.

Array Input and Output

As the above examples demonstrate, you can treat an individual element of an array as you would treat a simple
variable. If you wanted to do something to all the elements in an array, you could use a loop to repeat the same
operation for each element:
DIM names$(15)
FOR i =1 to 15
INPUT name$(i)
NEXT i

However, you will often find it easier to perform operations on an entire array at once. True BASIC provides sev-
eral specialized MAT statements that allow you to do exactly that. The simplest examples of MAT statements are
the MAT READ, MAT INPUT, and MAT PRINT statements. The first of these reads all the elements of the
array from DATA statements, the second gets the values for the elements from the user, and the last displays all
of the values in the array.

64 True BASIC Language System

The MAT READ statement allows your program to read the values for one or more arrays from the current data
pool of items in DATA statements. It works very much like the READ statement except that it reads values into
an entire array. For multi-dimensional arrays it uses odometer order, that is, the last subscript runs through its
range, then the next subscript (to the left of the last) is increased by one, etc. For a two-dimensional array this
means that it reads the first row, then the second row, etc. For example:

DIM day$(7), pay(3,2)

MAT READ day$, pay

DATA Monday, Tuesday, Wednesday, Thursday
DATA Friday, Saturday, Sunday

DATA 5.25, 7, 3.75, 12.10, 4.15, 5.35

The array day $ will contain the days of the week. The matrix pay is 3 rows by 2 columns, hence:

pay(1,1)=5.25 pay(1,2)=7
pay(2,1)=3.75 pay(2,2)=12.10
pay(3,1)=4.15 pay(3,2)=5.35

The MAT INPUT statement works as does an INPUT statement with multiple input items. The MAT INPUT
statement expects to receive all the elements of the array in the same order as they would be provided for the MAT
READ statement. The user must enter the correct number of items, in the correct order, separated by commas. If
the user enters too few or too many items, they will be asked to re-enter the data. The user can end a line with a
comma if more space is needed to enter all the input.

Like the INPUT statement, the MAT INPUT statement displays a question mark as its default prompt. You can
overrule the question mark by using the MAT INPUT PROMPT statement. For example,

DIM List(7)
MAT INPUT PROMPT "“Type 7 numbers: ": Llist

The LINE INPUT statement also has an equivalent MAT statement:

DIM text$(15)
MAT LINE INPUT text$

This code segment will prompt the user with question marks for 15 lines of input. It will read each line as one ele-
ment of the string array texts$.

The MAT PRINT statement displays the contents of an entire array. It prints elements in odometer order, begin-
ning a new line after each row. It leaves a blank line after each array, or after two-dimensional sections of higher
dimensional arrays. This makes it much easier to recognize the shape of the array. The normal convention is to
print items in print zones, as if a comma had been used as the print separator between elements. As with the
PRINT statement, the zone width is normally 16 characters, but you may reset it with a SET ZONEWIDTH state-
ment. For example, consider two MAT PRINT statements added to the earlier sequence:

DIM day$(7), pay(3,2)

MAT READ day$, pay

DATA Monday, Tuesday, Wednesday, Thursday

DATA Friday, Saturday, Sunday

DATA 5.25, 7, 3.75, 12.10, 4.15, 5.35

MAT PRINT pay

MAT PRINT day$

END
This program produces the following output:
5.25 7
3.75 12.1
4.15 5.35
Monday Tuesday Wednesday Thursday Friday
Saturday Sunday

If you use a semicolon after the array name in a MAT PRINT statement, True BASIC will print the elements in
arow close together, as if you had used a semicolon as the print separator between elements. For example:

MAT PRINT pay; day$

Arrays and Matrices 65

will print the elements of the numeric array pay close together, and the elements of the string array day$ in
zones. Having no punctuation after the last array name has the same effect as having a comma after it. (Remem-
ber that True BASIC prints a space before and after each positive numeric value.)

5.25 7

3.75 12.1

4.15 5.35

Monday Tuesday Wednesday Thursday Friday
Saturday Sunday

To dictate the format of the output, use a MAT PRINT USING statement. The MAT PRINT USING statement
prints the individual elements of the array, formatted by the format string, just as if they were printed one by one
with PRINT USING statements. If there are more elements than fields in the format string, the string is reused,
starting from the beginning. For example:

LET format$ = "#H.#HHH "

MAT PRINT USING format$: pay
will print numbers rounded to three decimal places and leave three spaces after each number. In this example, two
values are printed per line representing the two columns of each row in the table:

5.250 7.000

3.750 12.100
4.150 5.350

Keep in mind that you may sometimes want to use a loop rather than a MAT statement to input or print all the
elements of an array. Consider the following simple version of a grade-book program that finds the average grade
for each student:

DIM names$(6), grades(6,3), averages(6)
MAT READ names$, grades

FOR s =1 to 6 ! For each student

LET grade_total = 0

FOR g =1 to 3 ! Add grades

LET grade_total = grade_total + grades(s,g)

NEXT g

LET averages(s) = grade_total/3 ! Compute average grade
NEXT s
MAT PRINT names$, averages ' Print results

DATA J. Andersen, S. Bree, D. Cordoza, G. Davison, A. Ellis, M. Feinstein
DATA 90, 92, 96, 90, 88, 85, 78, 84, 83
DATA 77, 79, 81, 85, 89, 84, 85, 94, 86

GET KEY k ' Wait for keystroke

END
The MAT PRINT statement first prints all values of name s $ and then all values of averages, giving the fol-
lowing output:

J. Andersen S. Bree D. Cordoza G. Davison A. ElLis

M. Feinstein

92.666667 87.666667 81.666667 79 86
88.333333

However, you might prefer the output you would get if you replace the statement:
MAT PRINT names$, averages
with the loop:

FOR n =1 to 6
PRINT names$(n), averages(n)
NEXT n

66 True BASIC Language System

In this case, the corresponding elements from each array are printed together, as follows:

J. Andersen 92.666667
S. Bree 87.666667
D. Cordoza 81.666667
G. Davison 79
A. ElLLlis 86
M. Feinstein 88.333333

What if you find it easier to enter the data keeping student names and grades together, as follows?

DATA J. Andersen, 90, 92, 96
DATA S. Bree, 90, 88, 85
DATA D. Cordoza, 78, 84, 83

To do that you will need to replace
MAT READ names$, grades

with a more complex, nested loop so that you read an entire row of grade s for each elementin name s $:

FOR n =1 to 6 ' For each student
READ names$(n) ! Read one name
FOR g =1 to 3 ! Read three grades
READ grades(n,g)
NEXT g
NEXT n

When you are deciding whether to use a MAT statement or an equivalent loop with multiple arrays, be sure you
consider how the data will be organized as well as how you wish to write the program code.

Any of the MAT input and output statements may be used with a channel number to get input from a file or to
print results to a printer or file. For example:

DIM names$(15)

OPEN #1: name "StuNams"

OPEN #10: printer

MAT LINE INPUT #1: names$! Get names

MAT PRINT #10: names$ ' Print to printer

Arrays used with data files are very helpful in managing and manipulating large sets of related data. Keep in
mind, however, that data in a file must be in the correct order and format for the input statement you'll use. If you
print to a file and intend to input that data again later, you must print the data in an acceptable format. This issue
is discussed in Chapter 12 “Files for Data Input and Output.”

Redimensioning Arrays

Unlike many other programming languages, True BASIC allows your program to change the number of elements
in each dimension of an array while it is running. This process is known as redimensioning, although the word
is somewhat misleading since the number of dimensions cannot be changed. The lower and upper bounds of each
dimension, however, can be changed, and so the array may become larger or smaller. You can redimension arrays
with the MAT REDIM statement or by specifying the new dimensions in certain MAT statements.

Here’s an example of the MAT REDIM statement:
DIM table(0 to 2, 5)
MAT REDIM table(4, -1 to 6)

The first statement creates the numeric array tab l e with three rows numbered 0 to 2 and five columns num-
bered 1 to 5. The MAT REDIM statement changes tab L e so that it has four rows numbered 1 to 4 and eight
columns from -1 to 6.

Redimensioning has many uses. A typical use is to have the program ask the user for a list and its size, as in the
example below. This technique lets you use the same program for arrays with different number of elements, and
it helps conserve memory by keeping arrays as small as possible.

Arrays and Matrices 67

DIM name$(1)

INPUT PROMPT "How many names: ": n
MAT REDIM name$(n)
MAT INPUT PROMPT "Enter them: ": name$

You must still use the DIM statement to declare that name$ is a one-dimensional string array, but the number of ele-
ments you specify is irrelevant, since you will redimension it when you supply n in the MAT REDIM statement.

This combination of statements is so common that True BASIC lets you redimension the array directly in a MAT

INPUT, MAT LINE INPUT, or MAT READ statement. You can combine the MAT REDIM and MAT INPUT

statements above to form a single MAT INPUT statement that includes a variable for the dimension of name $:
DIM name$(1)

INPUT PROMPT "How many names: ": n
MAT INPUT PROMPT "Enter them: ": name$(n)

Here is a similar example that reads an array from DATA statements:
DIM table(10,10)

READ m, n ! Actual size
MAT READ table(m,n) ! Read correct size
DATA 3, &

DATA 1,2,3,4,5,6,7,8,9,10,11,12

This example sets up the array, then reads the first two data items which are used to define the actual size of the
table. With this trick, the program can work for tables of any size without your having to rewrite the program. You
need to change only the data lists in the DATA statements.

The MAT assignment statement, described in the “Array Assignment” section below, can also redimension an
array when you assign values to its elements.

Finally, there is a version of the MAT INPUT statement that allows you to input a one-dimensional array of an
unspecified size:
MAT INPUT Llist(?)

The question mark in the statement instructs the program to accept a list of any length. True BASIC adjusts the
upper bound of the subscript to make the size exactly right for the number of elements the user enters. The user
must separate items with commas and end a line with no comma to indicate the end of the input items. Note that
you can use the question mark (?) only with the MAT INPUT statement and only for one-dimensional arrays.

Redimensioning with the MAT READ or MAT INPUT statement changes both the shape and the contents of an
array. MAT REDIM will preserve all or part of the contents of an array. While this may be useful, you should be
careful in using it, as shown below.

Suppose that the 2-by-2 array samp L e contains the following values:

o120
03 4 0

and you then use the statement:

MAT REDIM sample(3,2)
The array is now:

[-
O W=
O =D
[-

as you would expect. But if you use the statement:
MAT REDIM sample(2,3)

68 True BASIC Language System

the result would be:

01230
04000

which may not be what you want.
Two precautions will prevent this problem. If you wish to use the MAT REDIM statement and retain the previ-
ous contents of the array, then

* do not change the lower bound(s), and

* redimension only one-dimensional arrays or only the first dimension of two-dimensional arrays.

The MAT REDIM statement can be extremely useful when you need to make the most of the memory available to
your program. A dimension of 0 effectively removes the array from memory, thus freeing the space it occupied.
Therefore, when you need as much memory as you can muster, redimension any unnecessary arrays to zero ele-
ments in each dimension. Beware, however, that in doing so you will lose the contents of that array; use this tech-
nique only when you no longer need the contents of an array.

Functions That Find Array Sizes

Along with letting you redimension arrays, True BASIC provides functions that let you find out the current sizes
of arrays. Three functions may be used to discover the ranges of subscripts:

Subscript Range Functions

Function Result

LBOUND(array,d) Lower bound of subscript in dimension d of array
UBOUND(array,d) Upper bound of subscript in dimension d of array
SIZE(array,d) Total number of elements in dimension d of array

If the array has only one dimension, you may omit the second argument d in the argument list of the LBOUND
and UBOUND functions. If you omit the second argument d in the argument list of the SIZE function, the func-
tion returns the total number of elements in the entire array. For example, the following program inputs a list and
prints it in reverse order:

DIM List(10)
PRINT "Enter a list of numbers: "

MAT INPUT Llist(?) ! Input any number of items & redimension
LET n = Size(list) ! How many numbers
FOR i = n to 1 step -1 ! Reverse order
PRINT Llist(i);
NEXT i
END

These array subscript functions are also useful for writing array-handling subroutines. The following code seg-
ment searches the array name$ for a particular name n$:

LET u = Ubound(name$)
FOR i =1 to u ' 9 will be position in Llist
IF name$(i) = n$ then EXIT FOR
NEXT i
IF i > u then LET i =0 ' Not found
Array Assignment

Asyou have seen, loop structures provide a concise and convenient mechanism for processing the individual elements
of an array in series. The following program segment that copies the contents of one array into another:

DIM source(0), target(0)
PRINT "Enter a list of numbers: "

Arrays and Matrices 69

MAT INPUT source(?)
LET n = Size(source)
MAT REDIM target(n)
FOR i =1 to n
LET target(i) = source(i)
NEXT 1

Just as the MAT READ, MAT INPUT, and MAT PRINT statements let you input or print an entire array instead
of using a loop to operate on each element, the MAT statement lets you copy the entire contents of one array to
another. The following equivalent of the previous example shows how it simplifies array operations:

DIM source(0), target(0)

PRINT “Enter a list of numbers: "

MAT INPUT source(?) ! Input any number of items & redimension

MAT target = source ! Copy source to target

Input any number of items & redimension
How many numbers entered

Redimension target array

Copy source to target

The MAT statement assigns values to each element in an array. You can think of it as a specialized version of the
LET statement that operates exclusively on arrays.

When you assign the values in one array to another by using an array variable on the right side of the MAT state-
ment, the two arrays must be of the same type (numeric or string) and must have the same number of dimensions.
If necessary, True BASIC automatically adjusts the upper bounds of the array being assigned to. For example:

DIM growth(2,1991 to 1993), temp(1,1)

MAT READ growth

DATA 25.6, 13.92, 15.2, 29.89, 12.64, 28.01

MAT temp = growth

Here the array t emp takes on the values of the array growth, and its upper bounds are adjusted to the proper
size. Note that the lower bounds are not changed. Thus, the new dimensions for temp are (2,3) after the assign-
ment. To avoid unexpected results, you may wish to specifically dimension arrays used in assignments to have the
same lower bounds.

While the MAT statement is commonly used to assign the contents of one array to another, you can also use it to
assign the same value to each element of an array. If the value to the right of the equal sign is a constant, expres-
sion, or variable representing a single value, that single value is assigned to every element of the array specified
to the left of the equal sign. For example:

DIM name$(10), grades(10,6), factor(10,6), init(6)

INPUT f

MAT name$ = "unregistered"
MAT grades = 100

MAT factor = f

MAT init = ((f*100) / 5)

These statements assign the string "unregistered" toall 10 elements in the array name $, the value 100 to all
elementsin grades, and the value input for the variable f toall elementsin factor. Eachelementin in1t takes
on the value of the expression (f*100) /5. Note that you must always use parentheses around an expression rep-
resenting a single value in a MAT statement, as in the last line of the example above.

Built-in Array Constants
True BASIC provides several built-in array constants that you may use with the MAT statement. Array con-
stants are special functions that return a particular array; they may be used only in a MAT statement on the right
side of the equal sign. For example:

MAT word$ = Nul$ ' all elements null strings

MAT table = Zer(3,4) ! 3-by-4 table, all elements 0
MAT table = Con ' all elements 1, or "constant"
MAT table = 7*Con(2,6) ! 2-by-6 table, all elements 7

If you give no dimensions with the array constant, the array being assigned to keeps its current dimensions. If you
do provide dimensions, the array being assigned to will be redimensioned to the size specified. Note, however, that

70 True BASIC Language System

the lower bound will not be changed, and the upper bound will be adjusted so that the resulting array has the
proper number of elements. Consider, for example:

DIM test(10) ! A 10-element array
MAT test = Zer(3:9) ! A 7-element array
PRINT Lbound(test), Ubound(test)

END

The DIM statement in this example defines the array test as having a lower bound of 1 and an upper bound of
10. Given the dimensions supplied with the ZER array constant used in the MAT statement, you might expect the
new lower bound to be 3 and the new upper bound to be 9. However, if you run this program you will see that the
lower bound of test remains 1 and the upper bound becomes 7. True BASIC retains the original lower bound of
1 and adjusts the upper bound so that t e s t contains the same number of elements as in the constant Zer (3:9).

True BASIC’s array constants are as follows:
Examples of Array Constants

Constant Result
CON An array with every element set to 1
IDN An identity matrix. It must be a square two-dimensional array, and it will

have elements set to 1 running along the diagonal from top left to the
bottom right. All other elements are set to 0. Since the array must be
square (both dimensions the same size), you may redimension the array
being assigned to by specifying the bounds of one or both dimensions.

For example Idn(4) is equivalent to Idn(4,4) and contains the elements:

1000
0100
0010
0001
NUL$ An array with each element set to the empty or null string
LER An array with each element set to 0

Array Arithmetic

True BASIC supports all of the fundamental mathematical operations for arrays and matrices. Many of these
operations use the standard arithmetical operators with arrays as their operands. Other operations require spe-
cial built-in functions. This section introduces operator-based array arithmetic and the following section discusses
the function-based options. Both sections assume that you are familiar with the general concepts of matrix arith-
metic, and make no attempt to teach these concepts.

True BASIC’s array arithmetic expressions follow the normal mathematical rules for matrix arithmetic. The
array to which the result is assigned must always have the correct number of dimensions, but True BASIC auto-
matically redimensions it to the correct shape by changing the upper bounds. Note that as with array assignment
described above, True BASIC redimensions an array by changing the upper bounds only; it does not change the
lower bounds. We recommend that all arrays involved in matrix arithmetic have the same lower bounds. Addi-
tional restrictions for each operation are described below.

For array expressions, True BASIC allows only a single operator per MAT statement. The array operations are
addition, subtraction, multiplication, and scalar multiplication.

Array Addition and Subtraction

In array addition and subtraction the specified operation is applied to all pairs of corresponding elements. Thus,
the arrays must be of exactly the same size and shape (same number of dimenstions and same number of elements

Arrays and Matrices 71

in each dimension). Although the lower and upper bounds for the dimensions are not important, the number of ele-
ments is. In the statement:

MAT ¢ = a + b ' Sum of corresponding elements of two arrays

the first element in b will be added to the first element in a, then the second elements in each will be added, then
the third, and so forth until all pairs of corresponding elements have been added. The resulting array of sums will
be assigned to ¢, and ¢ will be redimensioned (if necessary) so that it has the same size and shape as a and b.

For a more complete example of array addition and subtraction, consider the following program:

DIM a(5), b(5), sum(1), diff(1)
MAT READ a, b

DATA 1, 2, 3, 4, 5
DATA 5, 4, 3, 2, 1
MAT sum = a + b

MAT diff = a - b
MAT PRINT sum
MAT PRINT diff

END
which produces these results:
6 6 6 6 6
-4 -2 0 2 4

Notice that the target arrays sum and d i f f must be defined in the DIM statement. Although True BASIC will
resize them as necessary, it will not create them automatically.

As long as they are of the same size and shape, you can add and subtract two arrays of any number of
dimensions.

Array Multiplication

Array multiplication may be applied only to one- and two-dimensional arrays. If both arrays are one-dimensional,
they must be the same size and the product will be a one-dimensional array containing one element. The array
specified as the first (or left hand) operand of the multiplication operator will be treated as a row vector, and the
array specified as the second (or right hand) operand of the multiplication operator will be treated as a column vec-
tor. The result will be the “dot product” of the two operand arrays. For example:

DIM a(3), b(3), product(1)
MAT a = 2

MAT b = &

MAT product = a * b

MAT PRINT a

MAT PRINT b

MAT PRINT product

END

gives the results:
2 2 2
b4 b4 A

24

If the arrays to be multiplied are two-dimensional, the number of columns in the first array must equal the number
of rows in the second. The result will have the number of rows of the first array and the number of columns of the sec-
ond. In other words, if a is an | by m array, then b must be m by n, and the result will be L by n.

72

True BASIC Language System

Array Multiplication

...

....... L2030 L2304 138 44: 50 56
..... 4 BB 5 6 7 B = iB3i98 115128
AL
a(2,3) b(3,4) ¢(2,4)

As an example of matrix multiplication, consider the following program:

DIM
MAT
MAT
MAT
MAT
MAT
MAT
END

a(2,3), b(3,4), product(1,1)
a =2

b =4

product = a * b

PRINT a

PRINT b

PRINT product

which gives the following results:

2
2

4
4
4

24
24

2 2

2 2

4 b b
4 4 4
4 4 4
24 24 24
24 24 24

If one array operand of the multiplication operator is one-dimensional and the other is two-dimensional, the prod-
uct will be one-dimensional. If the first array operand is one-dimensional, it is treated as a row vector (single row
with multiple columns) and must match the first dimension of the second array. If the second array operand is one-
dimensional, it is treated as a column vector (many rows in one column) and must match the second dimension of
the first array.

In other words an array with m elements may be multiplied by an m by n array, or an L by m array may be multi-
plied by an array with m elements. In the first case the product will be a one-dimensional array with n elements,
while in the second case the product will be a one-dimensional array with L element. For example:

DIM
MAT
MAT
MAT
MAT
MAT
MAT
END

a(2), b(2,4), product(1)
a =2

b =4

product = a * b

PRINT a

PRINT b

PRINT product

produces:

2

4
4

16

~ 0~
=~ 0~
=~ 0~

16 16 16

Arrays and Matrices 73

Scalar Multiplication

You can also multiply an array by a single, non-array value. Such non-array values are often called scalar val-
ues. The scalar value used in the multiplication may be a positive numeric constant, a numeric variable, or any
numeric expression enclosed in parentheses. The scalar value must appear as the first operand and may not be
preceded by a sign; thus, to use a negative scalar value you must use a variable or enter the value as an expression
in parentheses, such as (-4). The array operand, which must appear as the second operand, may be of any number
of dimensions. Each element of the array operand is multiplied by the scalar value producing an array of the same
size and shape as the array operand. For example:

DIM apples(2,3), income(1,1)
LET cost = .59

MAT READ apples

DATA 27, 14, 52, 22, 29, 7

MAT income = cost * apples ! Scalar multiplication
MAT PRINT USING "S$H#.H# "+ income
GET KEY k ! Wait for keystroke
END

produces:

$15.93 $ 8.26 $30.68

$12.98 $17.11 $ 4.13
Multiplication is the only array operation allowed for a scalar. If you wish to add or subtract the same value from
all elements of an array, create an array with all elements containing that value and use array addition or sub-
traction as described previously. Note as well that the only operators defined for array arithmetic are addition,
subtraction, and multiplication.

Built-in Functions for Array Operations

True BASIC also supplies some built-in functions that take one- or two-dimensional arrays as their arguments.
Some return a single numeric value and others return array values. These functions allow you to perform calcu-
lations on arrays beyond those supported by the array operators described in the previous section.

Functions for Array Operations

Function Result
DET The determinant of the last square two-dimensional array inverted by the

INV function; returns 0 if no array has been inverted

DET(x) The determinant of the square two-dimensional array x; returns 0 if x
is singular

INV(x) The inverse of the square two-dimensional array x; if x is singular or
nearly singular True BASIC gives an error message

DOT(x,y) The dot product of the two one-dimensional arrays x and y, which must

have the same number of elements

TRN(x) The transposition of the two-dimensional array x

The DET function returns a numeric scalar value representing the determinant of the square matrix specified as
its argument. If the square matrix is singular, the DET function returns a value of 0. If no array argument is spec-
ified, the DET function returns the determinant of the last matrix inverted with the INV function. If no matrix
has been inverted, a value of 0 is returned.

The INV function returns the inverse of the square matrix specified as its argument. The result will be a square
matrix of the same dimensions as the argument. If the argument is singular, or nearly singular, then True BASIC
generates an error. Since matrix inversions are notoriously susceptible to round-off errors, it is wise to check the
value returned by the DET function after each inversion to determine if the matrix just inverted was almost sin-
gular. If the DET function returns a value that is nearly zero, the inverted results are probably meaningless.

74 True BASIC Language System

The following program demonstrates the use of the INV and DET functions:

DIM scores(2,2), inverse(1,1)
MAT READ scores

DATA 1,2,3,4

MAT inverse = Inv(scores)

MAT PRINT scores

MAT PRINT inverse

PRINT "Determinant: "; Det

END
This program produces the following output:
1 2
3 A
-2. 1.
1.5 -.5

Determinant: -2

The DOT function returns a numeric scalar value representing the dot product, or inner product, of the two one-
dimensional arrays specified as its arguments. The two arrays must be one-dimensional and must have the same
number of elements. Here is a typical use of the DOT function:

DIM price(12), amount(12)

MAT INPUT PROMPT "“Prices: ": price
MAT INPUT PROMPT "Amounts: ": amount
LET total = Dot(amount, price) ! Total purchase price

Each element of the amoun t array is multiplied by the corresponding element of the p r 1 ¢ e array and the value
of total isset equal to the sum of these products.

The TRN function returns the transposition of the two-dimensional array specified as its argument. The result
will be a two-dimensional array with the rows and columns of the argument array interchanged. In other words,
the transposition of an m by n matrix named x gives an n by m matrix which we will call r such that r (i, j)
equals x (j , i). For example, the program:

DIM Scores (2,4), Transpose(1,1)

MAT READ Scores

DATA 27, 14, 34, 52, 22,12, 29, 7

MAT Transpose = Trn(Scores)

MAT PRINT Scores

MAT PRINT Transpose

END

produces the results:

27
22

27

14

34

52
Remember that you may use only one array or matrix operation per MAT statement. You may build more complex
matrix expressions, however, using a series of MAT statements. The following program illustrates the computa-
tion of such a complex expression:_

! Compute the inverse of i = (1/2)*a*Trn(a)

34 52
29 7

BN S JEENY N RN
O N

DIM a(3,2), i(3,3), x(3,3), ¢(3,3)

Arrays and Matrices 75

MAT READ a

DATA .1, .2, .3, .4, .5, .6

MAT x = Trn(a)

MAT x = a * X

MAT x = (1/2) * x ' (1/2)*a*Trn(a)
MAT i = Idn(3)

MAT x = 1 - X

MAT ¢ = Inv(x) I Inverse

MAT PRINT ¢

PRINT Det(x) ! Check determinant
END

In this example, only the shape of the array a is relevant; the other arrays are redimensioned by MAT statements.
Note that the “working matrix” x occurs on both the left and right side of the equal sign in several statements.
True BASIC always evaluates the right side first, then redimensions the matrix on the left (if necessary) and
assigns the answer to it. This is why the program above works correctly.

Sorting and Searching the Contents of Arrays

As you work with arrays, you may want to sort the elements within them or search for a particular element. True
BASIC provides several subroutines that can sort or search your arrays. A subroutine is a block of statements that
carry out a specific task. As with functions, you may need to specify one or more arguments when you invoke a sub-
routine. Subroutines differ from functions in that you invoke them with a CALL statement and they return values
via the arguments you specify — thus a subroutine may return more than one value or array.

The sorting and searching subroutines are not built into True BASIC, they are contained in the SortLib.TRC “library
file” that is placed in the TBLIBS directory when you install True BASIC. This section introduces these subroutines
and the SortLib.TRC library. For complete information on subroutines and library files, see Chapters 10 “User-
defined Functions and Subroutines” and Chapter 11 “Libraries and Modules.” Briefly, a LIBRARY statement must
name the file or files containing any non-built-in subroutines your program will use. You then invoke the subroutine
with a CALL statement that includes arguments for the subroutine, as follows:

! Print an alphabetized Llist of names
LIBRARY "c:\TBSilver\TBLIBS\SortLib.TRC" ! Use appropriate pathname

DIM names$(1)

PRINT "Input names (last name first), typing a comma"
PRINT "after each name except the last.”

MAT INPUT names$(?)

CALL SortS (names$()) ' Sort string array names$
FOR i = 1 to Ubound(names$())

PRINT names$(i) ! Print sorted array, one name per line
NEXT i

END

At the CALL statement, True BASIC carries out the task defined by the specified subroutine. That task may
assign new values to the argument in the CALL statement as it does for the name s $ array above. (The SortS
subroutine is described more fully below.)

Most of the sorting and searching subroutines are in the library file SortLib.TRC (saved in TBLIBS). The
LIBRARY statement must use the appropriate “pathname” format to indicate the location of the library file for
the computer you will use to run your program.

SortLib.TRC includes subroutines for simply and quickly sorting, reversing, or searching the elements of both
numeric and string arrays. These simple sorts are very fast and require little memory as the sort is done “in place”
— the original array is replaced by the values of the sorted array.

76 True BASIC Language System

SortLib.TRC also includes subroutines for “pointer sorts” and customized “comparison sorts.” A pointer sort does
not change the original array, but instead creates an index array containing subscript pointers to the sorted val-
ues of the original array. Pointer sorts are helpful if it is important to keep the original order for ties or if you wish
to use the sorted order of one array to print values from other “parallel” arrays.

A comparison sort lets you customize the way values will be sorted or sort values based on one or more specific
“key fields.” You may customize both simple and pointer sorts.

Simple Sorts and Searches
The simple sorting and searching subroutines in the SortLib.TRC library are as follows:

Simple Sorting and Searching Subroutines

Subroutine Library Result

SortN(a()) SortLib Sorts numeric array a into ascending order
SortS(a$()) SortLib Sorts string array a$ into ascending order
ReverseN(a()) SortLib Reverses order of elements in numeric array a
ReverseS(a$()) SortLib Reverses order of elements in string array a$

SearchN(a(),n,i,f) SortLib Searchesthe sorted numeric array a for the value n;
if found, reports the subscript value asn and fas a
non-zero value

SearchS(a$(),s$,i,f) SortLib Searches the sorted string array a$ for the value s$; if found,
reports the subscript value as n and f as a non-zero value

The SortN and SortS subroutines sort numeric and string arrays into ascending order. They arrange values
according to the standard meaning of True BASIC’s <= operator. Numeric values are sorted in ascending order by
value and strings are sorted according to code values for the standard character set; thus, uppercase characters
come before lowercase characters (see Appendix A for code values of the standard character set).

To use these subroutines, you must name SortLib.TRC in a LIBRARY statement (using the pathname format
appropriate for your computer) and invoke the subroutine with a CALL statement. Both of these subroutines
require one argument — a numeric array for the SortN subroutine or a string array for the SortS subroutine.
When the CALL statement is executed, the subroutine sorts the elements in the array passed as an argument.
The subroutine changes the contents of the array, returning an array with all of its elements sorted into ascend-
ing order. For example, the following program:

! Sort a Llist of scores
LIBRARY "SortLib.TRC" ' Use appropriate pathname

DIM scores(10)

DO WHILE MORE DATA
LET i =1 + 1
READ scores(i)

LOOP
DATA 99.5, 87.5, 89, 93.25, 89, 75, 80
CALL SortN (scores()) ! Sort in ascending order
MAT PRINT scores ' Print the result
END
prints the following:
0 0 0 75 80
87.5 89 89 93.25 99.5

Notice that the SortN subroutine sorts the entire array. It keeps all tie values and includes zeroes for unassigned
values.

Arrays and Matrices 77

The SortS subroutine works similarly for string arrays, merging in null strings for any unassigned values.
Remember that characters are sorted by their character-code value. Thus the program:
! Sort a list of phrases

LIBRARY "SortLib.TRC" ! Use appropriate pathname

DIM words$(10)
DO WHILE MORE DATA
LET i = i + 1
READ words$(i)
LOOP
MAT REDIM words$(i) ! Eliminate unassigned elements

DATA zebra, orangutan, Tiger
DATA apples, apple pie, tiger
DATA "widget, small", "widget, large"

CALL SortS (words$()) ! Sort in ascending order
MAT PRINT words$ ' Print the result
END
produces the following output:
Tiger apple tarts apples orangutan tiger

widget, large widget, small zebra

Here, "Tiger" and "tiger" are not equivalent because uppercase and lowercase letters are different charac-
ters;and "Tiger" precedes all the lowercase words because the uppercase alphabet precedes lowercase letters
in the standard character code. Similarly "apple tarts" comesbefore "apples" because the space character
comes before letters in the standard character set. (If you wish to sort uppercase and lowercase letters as equiva-
lents you could create a second array with all uppercase or lowercase elements and sort that or use a comparison
sort as explained below.)

Notice that the above program eliminates the problem of null strings by redimensioning the array to eliminate
unassigned elements before sorting.

The SortN and SortS subroutines are very fast and, because they work “in place” in the original array, they use
very little memory beyond that already required by the array itself. They gain speed at the sake of complexity,
however. The additional sorting subroutines described in the rest of this chapter give you greater control over how
elements are sorted.

The SortN and SortS subroutines sort in ascending order only. You can easily sort in descending order, however, by
reversing the elements after a simple ascending sort. The ReverseN and ReverseS subroutines (also contained in
SortLib.TRC) reverse the order of the numeric or string array argument, respectively. For example, you could adapt
the numeric sort example above to print scores in reverse order by adding a call to the ReverseN subroutine:

! Sort a list of scores

LIBRARY "SortLib.TRC" ! Use appropriate pathname
DIM scores(10)
DO while more data
LET i = i + 1
READ scores(i)
LOOP
DATA 99.5, 87.5, 89, 93.25, 89, 75, 80

CALL SortN (scores())
CALL ReverseN (scores())
MAT PRINT scores

END

! Sort in ascending order
! Reverse the order
' Print the result

78 True BASIC Language System

This program prints the following:

99.5 93.25 89 89 87.5
80 75 0 0 0

Similarly, you could use the ReverseS subroutine with a sorted string array.

The SearchN and SearchS subroutines search sorted numeric or string arrays for a specified value. These sub-
routines take four arguments: the array to be searched, the value to search for, and two numeric variables that are
used to return the results of the search. For example:

LIBRARY "“SortLib.TRC" ! Use appropriate pathname

DIM array(20)
FOR i =1 to 20
LET array(i) = Int(100*Rnd) + 1 ! Create array of 20 random numbers
NEXT i
CALL SortN(Carray()) ! Sort random numbers in ascending order
DO
INPUT PROMPT "Enter a number from 1 to 100 (0 to quit): ": number
IF number <= 0 then EXIT DO
CALL SearchN (array(), number, index, found)
IF found <> 0 then
PRINT number; "found at element"; index
ELSE
PRINT number; "not found"
END IF
LOOP

END

The last argument, f ound in the example above, returns 0 if the search value (numb e r above) is not found or a
non-zero value if it is found. The third argument, i nde x above, returns the subscript of the element if the value
is found. If the value is not found, index equals the subscript where the value would have been stored in the
sorted array if it existed.

The SearchS subroutine works the same way except that the array and search value must be strings. Note that
the array passed to the SearchN or SearchS subroutine must be sorted into ascending order.

[!] Note: The SearchN and SearchS subroutines must be passed arrays that are already sorted into
ascending order because these subroutines use a binary search, which is generally much faster than an
element-by-element, or “sequential,” search. In a binary search, the subroutine looks first at the ele-
ment at the mid-point of the array. If that element does not equal the search value, the routine finds
out if it is greater than or less than the search value. The binary search then “ignores” the half of the
array that is too small or too large and looks at the mid-point of the remaining range of elements. This
process continues until the value is found or two consecutive elements are found to bracket the search
value. The values of the array must therefore be arranged in order from smallest to largest.

Pointer Sorts

Though quick and efficient, the SortN and SortS subroutines lose the original order of elements in the array. This
could be a problem if, for example, you have separate arrays for names, addresses, and phone numbers. If you use
the SortS subroutine to change the order of elements in the array of names, you would lose the relationship
between the arrays. For such cases, you should use a “pointer sort.” The two basic pointer sorts are implemented
by the PSortN and PSortS subroutines for numeric and string arrays, respectively.

Arrays and Matrices 79

Subroutine Library Result

PSortN(a(),i()) SortLib Performs a “pointer sort” on values in numeric array a and
stores the sorted pointers, or indices, in the array i

PSortS(a$(),i()) SortLib Performs a “pointer sort” on values in string array a $ and
stores the sorted pointers, or indices, in the array 1

In a pointer sort, the original array is not changed. Instead, the subroutine sorts the values and creates an index
array whose elements are subscripts pointing to the sorted values of the first array. For example, here’s an adap-
tation of the earlier phrase-sorting program:

! Sort a List of phrases

LIBRARY "SortLib.TRC" ! Use appropriate pathname

DIM words$(10), index(10)
DO WHILE MORE DATA
LET 4 =i + 1
READ words$(i)
LOOP
MAT REDIM words$(i), index(i) ! Eliminate unassigned elements

DATA zebra, bananas, orangutan
DATA apples, kiwis

CALL PSortS (words$(), index()) ! Sort in ascending order
PRINT "The words$ array contains the values:"

MAT PRINT words$ ' Print the original array
PRINT "The index array contains the values:"

MAT PRINT index ! Print the index array

PRINT "Thus, the sorted values of words$ are:"
FOR n = 1 to i

PRINT words$(index(n)), ! Print words$ elements in sorted order
NEXT n
PRINT
END
This gives the results:
The words$ array contains the values:
zebra bananas orangutan apples kiwis

The index array contains the values:
b4 2 5 3 1

Thus, the sorted values of words$ are:
apples bananas kiwis orangutan zebra

Note that the order of elements in wo rd s $ has not changed, but inde x gives the order in which the elements of
words$ should be read to produce a sorted list. The first word in the sorted list is element 4 or "apples", the
second word is element 2 or "bananas", and so on. As with simple sorts, pointer sorts sort the entire array.
Thus, if an array contains unassigned elements, the resulting index array will contain pointers for all the zeros or
null strings in the array.

Pointer sorts are especially useful if your program uses “parallel” arrays. If you have one array containing student
names and another containing their grades, you can do a pointer sort on grades and then print both arrays in
sorted order using the index array. The following example does just that, and uses the ReverseN subroutine to
sort the index array in descending order:

80 True BASIC Language System

! Sort students by grades
LIBRARY "SortLib.TRC" ! Use appropriate pathname

DIM names$(5), grades(5), index(5)
MAT READ names$

MAT READ grades

DATA Adams, Bell, Cosi, Du, Eisen
DATA 77, 94, 88, 80, 95

CALL PSortN (grades(), index()) ! Sort in ascending order
CALL ReverseN (index()) ! Reverse indices

FOR n =1 to 5
PRINT names$(index(n)), grades(index(n))

NEXT n
PRINT
GET KEY k ' Wait for keystroke
END
This produces the following output:
Eisen 95
Bell 94
Cosi 88
Du 80
Adams 7

Pointer sorts are also helpful if you need a stable sort, which keeps the original order in case of ties. This is not
important for simple sorts where the whole string is compared. But if you sort by just part of the data, as you can
do with comparison sorts, this may be important.

Customized Sorts and Searches

The sorting routines you've seen so far all use the usual True BASIC <= operator to sort values into ascending
order, and they consider the entire value in making the comparison. Customized sorting and searching routines
let you sort or search on one or more key parts of the data or define exactly how to compare two values. Thus, you
could choose a sort that ignores the difference between uppercase and lowercase letters, or devise one that sorts
roman numerals in the correct order.

SortLib.TRC contains custom-sorting versions of all the sorting and searching subroutines introduced so far
(except the reversing routines, for which custom comparisons are not needed):

Customized Comparison Sorting Subroutines

Subroutine Result

CSortN(a()) Sorts numeric array a in ascending order using
customized comparison routine called CompareN

CSortS(as$()) Sorts string array a$ in ascending order using one
or more special options

CSearchN(a(),n,i,f) Searches the sorted numeric array a for the value n

using a customized comparison routine called
CompareN;if found, reports the subscript value as i
and f as a non-zero value

CSearchS(a$(),s$,i,f) Searches the sorted string array a$ for the value s$
using one or more special options; if found, reports the
subscript value as iand f as a non-zero value

Arrays and Matrices

CPSortN(a(),i())

CPSortS(as$(),i())

81

Performs a “pointer sort” on values in numeric array a
using a customized comparison routine called CompareN
and stores the sorted pointers, or indices, in the array 1
Performs a “pointer sort” on values in string array a$
using one or more special options to customize the sort, and
stores the sorted pointers, or indices, in the array 1

First, let’s see how we can sort a string array ignoring case. Before calling the subroutine CSortS, we call the

subroutine Sort_IgnoreCase.

! Sort a list of phrases ignoring case

LIBRARY "SortLib.TRC", "CompCase.TRC" ! Use appropriate path names

DIM words$(10)
DO while more data

LET 1 =i + 1
READ words$(i)
LOOP

MAT REDIM words$(i)

DATA zebra, ELEPHANTS, Tiger
DATA apples, tiger, Llama
DATA Widget, Oranges

CALL Sort_IgnoreCase

CALL CSortS (words$())
MAT PRINT words$

END

This program prints the following:
apples ELEPHANTS
tiger Widget

! Treat upper- and lowercase alike

! Sort in order defined in CompareS
I Print the result

Llama Oranges Tiger
zebra

Besides ignoring case, there are several other options.

Special Customized Sorting Options

Subroutine

CALL Sort_Off

CALL Sort_ObserveCase

CALL Sort_IgnoreCase

CALL Sort_NiceNumbers_on
CALL Sort_NiceNumbers_off
CALL Sort_NoKey

CALL Sort_OneKey (f1, t1)

CALL Sort_TwoKeys (f1, t1, £2, t2)

Result

Remove all special string sorting options

Do not ignore case (default)

Ignore distinction between upper- and lowercase
Use "intuitive" ordering for numbers within strings
Ignore numbers in strings (default)

No key fields (default)

One key field

Two key fields

As an example of a sort based on a key field, here’s a program that sorts strings based on area code and then last

names within area codes:
LIBRARY "SortLib.TRC"

DIM phonelist$(4)
MAT READ phonelist$

! Use appropriate pathname

DATA "Smith Rosario 802-543-1234"
DATA "Li Steven 617-123-1200"
DATA "Arndt J. K. 802-331-3333"

DATA "de Forbe Francis 205-256-2424"
CALL Sort_TwoKeys (20, 22, 1, 9)

CALL CSortS (phonelist$())

82 True BASIC Language System

FOR i =1 to 4
PRINT phonelist$(i)
NEXT i

END

This produces the output:

de Forbe Francis 205-256-2424
Li Steven 617-123-1200
Arndt J. K. 802-331-3333
Smith Rosario 802-543-1234

As an example of sorting numbers "intuitively," imagine you have strings containing numbers, such as A1, A2, A3,
A10, B1, B2, B12, and so on. The SortS or PSortS subroutine would arrange these as:

A1 A10 A2 A3 B1 B12 B2

Calling the subroutine Sort_NiceNumbers_on before calling CSortS subroutine would sort them as follows,
putting the numeric text in proper numeric sequence:

A1 A2 A3 A10 B1 B2 B12

You may use customized comparisons with searches as well. Since the CSearchN and CSearchS subroutines
both use the binary search method, the data must first be sorted. For example, if you wish to search the phone list
in the example above by last name, you should first sort by the last-name field, as follows.

LIBRARY "SortLib.TRC" ! Use appropriate pathname

DIM phonelist$(4)

MAT READ phonelist$

DATA "Smith Rosario 802-543-1234"
DATA "Li Steven 617-123-1200"
DATA "Arndt J. K. 802-331-3333"
DATA "de Forbe Francis 205-256-2424"

CALL Sort_IgnoreCase

CALL Sort_OneKey (1, 9)

CALL CSortS (phonelist$()) ! Sort using chars 1 through 9 only
INPUT PROMPT "Enter last name: ": find$

LET find$ = (find$ & " ")L[1:91 ! Make 9 characters long

CALL CSearchS (phonelist$, find$, index, found) ! Search with option
IF found <> 0 then
PRINT phonelist$(index)
ELSE
PRINT "Not found"
END IF

END
Observe that you must use the same customized options for the search phase as for the previous sort phase.

You can write your own customized comparison routines. Note that the sort and search subroutines whose names
begin with the letter "C" invoke a special comparison subroutine CompareN or CompareS, for numeric arrays and
string arrays, respectively. The CompareN and CompareS$ subroutines use the same three-parameter format:

CompareN (a,b,r)
or
CompareS (a$,bs$,r)

Arrays and Matrices 83

The first two parameters pass the two values to be compared — numeric or string — from the sorting routine to
the comparison routine. The third parameter must be a numeric variable that returns a value to indicate the sort
order, as follows:

r must return -1if a should come before b,i.e.,a < b
r must return 0if a and b tie,i.e,a = b
r must return 1 if a should come after b,i.e.,a > b

If you have special sorting requirements, you should examine the source code for the sorting
library, foundin SortLib. tru. You can precede each line in CompareN or CompareS
with an exclamation point "!", which is the comment character for True BASIC. Then
simply write your own routine without exclamation points! Use the existing routines as
patterns. The routines CSortS, etc., are already set up to call a subroutine by the name
CompareS, etc.

84

True BASIC Language System

85

CHAPTER

10

User-defined Functions
and Subroutines

True BASIC has three structures that let you break up a program into smaller units: user-defined functions, sub-
routines, and pictures. These structures make it easier to write and debug programs because you can build large
programs from small pieces. This chapter shows how to define and use your own functions and subroutines. Pic-
tures are for graphics only and are discussed in Chapter 13 “Graphics.”

You've already seen many of the functions built into True BASIC in Chapter 8 “Built-in Functions.” However, you
may not always find a built-in function that calculates the value you need; you may wish to define your own func-
tions. Like a built-in function, a user-defined function always returns a single value of a specific type and is
unable to change the value of any arguments passed to it. You may use (or “invoke”) a function wherever you may
use an expression of the same type. Once the function has been evaluated, its return value is substituted at the
place it is invoked.

A subroutine is a block of statements that carries out one or more tasks. A subroutine does not return a value as
a function does, but it can return values by changing the values of arguments passed to it. You invoke a subrou-
tine with a CALL statement.

Within their definitions, functions and subroutines may invoke themselves. This is known as recursion.

Functions and subroutines may be part of your main program, in which case they are internal procedures and
they share all variables with the rest of the main program. Functions and subroutines may also be placed outside
the main program as external procedures whose variables are local or “sealed off” from the main program and
any other external procedures.

Defining Functions

[!] Note: The keywords DEF and FUNCTION are synonymous throughout the True BASIC language
and may be used interchangeably. In the following discussion, the DEF keyword is used solely for the
sake of simplicity. You may use FUNCTION if you feel that it makes your programs easier to read and
maintain.

You use either a single-line DEF statement or a more complex DEF structure to define your own functions. The
simple DEF statement:

DEF Sech(x) =1 / Cosh(x)
defines the hyperbolic secant function. Once you have defined a function in your program, you may use it in any
appropriate expression, such as:

LET factor1 = Sech(-.123)

Each function has a name and may have parameters whose values you supply when you invoke the function. In
the example above, Sech is the name of the function and x is its one numeric parameter. When you invoke the
Se ch function, you must supply a single numeric value as an argument.

86 True BASIC Language System

Before evaluating the function, True BASIC will assign the value of the argument to the variable used as the para-
meter. In the example above the function is invoked with Sech (-.123), where the value —.123 is the argument.
True BASIC assigns this value to the parameter variable x in the function definition. Thus, the expression
1/Cosh(x) is evaluated as 1/Cosh(-.123). The value of this expression becomes the return value of the
function and is substituted in place of the function invocation in the LET statement. Note that the value of the
argument is assigned to the parameter variable; functions cannot change the values of arguments passed to them.

[!] Note: When variable arguments are passed to a function, the values of those arguments are assigned
to the corresponding parameters within the function definition. True BASIC considers the parameters
in a function definition to be distinct from the arguments; that is, an argument and its matching para-
meter are different variables. Because they are different variables, changes to parameters within the
function definition have no effect on the values of their corresponding arguments. Thus, functions can-
not change the values of the arguments passed to them. This parameter passing mechanism is called
passing by value.

The DEF statement restricts the definition of the function to a single line, which is fine for simple functions. Often,
however, more complex function definitions require looping or decision structures that cannot be expressed on a
single line, or they may simply be easier to create as a series of steps. For functions longer than a single line, you
use a DEF structure. For example:

DEF Gcd(a,b) ! Greatest common divisor
DO
LET r = Mod(a,b) ! Remainder in division
IF r =0 then EXIT DO ! We are done
LET a = b ' Else iterate
LET b = r
LOOP
LET Gcd = b ' Value of the function
END DEF

Here G cd is the name of the function, and a and b are the parameters. A DEF structure begins with a DEF state-
ment that names the function and its parameters and ends with an END DEF statement. A LET statement must
assign a value to the function name (G cd) before the end of the definition. Once you've defined the function, you
may use G cd with two numeric arguments as a numeric expression. For example:

PRINT Gcd(121,55)
will print the value 11.

The rules for naming functions are the same as those for naming variables. However, you may not use the same
name for both a variable and a function. The return value of a function may be either a number or a string; for
string functions, the name must end with a dollar sign. Before you may use a function in a program, you must first
define it with a DEF statement or structure or you must name the function in a DECLARE DEF statement (see
the discussion of external functions later in this chapter).

Parameters may be numeric variables, string variables, or names of arrays. When you invoke a function, the argu-
ments you provide must match the parameters named in the DEF statement. True BASIC matches arguments
and parameters by the order in which they appear:
DEF abcdef (x, z$, u)
1 f f
LET n = abcdef (3.2, "dog", y)
Here the value 3.2 is assigned to x, "dog" is assigned to z$, and the value of y is assigned to u. The value of

abcdef is then computed according to its definition, and the answer is assigned to n. "Cat" would not be legal
as the last argument, since you cannot assign a string to the numeric variable u.

User-defined Functions and Subroutines 87

You may also define functions without parameters. For example:

DEF Die = Int(6*Rnd) + 1 I Simulate one die
LET dice2 = Die + Die I Sum of two dice
END

You may exit from the middle of a DEF structure with an EXIT DEF statement. Take care that you assign a value
to the function before the exit, or the function will return the default value (0 or the null string).

Arrays as Parameters
Here’s an example of a function that uses an array as a parameter. It finds the largest value in a one-dimensional
numeric array:
DEF Max_element(a())
LET Llargest = a(Lbound(a))

FOR i = Lbound(a)+1 to Ubound(a)
IF a(i) > largest then LET largest = a(i)

NEXT i
LET Max_element = largest
END DEF

An array parameter is indicated by empty parentheses, or “bowlegs,” with commas to tell True BASIC how many
dimensions that array contains. The number of commas is always one less than the number of dimensions. Thus,
() represents a one-dimensional array, (,) a two-dimensional array, and (, ,) a three-dimensional array.

When the function is invoked, the use of bowlegs with the array argument is optional. Thus, either of the follow-
ing is legal:
PRINT "The highest score is"; Max_element(scores)

PRINT "The highest score is"; Max_element(scores())

aslong as scores hasbeen declared as a one-dimensional array in a DIM statement. It is the argument scores
that requires a DIM statement, not the parameter a (). Remember that the parameter will be assigned the value
of the argument. Therefore, the size of a will be adjusted to reflect the size of scores.

[!] Note: Since each parameter in a function definition is a separate copy of its associated argument,
arrays as function parameters are not particularly efficient. Each time you invoke a function containing
an array parameter, True BASIC must create a copy of the array passed as an argument. For large
arrays, this can require a lot of time and memory. If you need to pass arrays to a procedure, try to use a
SUB structure instead — SUB structures pass array parameters by a more efficient mechanism.

Recursive Functions

Within a function definition, the name of the function may normally occur only on the left side of the equal sign (=)
in a LET statement. That is why we used the temporary variable Largest for the computations within
Max_element, assigning a value to the function name only at the end of the definition. An exception to this rule
is recursion, whereby a function may invoke itself. It is useful in many circumstances, but it is somewhat tricky
to master. If you are unfamiliar with recursive programming, you may want to find a book on programming tech-
niques or some other resource from which to learn the technique.

One of the most common examples of a recursive function is the calculation of a factorial:

DEF Fact(n) ! Factorial function or n!
IF n =0 then
LET Fact =1
ELSE
LET Fact = n*Fact(n-1) I Recursion
END IF

END DEF

88 True BASIC Language System

If you ask for Fact (7)), the value of the function is 7*Fact (6), which invokes the same function to compute
Fact (6) and so on. Notice, however, that when the value of the parameter is 0, the function no longer invokes
itself, thus ending the “recursive chain” and allowing the previous invocations of the function to be completed in
reverse order.

Variables Within Function Definitions
The simplest way to use a function is to define it at the beginning of the program that will use it; in other words,
the function definition is “internal” to the main program. If you do this, however, you must be careful with the vari-
ables you use within the function definition. Look again at the Max_e lement function defined earlier in this
chapter:
DEF Max_element(a())
LET largest = a(Lbound(a))

FOR i = Lbound(a)+1 to Ubound(a)
IF a(i) > largest then LET largest = a(i)

NEXT i
LET Max_element = largest
END DEF

Notice that, besides finding the largest value in the array, Max_e lement changes the valuesof largest and i.
If the invoking program uses variables by the same name (and the Max_e Lement definition is contained in that
program), the program’s variables are also changed — the variables are global to the program and the function
definition. Be careful how you use such a function. For instance, if you invoke the function inside a loop that starts
with the statement:

FOR i =1 to 10

chaos will result. Or, if you had previously defined a variable named Largest, its value would be changed when-
ever this function is invoked.

You can avoid this sort of problem in two ways. First, you could list Largest and i in a LOCAL statement within
the DEF structure. This would force True BASIC to create separate variables named largest and i for each
invocation of the function, preventing any changes to these variables from affecting those outside the DEF struc-
ture. Or, you could define Max_element as an “external function” where variables are effectively “sealed off”
from the rest of the program. The LOCAL statement and external procedures are described later in this chapter.

Defining Subroutines

Functions are useful, but they’re not ideal for all situations. For even greater flexibility in organizing your pro-
grams, True BASIC lets you define subroutines in addition to functions.

Subroutines, unlike functions, do not have a return value. This means that they cannot be invoked as part of an
expression; instead, subroutines are invoked with a CALL statement. As you will see below, subroutines also dif-
fer from functions in the mechanism used to pass parameters — subroutines may change the values of their argu-
ments. The differences between functions and subroutines make each type of structure better suited to certain
uses than the other.

In general, functions are most useful when you need to calculate and return a single string or numeric value, and
subroutines are most useful everywhere else. Subroutines help you organize your programs by packaging well-
defined tasks into discrete structures. This packaging of tasks makes it easy to reuse that code both within the cur-
rent program and in future projects. You need to define a subroutine only once but you may call it as many times
as necessary.

For example, programs frequently ask questions that require a “yes” or “no” answer. A good program would check
whether the answer really was legal and allow the user to type answers in upper or lower case. The following sub-
routine meets all of these needs, and can be quite useful:

SUB Yes_no(qu$, ans$) ! Get a "yes
DO

or no

User-defined Functions and Subroutines 89

PRINT qu$; ! Ask the question
INPUT ans$! Get the answer
LET ans$ = Lcase$(ans$) I ALL lc, easy to check
IF ans$ = "yes" or ans$ = "no" then EXIT DO I 0k
PRINT "Answer 'yes' or 'no'" ! Else try again
LOOP
END SUB

You may invoke this subroutine as follows:

CALL Yes_no("Shall I go on", a$)
IF a$ = "no" then STOP

The SUB structure begins with a SUB statement that names the subroutine and any parameters, and it ends with
an END SUB statement. In the example above, Yes_no is the name of the subroutine and qu$ and ans$ are its
two string parameters. When you invoke the Yes_no subroutine with a CALL statement, you must supply a
string value as its first argument and a string variable as its second argument.

Let’s examine this distinction between the two arguments a bit further. The first parameter qu$ is an input
parameter, which means that the definition of Ye s_no uses — but does not change — its value. Thus, if you want
the PRINT statement within Yes_no to print anything, you must specify a string value as the first argument
when you call the subroutine. Note that the input-parameter value may be supplied as a constant, expression, or
a variable; it’s the value that’s important .

The second parameter ans$ is not used until it has been given a value by the INPUT statement within the sub-
routine. Its value at invocation is inconsequential; however, its value upon completion of the subroutine contains
the user’s answer. Thus, ans$ is an output parameter. You must specify a variable for its argument, so the sub-
routine can change its value. When the value of the output parameter is changed the value of its argument vari-
able also changes. The terms input parameter and output parameter clarify how the parameter is used — whether
it requires a value or a variable as an argument. Note that a single parameter may act as both an input and an out-
put parameter, in which case the input value must be supplied as a variable and the value of that variable will be
changed by the subroutine.

[!] Note: When a variable argument is passed to a subroutine, the corresponding parameter is treated as
an equivalent name for the same variable. Because they are the same variable, changes to a parameter
within the subroutine definition will have an immediate and matching effect on the value of its corre-
sponding argument — if that argument is a variable. Thus, subroutines, unlike functions, can easily
change the values of the arguments passed to them. This mechanism of passing parameters is called
passing by reference.

In the example above, the subroutine is invoked with the statement:
CALL Yes_no("Shall I go on", a$)

where the string constant “Shall I go on"isthe first argument and the string variable a$ is the second argu-
ment. Before it executes the code in the SUB structure, True BASIC assigns the value of the string constant to the
parameter qu$ and associates the parameter ans$ with the variable a$. The subroutine prints a prompt using
the parameter qu$, and assigns the lowercase equivalent of the user’s response to the parameter ans$. Once it
reaches the END SUB statement, the program continues with the statement immediately following the CALL
statement. Since the parameter ans$ and the argument a$ are essentially different names for the same variable,
the lowercase value stored into ans$ within the subroutine is also the new value of a$.

While a subroutine can modify any variable that is used as an argument in the CALL statement, it cannot mod-
ify expressions used as arguments. Thus, arguments such as sum, name$, score(7),and titles$() may
be changed, but variables within expressions such as x+3, a$ & b$,and c$L2: 4] cannot be changed. Remem-
ber that while x is a variable, (x) is an expression. Therefore, if you want to make sure that the value of an input

90 True BASIC Language System

variable is not changed, enclose it in parentheses. This trick allows you to pass parameters to a subroutine by
value rather than by reference.

You may exit from the middle of a subroutine with an EXIT SUB. In the Yes_no subroutine, you could use EXIT
SUB in place of EXIT DO.

Arrays as Parameters

As with functions, you may use arrays as parameters in subroutines. Here’s a subroutine that uses a numeric
array and numeric variable to accomplish the same thing as the earlier function example that finds the largest ele-
ment in an array:

SUB Largest (a(), value) ! Largest value in a list
LET b1 = Lbound(a) ' Find the bounds
LET b2 = Ubound(a)
LET value = a(b1) ! Assume first is largest
FOR i = b1+1 to b2 ' But compare to all others

IF a(i) > value then LET value = a(i)

NEXT i

END SUB

The same rules apply to specifying array parameters for subroutines as for functions (although the passing mech-
anism is distinctly different). Each array parameter must be followed by empty parentheses, or bowlegs. For
instance, a () defines a as a one-dimensional array, a (,) defines it as a two-dimensional array,and a(,,) asa
three-dimensional array. In the CALL statement, the parentheses are optional. Thus, either of the following is
legal:

CALL Largest (prices(), v)

CALL Largest (prices, v)

as long as prices has been previously declared as a one-dimensional array in a DIM statement. It is the argu-
ment prices that requires a DIM statement, not the parameter a.

It is more efficient to pass arrays to subroutines than to functions. Arrays are passed to functions by value; the
argument array must be copied to the parameter array, which takes time and storage space. With subroutines,
however, arrays are passed by reference. Argument and parameter array names are associated to refer to the
same array, hence the array is not duplicated. As with scalar variables, subroutines can change the values within
argument arrays.

Channel Numbers as Parameters
Subroutines may also use channel numbers as parameters (functions may not). For example:

SUB OpenFile (qu$, #1) ! Open a file
PRINT qu$; ' Prompt user
INPUT f$! Name of file
CLOSE #1 ' In case #1 open
OPEN #1: name f$

END SUB

CALL OpenFile("Data file", #3) ' Invoke it

The file opened as channel #1 within the subroutine is associated with channel #3 in the calling program. Chan-
nel numbers and their uses are described fully in Chapter 12 “Files for Data Input and Output.”

Variables within Subroutine Definitions

As with functions, you must be careful with any non-parameter variables you use within subroutines that are
“internal” to (i.e., defined within) the main program. Look again at the Lar ge st subroutine defined earlier in this
section:

User-defined Functions and Subroutines 91

SUB Largest (a(), value) ! Largest value in a list
LET b1 = Lbound(a) ! Find the bounds
LET b2 = Ubound(a)
LET value = a(b1) ! Assume first is largest
FOR i = b1+1 to b2 ! But compare to all others

IF a(i) > value then LET value = a(i)

NEXT i

END SUB

Notice that, in addition to finding the largest va Lue in the array, the definition of Lar gest changes the values
of b1,b2, and i. If the subroutine is part of the program that calls it, those variables are “global” — they are the
same as any variables with the same name in the main program. For instance, if you invoke the subroutine inside
a loop that starts with the statement:

FOR i = 1 to 10

chaos will result. Also, if you had previously defined a variable named b1 or b2, its value would be changed when-
ever this subroutine is invoked.

As with functions, you can avoid this problem in two ways. First, you could list b1, b2, and i in a LOCAL state-
ment within the SUB structure, forcing True BASIC to create separate variables named b1, b2, and i for each
invocation of the subroutine. Or, you could define Largest as an external subroutine where variables are effec-
tively “sealed off” from the rest of the program. The LOCAL statement and external procedures are described
later in this chapter.

Functions vs. Subroutines

While functions and subroutines play similar roles, there are some fundamental differences.

A function computes a value and that value is used in an expression. Arguments are passed to functions by value
— the argument’s value is copied to the parameter and the function cannot change the value of the argument itself.

Subroutines carry out tasks and they can change the value of arguments passed to them. Arguments are passed
to subroutines by reference; thus an argument variable is essentially the same variable as its corresponding para-
meter variable. For instance, in the example above showing an array parameter for a subroutine, Largest sends
the answer back via the argument that corresponds to the parameter value.

The G cd function (defined earlier in this chapter) illustrates the fact that a function does not change the value of
its arguments. Suppose that it is invoked as follows:

DEF Gcd(a,b) | Greatest common divisor
DO
LET r = Mod(a,b) ! Remainder in division
IF r = 0 then EXIT DO ! We are done
LET a = ! Else iterate
LET b =r
LOOP
LET Ged = b ! Value of the function
END DEF
LET a = 121
LET b = 55

PRINT Gcd(a,b); "is the greatest common divisor of"; a; "and"; b
END

It prints the following:
11 is the greatest common divisor of 121 and 55

The arguments a and b still have their original values, even though the definition of 6 cd manipulates them as
parameters. True BASIC assures this by copying the values into temporary variables.

92 True BASIC Language System

Generally, if you want to compute a single value, a function is the best choice. This also ensures that the values of
the arguments of the function do not get changed because they are passed by value.

Using array parameters for functions may be wasteful, however, since copying a large array takes a lot of time and
space. Although the function Max_element and subroutine Largest accomplish the same thing, the subroutine
Largest is probably the better choice. In the subroutine — which passes arguments by reference — the array is not
copied. Instead, the argument and parameter variables are associated so that they refer to the same original array.

Subroutines provide greater flexibility than functions. Subroutines can carry out a number of tasks and change
the values of any number of variables passed to them. You may change any function into a subroutine simply by
adding its value as an extra parameter. But the reverse is not true, as the following routine shows:

SUB NextItem (old$, delim$, new$) ! Find next item
LET p = Cpos(old$, delim$) ! Next delimiter
IF p=0 then LET p = Len(old$) + 1
LET new$ = old$[1:p-11 I Next item
LET old$ = Ltrim$Cold$Cp+1:10001) ! Remove from old$
END SUB

This subroutine identifies items that are separated by delimiters. If de L im$ is given the value "' , ;"' then items
may be separated by spaces, commas, or semicolons. This routine not only finds new$ but also modifies o L d$. A func-
tion could not do this, since functions return only a single value and cannot change the values of their parameters.

As stated earlier, you may exit from the middle of either a function or a subroutine using EXIT DEF or EXIT
SUB. However, if you use EXIT DEF, take care that you assign a value to the function before the exit, or the func-
tion will return the default value (0 or the null string).

Internal and External Procedures: Global and Local Variables

True BASIC programs may consist of one or more program units, the most important of which is the main pro-
gram. The main program includes the entire program up to and including the END statement. Every True BASIC
program must contain a main program. Thus, when a program consists of only one program unit, that program unit
must be the main program (which is to say that it must end with the END statement).

A True BASIC program may use additional program units in the form of external procedures or modules. This sec-
tion discusses external procedures; modules are discussed in Chapter 11 “Libraries and Modules.”

A procedure is a defined function, subroutine, or picture (pictures are discussed in Chapter 13 “Graphics”). An
external procedure is not part of another program unit. You may define external procedures in the same file as
the main program but after the END statement, or in separate files called libraries (see the next chapter). Each
external procedure is a separate program unit.

Procedures that are defined within another program unit (modules excepted) are internal procedures. You may
define internal procedures within the main program before the END statement or within external procedures.
Each internal procedure is considered part of the program unit in which it is defined. Thus, internal procedures
are not separate program units.

You define internal and external procedures in exactly the same way, you invoke them in the same manner, and
you use arguments and parameters in the same way to communicate with them. It is their position in relation to
other program units that determines whether they are internal or external. There is one important distinction
between them, however: variables that are not used as parameters are treated very differently in external and
internal procedures. Also, external functions must be named in DECLARE DEF statements within the calling
program unit (see the next section on “Internal and External Functions”).

Internal procedures share all variables that are not listed as parameters with the program unit in which they are
defined. And since internal procedures may be invoked only within the same program unit in which they are
defined, we say that non-parameter variables in internal procedures are global variables, because they are
shared throughout the scope of that program unit.

User-defined Functions and Subroutines 93

Consider, for example, the following program, in which AddressCode is an internal subroutine defined before
the END statement of the main program:

! Create address codes for mailing labels
DIM fnames$(3), Lnames$(3)

MAT READ fnames$, Lnames$

DATA Frank, Peter, James

DATA Hardy, Wimsey, Qwilleran

FOR i =1 to 3

LET first$ = fnames$(i)

LET Llast$ = Llnames$(i)

CALL AddressCode(fnames$(i),Lnames$(i), code$)

PRINT "The address code for "; first$; " "; last$; " is "; code$
NEXT i

SUB AddressCode(f$,1l$,c$)
LET last$ = Ucase$(L$C1:41)
LET first$ = Ucase$(f$L1:31])
LET ¢$ = last$ & first$

END SUB

END

When this program is run, it gives the following results — which are probably not what the programmer intended!
The address code for FRA HARD is HARDFRA
The address code for PET WIMS is WIMSPET
The address code for JAM QWIL is QWILJAM

What happened? The first time through the FOR loop, the program assigns “Frank" to first$ and “"Hardy"
to Last$. It then calls the AddressCode subroutine, passing the first elements in the two arrays to f$ and L $,
and associating the argument code$ with ¢ $ to receive the address code. When the subroutine ends, the PRINT
statement uses the values of first$, last$, and code$. But why doesn’t it print "Frank" and “Hardy" for
first$and last$?

The problem is that the subroutine uses the same variable names first$ and Last$ and it changes the values
of those variables. Because the subroutine is internal to the main program those variables are shared throughout
the program unit. Hence, the PRINT statement, which occurs after the call to the subroutine, uses the changed
valuesfor first$and lasts$.

Here’s the program reorganized so that Address Code is an external subroutine, stored after the END statement
of the main program:

! Create address codes for mailing labels
DIM fnames$(3), Lnames$(3)

MAT READ fnames$, Lnames$

DATA Frank, Peter, James

DATA Hardy, Wimsey, Qwilleran

FOR i =1 to 3

LET first$ = fnames$(i)

LET last$ = lnames$(i)

CALL AddressCode(fnames$(i),lLnames$(i), code$)

PRINT "The address code for "; first$; " "; last$; " is "; code$
NEXT i

END

SUB AddressCode(f$,l$,c$)
LET last$ = Ucase$(L$C1:41)
LET first$ = Ucase$(f$L1:31)
LET ¢c$ = last$ & first$

END SUB

94 True BASIC Language System

Now the program gives the intended output as follows:

The address code for Frank Hardy is HARDFRA
The address code for Peter Wimsey is WIMSPET
The address code for James Qwilleran is QWILJAM

Even though the subroutine uses the same variable names, any changes to those variables do not affect the vari-
ables in the main program. Hence, first$ and Last$ retain the values they had before the CALL statement.

This works because external procedures do not treat variables other than parameters in the same way as do inter-
nal procedures. All non-parameter variables in external procedures are distinct from those in the program unit
that invokes the procedure — even if they have the same name! An external procedure’s variables are created
when the procedure is invoked and destroyed when it is terminated. We say that non-parameter variables in exter-
nal procedures are local variables, because they are available only within the procedure that uses them — they
cannot affect variables in the calling program unit

The next two sections give additional examples of internal and external functions and subroutines and discuss
some important practical issues related to using them.

Internal and External Functions

Just as you must define all internal functions before you can use them, you must name all external functions
before you can use them. You don’t need to include parameters in the DECLARE DEF statement; you list only the
names of the functions. You must always define or declare a function before you can use it, so that True BASIC will
know that its name refers to a function and not a variable or array. This is illustrated in the third program exam-
ple below.

As noted in the previous section, you must be aware of what variables you use when you write internal procedures,
regardless of whether the procedure is a function or a subroutine. As another less obvious example, consider the
following internal function that reverses the order of characters in a string:
DEF Reverse$(s$) ! Reverse of string
LET x$ = "" ! Empty string to start
FOR i = 1 to Len(s$) ' A character at a time
LET x$ = s$[i:i]1 & x$! Add in reverse order

NEXT i
LET Reverse$ = x$ ' Value of function
END DEF
PRINT Reverse$ ("Hello there!")
GET KEY k ! Hold output until a key is pressed
END

The Reverse$ function in this program correctly returns the following to the PRINT statement:
'ereht olleH

But look at what happens if you use the Reverse$ function as follows to reverse four strings supplied by the user:

DEF Reverse$(s$) Reverse of string
LET x$ = "" Empty string to start
FOR i = 1 to Len(s$) A character at a time

I
!
!
LET x$ = s$[i:i] & x$ ' Add in reverse order

NEXT i

LET Reverse$ = x$ ' Value of function
END DEF
FOR i =1 to &

LINE INPUT PROMPT "Enter a string: ": string$

PRINT Reverse$(string$)
NEXT i

PRINT “AlLl done!"
END

User-defined Functions and Subroutines 95

Here’s a sample run:

Enter a string: Hello.

.olleH

ALL done!
What happened? The program is supposed to ask for four strings. The problem is that the Reverse$ function uses
two variables that are not parameters: x$ and i. This is a dangerous situation, since either variable might be used by
some other part of the program — and indeed the variable 1 is used by the main program as well.

When the program begins, True BASIC creates the function definition (but doesn’t execute it) and then begins
with the FOR loop that uses the function to reverse four strings. This works fine the first time through the loop
(where 1 equals 1). The program gets a string from the user and invokes the Reverse$ function to print that
string backwards. The function works properly but notice what it does to i. When Reverse$ finishes it has
changed the value of i to the length of the string argument plus 1 (or in this example 7). (It has also changed the
value of x$ but x$ isn’t used anywhere else in the program.) Thus, when True BASIC executes the NEXTstate-
ment after the PRINT statement, it increments i to 8 so the main FOR loop ends. The program prints the final
statement and stops.

Now let’s look at this same program rewritten with Reverse$ as an external procedure:
DECLARE DEF Reverse$

FOR i =1 to 4

LINE INPUT PROMPT "Enter a string: ": string$
PRINT Reverse$(string$)
NEXT i
PRINT "ALL done!"
END
DEF Reverse$(s$) Reverse of string

LET x$ = ""
FOR i = 1 to Len(s$)
LET x$ = s$[i:i] & x$

Empty string to start
A character at a time
Add in reverse order

NEXT 1
LET Reverse$ = x$ ' Value of function
END DEF

We did just two things to make this change. We moved the function definition to follow the END statement of the main
program (we could have moved it to a separate file). And we added the DECLARE DEF statement at the beginning of
the main program to tell True BASIC that Reverse$ is a function that is defined elsewhere.

When you run the revised version of the program, it works as expected:

Enter a string: Hello.
.olleH

Enter a string: Able was I
I saw elbA

Enter a string: ere

ere

Enter a string: I saw Elba!
'ablE was I

ALL done!

When Reverse$ is an external function, all variables used in the definition are local to that definition only. The
function’s variables are totally separate from those in the rest of the program, even if they happen to have the same
names. The only information shared with the main program is the string argument passed to the function’s para-
meter and the string value returned by the function.

96 True BASIC Language System

Internal and External Subroutines

As you've seen, all variables in an internal subroutine are shared with the rest of the program. Variables in an
external subroutine are local to that subroutine; the only shared values are those passed between arguments and
parameters.

To create an external subroutine, you simply place it after the END statement or in a separate file. There is no
equivalent to the DECLARE DEF statement. Because you must invoke a subroutine with a CALL statement, it
is always clear to True BASIC that you are referring to a subroutine and not a variable or array.

Although you can use global variables to share information between your program and internal subroutines, we
recommend that you use parameters to clearly indicate information passed to and from your subroutines. For
example, the following program uses an internal subroutine to get an answer from the user, check it for correct-
ness, and respond appropriately. Although it uses no parameters, it works because all variables are shared with
the rest of the program:

!State quiz

DIM questions$(10), answers$(10)
LET count, correct = 0
DO WHILE MORE DATA
LET count = count + 1
READ questions$(count), answers$(count)
LOOP
FOR i = 1 to count
DO
PRINT questions$(i)
CALL Get_answer
LOOP UNTIL correct =1
NEXT i

SUB Get_answer
INPUT ans$
IF Lcase$(ans$) = answers$(i) then
PRINT “Correct!"
LET correct = 1
ELSE
PRINT "Wrong, try again..."
LET correct = 0
END IF
END SUB

DATA "What is the 50th state"”, hawaii
DATA "What is the largest state", alaska
DATA "What state has the nickname 'Old Dominion'", virginia

END

There are two potential problems with this program, however. The subroutine would not work if you later decide
to make it an external procedure that can be shared with other programs. Also, if the above statements were part
of a lengthier program, it might not be clear where the program sets the value for correct — used as the exit
condition for the DO loop.

You are generally better off using parameters for any values you need to share between the program and the sub-
routine. For example, you could rewrite Get_answer to use two parameters — a string variable and a numeric
variable. Notice that the string argument supplied in the CALL statement is an element of the string array
answerss$; asingle element in an array is treated as a single variable.

Consider the following variation:

User-defined Functions and Subroutines 97

FOR i = 1 to count
DO
PRINT questions$(i)
CALL Get_answer(answers$(i), correct)
LOOP UNTIL correct =1
NEXT 1

SUB Get_answer(a$,c)
INPUT ans$
IF Lcase$(ans$) = a$ then
PRINT "Correct!"

LET ¢ =1
ELSE
PRINT "Wrong, try again..."
LET ¢ =0
END IF
END SUB

This version of the subroutine will now work equally well as an external subroutine. Also, it is clear from reading
the program code which values are shared with the subroutine. The first argument supplies the correct answer to
the subroutine. After it carries out its tasks, the subroutine passes back an appropriate value to the argument
correct.

Advantages and Disadvantages of External Procedures

When you use external procedures, you don’t have to worry about duplicating variable names. This is particularly
important if you wrote a routine a long time ago and have forgotten the names used within it, or if someone else wrote
it. To use an external procedure you need to know: (1) its name, (2) what kind of arguments it takes, and (3) what it
does. You do not need to know how it is programmed or what variables are used.

You may store external procedures in separate “library files” (see the next chapter). You can therefore use the
same procedure from any number of programs by referring to the library file. Thus, you need not copy or rewrite
commonly used code into each of your programs.

The price for this protection is that the values of local variables are lost when an external function or subroutine
terminates and all local channels are closed. As a consequence, such external procedures cannot ‘remember’ what
they did the last time they were called. The next chapter describes “modules” which give you much greater control
over the scope of variables, letting you create procedures that can remember the values of local variables and
define items available to more than one program unit.

The LOCAL Statement

The LOCAL statement serves two purposes. You may use it to indicate variables or arrays that are to be local to
an internal procedure and not available outside that procedure. You may also use it in combination with an
OPTION TYPO statement to catch misspelled variable names.

The LOCAL statement is helpful in internal procedures when you want to keep variables separate from the rest
of the program. For example, in the internal subroutine:

SUB Xyz
LOCAL i

FOR i =1 to 10
LET sum = sum + i
NEXT i
END SUB

98 True BASIC Language System

the variable i is local, and hence considered different from i in the rest of the main program. In effect, i is treated
asif Xy z were an external routine, yet sum is available to the main program. Clearly this option is useful for assur-
ing that a temporary variable like 1 does not conflict with one in the rest of the program.

You may also list arrays — with their dimensions — in a LOCAL statement. Because you must give the array
dimensions, the LOCAL statement takes the place of a DIM statement for those arrays.

An OPTION TYPO statement tells True BASIC to alert you if it finds an incorrect variable name. You must
declare all variables that first appear in your program or program unit after the OPTION TYPO statement. True
BASIC uses the declared names as a “dictionary” of acceptable names; it also accepts any variable names used
before the OPTION TYPO. If True BASIC encounters any other variables, such as a misspelled name, an error
occurs. For example, if you attempt to run a program that begins as follows:

OPTION TYPO

DIM grades(10) ! or LOCAL grades (10)
LOCAL name$, sum, average

INPUT PROMPT "Student's name: " : names$
PRINT "Enter grades separated by commas."
MAT INPUT grades

True BASIC will halt at the misspelled name s $ variable on the INPUT PROMPT statement and print the mes-
sage “Unknown variable.”

For this to work best, you should place the OPTION TYPO statement early in your program unit and then declare
all your variables. You declare variables with LOCAL statements, arrays with LOCAL or DIM statements, and
parameters by placing them in the SUB, DEF, FUNCTION, or PICTURE statements defining procedures (for
information on picture procedures see Chapter 13 “Graphics”). You may also declare variables using the PUBLIC,
SHARE, and DECLARE PUBLIC statements described in the next chapter.

You may use the OPTION TYPO statement in any program unit or module header (see the next chapter). Once
used, it applies to all the variables that first appear after the OPTION TYPO statement, and it remains in effect
until the end of the file that contains it. Note that OPTION TYPO is technically not an executable statement —
it is used only when True BASIC compiles the program. For this reason, its effects are related to its position in the
file, not to its position in the flow of control. Thus, when the OPTION TYPO statement appears in an external
procedure stored after the END statement of the main program, it applies only to the remainder of that procedure
and any other procedures that are stored after it in the file. It does not apply to any portion of the file that precedes
it — including those portions of the main program that follow the invocation of the procedure containing the
OPTION TYPO statement.

99

CHAPTER

11

Libraries and Modules

The previous chapter shows how procedures break a program into separate tasks, and evaluates the differences
between functions and subroutines and between internal and external procedures. In addition, the previous chap-
ter explains the distinctions between local and global variables. To fully understand the concepts presented in this
chapter, you should be familiar with all the concepts presented in the previous chapter.

This chapter explains how to further organize your programs using special files called libraries and also how to
gain very specific control over the scope of variables and/or procedures using specialized structures called mod-
ules. Modules allow you to collect several external procedures into a single program unit and gain specific control
over the scope of each and every variable, array, channel number, and/or procedure that they contain. Libraries
let you collect several external procedures and/or modules together in a single file that you can then access from
any number of programs and/or other libraries.

Libraries

You may place external procedures and modules after the END statement of your main program, but you'll usu-
ally find it more convenient to store them in one or more separate files or libraries. A library is a file that contains
any number of external procedures (functions, subroutines, or pictures) or modules, but no main program.

Any of your programs can use the procedures and modules in a library without having to duplicate any code. And
you can compile libraries separately from the main program. Even your uncompiled programs can use compiled
versions of libraries, thus reducing the time it takes your program to begin running by decreasing the amount of
code that must be compiled. (See “The True BASIC Environment” chapter in the Introduction for information on
compiling programs and libraries.)

Each library file must begin with an EXTERNAL statement as its first non-comment line. The EXTERNAL
statement tells True BASIC not to look for a main program in the current file, allowing the library to be compiled
separately from the main program file. Because no main programs are allowed, a library may not contain an END
statement.

Here’s an example of a simple library that contains a function and a subroutine that might be useful for various
games of chance:

! Making random choices
EXTERNAL

SUB RollDice (sum_dice, num_dice) ! Roll any number of dice
LET sum_dice = 0
FOR i = 1 to num_dice
LET roll = Int(é6*Rnd + 1)
LET sum_dice = sum_dice + roll
NEXT i
END SUB

DEF Coin$ I Toss a coin
IF Rnd < .5 then
LET Coin$ = "heads"

100 True BASIC Language System

ELSE
LET Coin$ = "tails"
END IF
END DEF

You can use a library simply by naming the file that contains it in a LIBRARY statement. For instance, if a compiled
version of the above library is saved in a file named CHANCLIB.TRC (in the currently active directory or folder), you
could use any of its procedures by naming it in a LIBRARY statement, as in the following program:

! A game of luck and skill

LIBRARY "“ChancLib.TRC" ' Access the Llibrary file
DECLARE DEF Coin$! Declare a library function
RANDOMIZE
INPUT PROMPT "Choose heads or tails to see who goes first: " : c$
IF ¢$ = Coin$ then ! Toss a coin
LET turn =1 ' User goes first
ELSE
LET turn = -1 ! Computer goes first
END IF
CALL RollDice (dice,4) ' Roll 4 dice

Notice that functions defined in a library are like all other external functions — you must declare them in a
DECLARE DEF statement before you can use them. The LIBRARY statement merely tells True BASIC where
to look for any external procedures not defined within the main program file. You still need a DECLARE DEF
statement to inform True BASIC that Coin$ is a defined function rather than a variable.

The LIBRARY statement tells True BASIC where to look for external procedures by naming the file that contains
them. You must give the complete file name, including any extensions, and you must provide enough information
to allow True BASIC to locate the file. If you specify a simple file name, True BASIC assumes that the library file
is in the current directory (or folder). If the library file is in another directory, then you must provide a valid path
to the directory containing the file as part of the file name. That path name may start from the current directory
or from the root level of your current disk or a specified disk. For a summary of the rules for defining path names
and file names under various operating systems, see the introductory chapter on “The True BASIC Environment.”

[!] Note: The rules for path names and file names vary between different operating systems. In addition,
the paths to specific files can change when you move between computers running the same operating
system, or even at different times on the same computer. Therefore, you may need to update a pro-
gram’s LIBRARY statements when the program’s environment changes.

You may list several library files in a single LIBRARY statement:
LIBRARY "ChancLib.TRC", "GamesLib.TRC", "Finance.TRC"

If the libraries happen to contain two or more routines with the same name, True BASIC will use the first routine
it finds, examining libraries in the order given in the LIBRARY statement.

You may name a library file more than once, and you may place LIBRARY statements in external procedures. In
fact, it is sometimes best to include a LIBRARY statement in every procedure that calls another external proce-
dure (even if you are likely to have named the needed library elsewhere). The reason lies in the way True BASIC
searches libraries for procedures: it searches libraries in the order named for procedures it “knows” are needed; if
one of those procedures then calls another, True BASIC does not “back track” to search earlier libraries. Thus you
should name libraries containing higher-level procedures first, or put an appropriate LIBRARY statement in the
higher procedure itself. Keep in mind, however, that unless all libraries are always kept in the same directory, you

Libraries and Modules 101

must update LIBRARY statements if the directory structure containing the files changes. For complex, portable
programs, it may be safest to create bound versions. (Bound programs are compiled with all the necessary libraries
and run-time resources; see “The True BASIC Environment” in the Introduction for information on binding pro-
grams.)

The OPTION TYPO statement may help prevent typographic errors within libraries as well as the main pro-
gram. If you wish to use OPTION TYPO for external procedures in library files, you should include the statement
at the beginning of the first procedure to which you wish it to apply. Since it is non-executable and its position in
the file determines its effect, the OPTION TYPO statement will then apply to the procedure that contains it and
all those that follow it in the library, forcing variables and arrays used within those procedures to be pre-declared
in a LOCAL, DIM, SHARE, PUBLIC, or DECLARE statement (see the following section on modules).

Modules

A module is a structure that lets you combine several external procedures into a single program unit and specif-
ically control the availability of those procedures and their variables.

We'll look first at the special properties that make modules particularly useful and then examine how the MOD-
ULE structure defines modules. The next section gives several examples of modules to help you further under-
stand their structure and usage.

A module can “own” information in the form of shared variables, arrays, and channel numbers. Such shared items
are available throughout the module — they need not be explicitly passed as parameters. Since shared items are
“static,” they retain their values between invocations of the procedure. Thus, if a procedure sets the value of a
shared item, that item will have that value the next time the procedure is invoked (provided, of course, that
another procedure in the module hasn’t changed the item’s value in the interim). Shared items are not available
to the main program, other modules, or external procedures outside the module — they are “hidden” from program
units outside the module.

In addition to the shared items available to procedures within the module, a module may make some items pub-
lic so that any other program unit, such as the main program or other modules, may use them. Within the mod-
ule that defines them, public items have the same properties as shared items, but they are also available to any
other program unit that declares them.

Usually, the external procedures within a module are publicly available to any program unit outside the module.
However, modules also let you designate some procedures as private so that their use is limited to other proce-
dures in the module. Such procedures are “hidden” from other program units.

One final special property of modules is the initialization segment. An initialization segment is a series of state-
ments preceding the first procedure definition in a module. Each of these statements will be executed in sequence
during the initialization of that module, which takes place before the main program is executed.

A module is defined by a MODULE structure with the following format:

MODULE ModName
(module header statements)
(module initialization statements)
(procedures of the module)

END MODULE

where ModName is the name given to the module. This name is for your convenience and is used by True BASIC
only for error messages.

Module Header Statements

Each module starts with a module header, which is a series of statements that define the nature of various variables,
arrays, channel numbers, and procedures used within the module. The module header may consist of SHARE state-
ments, PUBLIC statements, PRIVATE statements, and any of the DECLARE or OPTION statements.

102 True BASIC Language System

SHARE statements define the variables, arrays, and channel numbers that will be available to all procedures
within the module but not to program units outside the module. Shared items are static and therefore retain their
values until the program ends. Likewise, shared channel numbers remain open (once they have been opened) until
they are specifically closed or the program ends.

PUBLIC statements define the variables and arrays that will be available to program units outside the module.
Of course, public items are also available to all the procedures within the module. Like shared items, public items
are static and retain their values until the program ends.

Notice that channel numbers may only be shared, they may not be made public. Also note that arrays that appear
in a PUBLIC or SHARE statement must be dimensioned by that statement — a DIM statement is neither
required nor allowed for an array defined in a PUBLIC or SHARE statement.

PRIVATE statements specify certain procedures of the module that may not be accessed from outside the mod-
ule. You could therefore use PRIVATE statements to restrict access to “dangerous” procedures that could destroy
the module’s data structures. PRIVATE statements also let you use the name of the routine for other purposes
outside the module. Thus, if you have a private subroutine called Sum in the module, you may use sum as a vari-
able or procedure name in the main program. If you declare a function in a PRIVATE statement, you don’t need
a DECLARE DEF statement in the same module header.

A DECLARE DEF statement in a module header makes the functions it names available to all procedures in the
module. However, you don’t need a DECLARE DEF statement in the module header for functions that will be
used only from other program units, as the other program unit must have a DECLARE DEF statement for that
function.

A DECLARE PUBLIC statement in a module header will make public items defined elsewhere in the program
available throughout the current module. When a DECLARE PUBLIC statement lists a public array, the array
name must be followed by appropriate bowlegs (with commas for arrays or two or more dimensions) to inform True
BASIC how many dimensions that array contains. Public items defined in PUBLIC statements need not be listed
in DECLARE PUBLIC statements within the same module header.

[!] Note: Any program unit that uses public items defined as public elsewhere in the program must have
a corresponding DECLARE PUBLIC statement listing those items. While PUBLIC and DECLARE
PUBLIC statements may appear in any program unit, a single item may appear in only one PUBLIC
statement per program. However, that single item may be specified by any number of DECLARE
PUBLIC statements throughout the program.

While other DECLARE statements (see Chapter 18 “Statements and Built-in Functions and Subroutines”) may
also appear in a module header, there is little point since they have no effect.

Module headers may also contain the various OPTION statements, such as OPTION TYPO. However, since
none of the OPTION statements is executable, they all affect the module in terms of their position within the file
itself. That is, an OPTION statement in a module header will apply to all lines remaining in the file (both in that
module and any other modules or procedures that follow it), regardless of the order in which procedures are actu-
ally executed.

Here is the beginning of a module that illustrates most of these header statements:

MODULE MyMod
PUBLIC princ, int_rate, values(2,100) ! Global variables & arrays
SHARE mo_rate, mo_prin, mo_sum ! Shared variables & arrays
SHARE temp(1,1), f
SHARE #1, #2 ! Shared channels
DECLARE DEF Daily ! Global & shared function
PRIVATE Sum ! Private procedure
DECLARE PUBLIC account_no, personal() ! Public variable & array
! defined elsewhere

Libraries and Modules 103

Module Initialization

After the module header and before the procedures of the module, you may include statements that “initialize” the
module. This initialization segment may assign values to variables, open channels, or set certain conditions. In
fact, the initialization segment may even invoke procedures in the module. True BASIC executes these initializa-
tion statements before it executes the main program.

Typically, you would assign initial values to public and shared variables. These variables would then have the
assigned values when the main program begins. It does not make sense to initialize any other variables, arrays, or
channels, as they are local to the initialization segment and their values are lost when initialization is completed.

[!] Note: When a module is stored in a library file, the statements in its initialization segment will be
executed only if that module is accessed by the program; simply listing the library in a LIBRARY
statement does not initialize the modules in that library. Modules are accessed when one of their proce-
dures is invoked or when a public variable that they define is declared. When more than one module is
defined within a single library, they are initialized in the order in which they appear in the file, but
each module will be initialized only if it used in some way by the program. Modules located in the same
file as the main program are initialized regardless of whether or not they are accessed.

As an example, here’s the beginning of a module showing the module header and initialization segment.

MODULE Cards
SHARE card(0 to 51), n ! Module header
SHARE val$(0 to 12), suit$(0 to 3)
PRIVATE Decipher

MAT READ val$, suit$! Initialization segment
DATA two, three, four, five, six, seven, eight

DATA nine, ten, jack, queen, king, ace

DATA clubs, diamonds, hearts, spades

RANDOMIZE
CALL Shuffle

The next section shows the complete Cards module plus three other simple, but complete, modules and how they
might be used.

Using Libraries and Modules

You may use any procedure defined in a module just as you would use any external procedure, provided that the
module has not listed the procedure in a PRIVATE statement. If the module that contains the procedure is in a
library file, then the program unit that uses it must have an appropriate LIBRARY statement. If the procedure
is a user-defined function, you must also have a DECLARE DEF statement in the program unit that will use the
procedure.

To access items defined as public in a module, a program unit must name those items in a DECLARE PUBLIC
statement. Of course, if the module is in a library, the program unit must also have access to the library. Also,
remember that public arrays listed in a DECLARE PUBLIC statement must include appropriate bowlegs (with
commas for arrays or two or more dimensions) to inform True BASIC how many dimensions that array contains.

To gain a better understanding of modules and their use, consider the following examples.

Defining and Initializing Public Information
The following module exists simply to define some public items and initialize two of them:

104 True BASIC Language System

MODULE Common

PUBLIC first, sum, p(2,50) ! Global variables
LET first =1 ' Initialize
LET sum = 0

END MODULE

This module defines the variables first and sum and the array p as public and initializes first and sum. Any
program unit with access to this module may then include a statement:

DECLARE PUBLIC first, sum, p(,)
to have access to these publicitems. Once declared, these items will be available throughout the program unit that
declares them.

To make a constant globally available, you can define and initialize it in your module:

MODULE Common
PUBLIC first, sum, p(2,50)

PUBLIC e ' Global "constant"
LET e = Exp(1) ! Define the constant
LET first =1
LET sum = 0

END MODULE

Then if a program unit names e in a DECLARE PUBLIC statement, e will have the assigned value. This has the
disadvantage, though, that some program unit may change the value of e. To make sure that the value of e is not
accidentally changed, you could make it a function by removing e from the PUBLIC statement and changing the
LET statement in the module to:

DEF e = Exp(1)

This protects the value from unauthorized changes since e is no longer a variable. Note that the calling program
must use a DECLARE DEF statement rather than a DECLARE PUBLIC statement to gain access to the
defined function.

Defining “Data Structures”

You can define and manipulate rudimentary data structures using modules. The advantage to this is that you can
make such data structures available to any program without the programmer having to be aware of how they have
been implemented. The use of modules for this purpose can also eliminate the need to pass large numbers of argu-
ments between procedures involved in the maintenance of the data structures.

As a simple example, consider the following module that maintains all the necessary information about a deck of
cards during a card game. It shuffles, deals, and defines formatted names for the cards.

MODULE Cards

SHARE card(0 to 51), n ' Deck, number of cards left
SHARE val$(0 to 12), suit$(0 to 3) ! Values, suits

PRIVATE Decipher

MAT READ val$, suit$! Initialize module

DATA two, three, four, five, six, seven, eight
DATA nine, ten, jack, queen, king, ace
DATA clubs, diamonds, hearts, spades

RANDOMIZE
CALL Shuffle

SUB Shuffle ! Set up deck
FOR i = 0 to 51
LET card(i) = i
NEXT i
LET n = 52
END SUB

Libraries and Modules 105

SUB Deal(c) ! Deal a card
LET j = Int(n*Rnd) ' Pick random card
LET ¢ = card(j)
LET n = n-1
LET card(j) = card(n) ' Fill place

END SUB

DEF Name$(c) ! Name of card
CALL Decipher(c, v, s) ! Card, value, suit
LET name$ = val$(v) & " of " & suit$(s)

END DEF

SUB Decipher(c, v, s)
CALL Divide(c, 13, s, v)
END SUB

END MODULE

Notice how this module uses the three shared arrays cards, val$,and suit$ torepresent the deck of cards. All
these arrays are “owned” by the module — they are available to all the routines in the module, yet they cannot be
accessed from outside the module. This means that the data structure may be accessed only through the proce-
dures in the module.

Each of the arrays used to define the deck of cards is initialized in the initialization segment of the module, either
through the MAT READ statement or the invocation of Shuf f Le, so that the card deck is ready to go even before
the program begins executing.

A simple use of this module might be:
! Deal 5 cards

LIBRARY "CardLib.TRC" ! Access library containing Cards module
DECLARE DEF Name$! Declare Llibrary function
FOR i =1 to 5
CALL Deal(c) ! Use library subroutine
PRINT Name$(c) ' Use Llibrary function
NEXT i

END

Note that the person writing the calling program does not need to know how cards are coded or how Shuffle
works. Note also that simple external procedures could not achieve this purpose, since the values of the arrays
would disappear between their invocations.

Sharing Variables to Imitate Turtle Graphics

Consider another module that imitates the use of the turtle graphics popularized by the programming language
Logo™. Turtle graphics work by allowing the user to move a small object, or “turtle,” around the screen. As the tur-
tle moves, it leaves a visible trail, drawing a picture on the screen. The turtle can turn left or right a certain num-
ber of degrees and can move forward or backward a specified distance. This type of graphics is sometimes called
relative graphics, which means that each pen position is measured relative to its previous position.

Normally, True BASIC uses absolute graphics, in which each pen position is measured absolutely from a con-
stant origin. The following simple module lets True BASIC imitate turtle graphics:

MODULE Turtle
SHARE x, y, a ! Location, angle

! Same x, y, and a used

! throughout the routine

OPTION ANGLE DEGREES I Initialize

CALL ClearScreen

106 True BASIC Language System

SUB ClearScreen

CLEAR

SET WINDOW -140, 140, -120, 120

LET x, y =0 ! Start at origin

LET a = 90 ! Head upward

PLOT 0, O; ! Start drawing
END SUB

SUB Left(da)
LET a = a + da
END SUB

SUB Right(da)
LET a = a - da

END SUB

SUB Forward(d)
LET x = x + d*Cos(a)
LET y = y + d*Sin(a)
PLOT x, y;

END SUB

SUB Back(d)
CALL Forward(-d)
END SUB

END MODULE

Any of the five procedures may be called from outside or inside the module. In fact, Back calls Forward, and the
initialization segment includes a call to C LearScreen. The initialization segment sets degrees as the measure
for all angles, and, by invoking ClearScreen, it establishes the window coordinates and puts the turtle in the
center of the window heading up the screen. (See Chapter 13 “Graphics” for explanations of the CLEAR, WIN-
DOW, and PLOT statements.)

The SHARE statement lets the module “remember” the current position and direction of the turtle; the values of
the shared variables x, y, and a are never lost when control returns to the calling program. These shared variables
may be used by any routine in the module but they cannot be accessed or changed from outside the module. Indeed,
the calling program is not even aware of their existence!

The following is a very simple program that uses the module to move the turtle. All it needs to do is name the file
containing the module in a LIBRARY statement and then pass appropriate arguments to the Left, Right,
Forward, and Back subroutines.

LIBRARY “TURTLE.TRC"

PRINT "To turn the turtle type 'R' for right or 'L' for left"
PRINT "followed by an angle, and then press the return key."
PRINT

PRINT "To move the turtle in the current direction, type 'F' or"
PRINT "'B' followed by a distance to move forward or backward,"
PRINT "and then press the return key."

PRINT

PRINT "Press 'C' to clear the screen or 'S' to stop the program."
PRINT "Press any key when you are ready to begin."

GET KEY start
CLEAR

DO
IF KEY INPUT then
GET KEY how
LET how$ = Ucase$(Chr$(Mod(how,256)))

Libraries and Modules

SELECT CASE how$

CASE

CASE

CASE

CASE

CASE

CASE

CASE

11 Lll

INPUT PROMPT how$: angle
CALL Left(Cangle)

1 Rll

INPUT PROMPT how$: angle
CALL Right(Cangle)

IIFH

INPUT PROMPT how$: distance
CALL Forward(distance)

IIBII

INPUT PROMPT how$: distance
CALL Back(distance)

11 C "

CALL ClearScreen

IISH

STOP

ELSE

END SELECT

END IF
LOOP
END

Sharing Channel Numbers
Channel numbers may be shared and passed as parameters, but they cannot be public. Because channel numbers
may be shared, modules are often used to isolate the interface to files, logical windows, or a printer. You will find
much more information on channel numbers and their use in Chapter 12 “Files for Data Input and Output.”

107

The following example uses logical windows to illustrate shared channels. Logical windows are described in Chapter
13 “Graphics.” Briefly, however, you need to know that True BASIC defines the default logical window with coordi-
nates 0 to 1 from left to right and 0 to 1 from bottom to top. Thus, the lower left corner of the default window is 0, 0 and
the upper right is 1, 1. You can define smaller logical windows within a physical window by specifying the left, right,
bottom, and top coordinate limits in an OPEN statement, as in the following module. The WINDOW statement tells
True BASIC where to send subsequent output (see Chapter 13 “Graphics”).

MODULE Timer

SHARE start, #1, #2

OPEN #1: SCREEN O, .8, 0, 1
OPEN #2: SCREEN .85, 1, 0, 1
LET start = Time

CALL Clock

SUB Clock
LET t = Time
WINDOW #2
CLEAR
PRINT Round(t - start, 1)
WINDOW #1
END SUB

END MODULE

Starting time, 2 windows
Working window

Time window

Use built-in function

Print to time window

Switch back to working window

In this example, True BASIC would open the logical windows and print the initial time in window #2 as part of
module initialization before it executes the main program. Output from the main program will be printed in win-
dow #1. The main program can update the running time whenever it wishes with the statement:

CALL Clock

108 True BASIC Language System

Note that the € Lock subroutine in the module can switch logical windows, but the main program cannot itself
switch to the timing window (#2) nor can it change either logical window (though it could open other logical win-
dows of its own).

Notice also that the variable s tar t is available only within the module. Thus, the timing mechanism is not ruined
if the calling program also has a variable called start.

Using the Supplied Libraries

Some of the advanced capabilities of the True BASIC language are not really part of “the language” at all, but are
included in the form of libraries. Since each built-in function and subroutine makes the language a little bit larger
and a little bit slower, much of the advanced functionality is provided in the form of external libraries. The follow-
ing libraries are included with the True BASIC language.

Libraries Included with True BASIC Language (in TBLIBS)

Library Functions or Subroutines Chapter Reference
Mathematical Tools

MathLib.TRC trig functions not already built-in 23

HexLib.TRC bit, octal, and hexadecimal manipulation routines 23
String Tools

StrLib.TRC string creation, conversion, formatting, and editing 23
Sorting and Searching Tools

SortLib.TRC sorting, searching, and reversing items on arrays 9,23
Graphics Tools

BGLib.TRC pie charts, bar charts, and histograms 23

SGLibh.TRC plotting data and function values 23

SGFunc.TRC plotting values of functions that you define 23

GraphLib.TRC simple graphing utilities 23
Interface Tools

TrueCtrl. TRC interface elements 14, 22

TrueDial. TRC dialog boxes 14,22
File and Directory Tools

ExecLib.TRC file and directory control 12,22

In addition, other toolkits in the form of libraries, are available. See our web site for current listing and prices.

To access any procedure in such a library, simply treat it as you would a procedure in a library that you have cre-
ated yourself. Name each library in a LIBRARY statement using an appropriate path name to precisely locate the
library, and declare any functions in DECLARE DEF statements.

109

CHAPTER

12

Files for Data Input and Output

Programs commonly use files to save data for later retrieval or to share data with another program. This chapter
describes the use of files to store information produced by programs and to retrieve information stored by other
programs. It also describes the ExecLib library of subroutines that give your programs added control over files and
directories. Since sending textual output to a printer uses many of the same statements and techniques, this chap-
ter also discusses how to print textual output.

A file is a unit of information saved on a diskette, a hard disk, or some other “permanent” storage device. A file
may contain data, or it may contain a program or a library. Because they continue to exist after your program stops
and even after you turn off your computer, files provide long-term storage. A program may access a file to read
information from it or write information to it.

Files store information in a variety of ways. Some can contain only the text characters that you commonly enter at
the keyboard and display on the screen. Others can store information in more efficient formats that cannot be dis-
played directly on the screen. True BASIC can create and use text files and four forms of internal files —
stream, random, record, and byte.

[!] Note: Different operating systems use different terminology for the organization of their storage
media. Throughout this chapter, the term “directory” refers to the organizational component of a disk
that may contain one or more files or other directories. Directories that are contained within another
directory are “subdirectories” of that directory. Some operating systems refer to these as “folders” and
“subfolders,” but this chapter uses the terms directory and subdirectory throughout.

True BASIC programs may use files stored anywhere in any directory or disk accessible to the computer running
the program (this includes files and disks that are accessible across a network).

When you need to access a file, you must first open it using a file name that is appropriate to your computer’s oper-
ating system. That name may be a simple file name, indicating that the file is stored in your current directory, or
it may be a complete path name that indicates the file’s location. See “The True BASIC Environment” chapter in
the introductory section of this manual for information on file and path names appropriate for the different com-
puter operating systems.

The OPEN statement opens a file and assigns it a channel number. All other statements that operate on files use
the channel number rather than the file name.

The first few sections in this chapter describe statements and operations that apply to all of True BASIC’s file
types. The later sections discuss each file type and additional statements particular to that file type. Because the
internal files share many characteristics, they are described as a group and then individually. The final section
describes ExecLib routines that let your programs get information about files and directories and create, rename,
and remove directories.

110 True BASIC Language System

A Summary of File Types

True BASIC uses five kinds of data files. The basic differences between the types lie in how information is stored
within the file and how you may access that information.

Text files use display format — they mimic the display that appears on your screen or printer. In text files, both
string and numeric values are represented as characters; numeric values are automatically converted to the string
of digits used to display them. To get information to and from text files, you use a channel number with the same
PRINT and INPUT statements that you use with the screen, printer, or keyboard.

The other four file types store information in the internal format that the computer uses to represent values in
memory. Each string value is stored as a series of one-byte characters (similar to text files), but each numeric value
is stored in the internal IEEE eight-byte format that preserves its full precision. Because of the way information
is stored within them, you must use WRITE and READ statements, with a channel number, to get information to
and from internal files.

The five file types may be summarized as follows:

A text file is one that you may create and save using any text editor capable of saving a text-only file. As such, text
files may be displayed on the screen. Every program you create and save with the True BASIC Editor is a text file.
Since a compiled program cannot be displayed, it is not a text file. True BASIC views the printer as a text file with
the restriction that a program cannot read from it (for obvious reasons). You may, however, write to the printer;
hence, you may use file operations to produce hard copy on your printer. Text files are sequential-access files,
meaning that you must access each record (or item) in the order in which it appears in the file.

A stream file is stored in internal format and cannot be displayed on the screen. Like a text file, a stream file is
organized sequentially. That is, the elements must be read in exactly the same order in which they were written.

Arandom file is stored in internal format and cannot be displayed on the screen. The file is organized into records
of fixed length, and you can jump to any record in the file and read it or change it. (Text or stream files do not per-
mit this “random access.”) The records may contain any number of string and numeric values, in their internal for-
mat, as long as their cumulative length does not exceed the record’s maximum length.

A record file is like a random file except that each record may contain only one numeric or string value.

A byte file is the most general type of file. You may access any file as a byte file, or simply a sequence of bytes.
Approaching a file on the byte level lets you manipulate files created by any application, such as a word processor
or spreadsheet, provided you know how that application has represented the information within the file. Because
byte files let you operate on each byte individually, they also provide the flexibility required for effectively pack-
ing information to conserve storage space.

Basic File Operations

This section and the next discuss operations and concepts common to all five data-file types. Each file type is then
described more fully along with statements and operations particular to that file type.

Opening Files
Before you may use the information stored within a file, you must first open a channel to that file. This process
uses an OPEN statement as follows:

OPEN #3: NAME "USEFUL"

The OPEN statement obtains access to the named file (through the current operating system) and associates that
file with the specified channel number. Channel numbers always consist of a pound sign (#) followed by an inte-
ger between 0 and 999 (or a numeric expression that evaluates to such a value). Note, however, that channel #0 is
reserved for the default logical window, which is always open. (The default logical window is the default output
window automatically opened by True BASIC; see Chapter 13 “Graphics” for more information.) After you've
opened a file, you must always refer to it by its associated channel number.

Files for Data Input and Output 111

The file name in the OPEN statement may be a simple name referring to a file in the current directory, or it may
include a path name specifically indicating the location of the file. Legal file and path names vary between oper-
ating systems, so be sure to check “The True BASIC Environment” chapter in the introductory section for the rules
of any operating systems you or your program’s users will be using.

You may specify the file name as a string constant, a string variable, or a string expression as long as it evaluates
to a legal file name for the current operating system. If a file with the specified name does not exist, an error
results.

You may add several options after the file name in an OPEN statement to specify how the file should be opened
and accessed. Each option consists of an option keyword and an option specifier, and each option is separated from
its neighbors by a comma. For example:

OPEN #1: NAME "DATA", ORG TEXT, CREATE OLD, ACCESS INPUT
The options allowed in the OPEN statement may be summarized as follows:
OPEN Statement Options

Option Effect
ORGANIZATION TEXT Open as text file
ORGANIZATION STREAM Open as stream file
ORGANIZATION RANDOM Open as random file
ORGANIZATION RECORD Open as record file
ORGANIZATION BYTE Open as byte file
CREATE NEW Create a new file
CREATE OLD Open an existing file (default)
CREATE NEWOLD Open if exists, else create
ACCESS OUTIN Allow read/input or write/print (default)
ACCESS INPUT Allow read or input only
ACCESS OUTPUT Allow write or print only
RECSIZE n Set record length for random, record, or byte files

You may abbreviate the option keyword ORGANIZATION as ORG.

If you specify the ORG TEXT, ORG STREAM, ORG RANDOM, or ORG RECORD option when opening an exist-
ing file, True BASIC checks the file and gives an error if it does not match the specified type. If you use the ORG
TEXT, ORG STREAM, ORG RANDOM, or ORG RECORD option when opening a new or empty file, the file
becomes that file type. Any file may be opened with the ORG BYTE option; it will be treated as a byte file as long
as it remains open, no matter what type it really is.

If you do not use an ORG option, True BASIC assumes the ORG TEXT option for new or empty files. Otherwise, it
checks the file and uses its current type (compiled True BASIC programs are opened as ORG BYTE).

The CREATE options control what happens if the file does or does not already exist. The CREATE NEW option
instructs True BASIC to create a new file with the specified name; an error occurs if a file with that name already
exists. The CREATE OLD option opens an existing file; an error occurs if the file does not exist. The CREATE
NEWOLD option opens the file if it already exists and creates it if it does not. The CREATE NEWOLD option is
useful when a program will be run repeatedly; the first time it is run it creates a new file, afterwards it uses the
existing one.

Omitting a CREATE option is the same as using the CREATE OLD option; that is, True BASIC looks for an exist-
ing file by default.

The ACCESS options let you limit what the program can do with the open file. The ACCESS INPUT option lets
the program read from the file but not change its contents — often an important safety feature. The ACCESS
OUTPUT option lets the program modify a file, but not read it — this can protect the confidentiality of the file. The

112 True BASIC Language System

default is the ACCESS OUTIN option, which gives the program complete access to the file for both reading and
writing.

For example:
OPEN #7: NAME "FILE22.TRUE", CREATE NEWOLD, ORG TEXT

either will open an existing file called FILE22 . TRU and make sure that it is a text file, or it will create one. Since
an ACCESS option is not specified, both reading and writing will be allowed.

Even if you use ACCESS OUTPUT to limit access to a file to output, the operating system must permit True
BASIC to read that file to examine its type.

The RECSIZE option sets the record length for record, random, or byte files to the numeric value given with it. Records
are components of random-access files and are discussed more fully in the sections on random and record files later in
this chapter. If you use a RECSIZE option when opening a text or stream file, it will be ignored.

Although you must type out the option keywords, you may use string variables and string expressions in place of
the option specifiers. This can be extremely useful when writing subroutines. Also, note that channel numbers
may serve as parameters to subroutines (but not to functions). The channel-number parameter must consist of a
pound sign (#) followed by an integer — not an expression. As usual, the channel number passed as the corre-
sponding argument in the invocation need not be the same as the channel number used as the parameter in the
subroutine. For example:

SUB FileOpen(org$, cr$, acc$, #9) ! Open specified file
PRINT "File name";
INPUT f$
OPEN #9: NAME f$, ORG org$, CREATE cr$, ACCESS acc$
END SUB

This may be invoked using a statement such as:
CALL FileOpen("record", "old", "outin", #1)

Invoking F i L eOpen in this way will get the name of a file from the user and open the existing record file with
that name with full access privileges. The open file will be associated with channel #1 throughout the program unit
that contains the CALL statement.

Note that in the above subroutine, errors could occur if the user names a file that does not exist or is not a record
file. The following version of the subroutine provides better protection by “trapping” any errors. The WHEN struc-
ture and other error-handling techniques are discussed in Chapter 16 “Error Handling.”

SUB FileOpen(org$, cr$, acc$, #9) ! Protected file opener
DO
CLOSE #9 ' In case channel is open
INPUT PROMPT "File name: ": fname$

WHEN ERROR IN
OPEN #9: NAME fname$, CREATE cr$, ORG org$, ACCESS acc$

EXIT SUB ! Success
USE
PRINT "Cannot open that file."
END WHEN
LOOP
END SUB

There are several reasons why an OPEN statement may fail. Therefore, it is generally a good idea to use an error
handler whenever appropriate to give the user more than one chance to specify a file name, as in the above example.

Remember that you must open every file before you may access it. If you try to access a channel number that has
not been properly opened (or that has been closed), an error will result.

Once a channel has been opened, it will remain open as long as it remains in existence or until you specifically close
it, as described in the next section. Channels obey the same scope rules as variables. How long a channel “remains
in existence” depends on where the channel is opened.

Files for Data Input and Output 113

A channel that is opened in the main program (or in a procedure internal to the main program) remains in exis-
tence throughout the remainder of the main program and may only be accessed within the main program. When
the program stops running, all open channels are closed and destroyed.

A channel that is opened in an external procedure remains in existence throughout the remainder of that proce-
dure’s invocation. However, when the procedure returns to its caller, any channels opened by the procedure
(except those passed to it) will be automatically closed and destroyed.

If an external subroutine needs to access a channel opened by its caller, the channel should be passed to the sub-
routine as a parameter (as in the previous example). When a previously opened channel is passed to a subroutine
as a parameter, the subroutine may not contain an OPEN statement for that channel. However, if an unopened
channel is passed to a subroutine as a parameter, the subroutine may open that channel. In this case, the channel
used as the corresponding argument in the CALL statement will be open when the subroutine returns to its caller.

Procedures contained in a MODULE structure follow the same rules as external procedures. However, if a chan-
nel number appears within a SHARE statement in that module’s header, that channel will be brought into exis-
tence when the module is initialized, and it will remain in existence until the program terminates. It will be avail-
able only to procedures contained within the module, and of course it must be explicitly opened before it may be
used. Once opened, though, a shared channel will remain open until the program terminates (or until it is specif-
ically closed, as described in the next section). (See Chapters 10 and 11 for more information on internal and exter-
nal procedures and on modules.)

Closing Files

Although you may use any channel number from 1 to 999 (#0 is reserved for the default logical window), True
BASIC does not allow more than twenty-five channels to be open at any one time (channel #0 is not counted). Gen-
erally, you will not need this many channels, but if your program opens several files (remember that the printer and
logical windows require channels too) you may find that you are running into this limit.

It is therefore a good practice to specifically close open channels when you no longer need them. You do this with
the CLOSE statement. For example:

CLOSE #3
closes channel #3. If channel #3 was not open, the CLOSE statement would simply be ignored. Channels are auto-

matically closed when the program terminates, and channels local to a procedure are closed when that procedure
terminates.

Once a channel has been closed, you may reuse the channel number previously associated with it. Note, however,
that if you attempt to open a channel that is still open, an error will result.

Erasing Files

True BASIC provides two means of erasing a file. The ERASE statement erases a file’s contents, and the
UNSAVE statement destroys the file itself.

The ERASE statement erases the entire contents of the file associated with the specified channel number. For
example:

ERASE #3 ! Erase whole file's contents

Of course, the channel must be open with the ACCESS OUTIN option. The ERASE statement simply erases the
file’s contents; the file continues to exist and the channel to it remains open.

The ERASE statement does not change any of the file’s attributes (as specified by the associated OPEN state-
ment); however, once the file is empty some of these attributes (such as file type and record size) can be changed
intentionally or incidentally. For example, you may use the SET RECSIZE statement to change the record size of
an empty random or record file. And if you use a PRINT statement to send output to an empty file, that file will
become a text file.

114 True BASIC Language System

A variation of the ERASE statement lets you erase the portion of the file following the current position of the file
pointer. (File pointers are described fully in the following section.) For example:

ERASE REST #3 ! Erase rest of file's contents
If you wish to remove a file completely from the storage medium, use the UNSAVE statement. For instance, the
statement:

UNSAVE "FILE22.TRU" ! Delete the file itself
would completely delete the filenamed FILE22 . TRU. Ifthe file does not exist, an error occurs. The UNSAVE state-

ment requires a file name rather than a channel number. In fact, you must close any channels associated with the file
before the UNSAVE statement is executed; if a channel to the file is open, an error occurs.

SET and ASK Statements

There is a lot of information involved in the maintenance of files, and True BASIC provides convenient ways to
access that file-related information. Several SET and ASK statements let you manipulate files and get informa-
tion about them. This section discusses those SET and ASK statements that work with all files. More specialized
SET and ASK statements are described in the sections about the individual file types.

[!] Note: Most of the ASK statements described in this section can also provide information about logical
windows and printers. For details on opening and using logical windows see Chapter 13 “Graphics.”
Details on opening and using printers are provided later in this chapter. You will also find information
on the appropriate SET and ASK statements in those sections.

File Pointers

For each currently open file there is an associated file pointer that indicates where the next information read
from or written to that file is to begin. When you first open a file, True BASIC places the file pointer at the begin-
ning of the file. As your program reads items from the file, or writes information to it, True BASIC automatically
moves the pointer to the end of the last item read or written.

In general, you do not need to move the file pointer yourself. However, there are occasions when you will need to
move it. For instance, you are allowed to write information only to the end of text and stream files. Since the file
pointer is at the beginning of a file when the file is opened, you must move the file pointer to the end of an existing
text or stream file before you can add information to it.

You control the position of the pointer with the SET POINTER statement, as follows:

SET #3: POINTER BEGIN ! Go to beginning of file
SET #3: POINTER END ! Go to end of file
The following forms of the RESET statement are equivalent to these SET POINTER statements:
RESET #3: BEGIN ! Go to beginning of file
RESET #3: END ! Go to end of file

You can reread a file if you reset the file pointer at the beginning, or append information to the file if you move the
file pointer to the end.

For each attribute that can be set with a SET statement, there is a corresponding ASK statement (the reverse is
not always the case). Thus, you may easily find out the current position of a file pointer with the ASK POINTER
statement, as follows:

ASK #3: POINTER ptr$! Where is the pointer?
In this statement, the variable ptr$ will be assigned one of the values "BEGIN", "MIDDLE", or "END"
depending on the current position of the file pointer within the file associated with channel #3.

You can test whether you have reached the end of a file using the logical expressions END or MORE. For example,
this program fragment ensures that the file pointer is at the beginning of a text file and then prints the file’s contents:

Files for Data Input and Output 115

RESET #3: BEGIN
DO
LINE INPUT #3: line$
PRINT line$
LOOP UNTIL END #3 ! Is TRUE if at end of #3

The following program fragment is equivalent except that it prevents the error that would occur if the file is empty:

RESET #3: BEGIN

DO WHILE MORE #3 ' Is TRUE if not at end of #3
LINE INPUT #3: Line$
PRINT Lline$

LOOP

With random-access files such as random, record, and byte files, you can also move the file pointer to individual
records and ask for the current record number; see the descriptions for those files.

Names and Directories
You may use the ASK NAME statement to find out the name of an open file:
ASK #5: NAME filename$! Get name of file #5

The ASK NAME statement will report the full path name of the file associated with that channel number.

[!] Note: The ASK NAME and SET NAME statements without channel numbers are provided for com-
patibility with earlier versions of True BASIC. In earlier versions, ASK NAME without a channel num-

ber reported the name of the current program. This version of True BASIC assigns the null string if
ASK NAME is used without a channel number; SET NAME is ignored.

As noted earlier, you may use a path name in the OPEN statement to access files that are not stored in the cur-
rent directory. If you will be opening several files in the same directory, you may prefer to use a SET DIREC-
TORY statement to change the current directory, thus avoiding the need for path names in the OPEN state-
ments. For example, the statement:

SET DIRECTORY dir$! Change directory

would set the current directory to the directory specified by the value of d i r$. The value of d i r $ must be a legal
directory name, and it may include a disk name. See “The True BASIC Environment” chapter in the introductory
section for information on specifying directories within various operating environments.

The ASK DIRECTORY statement lets you find out the name of the current directory. Thus, if you change direc-
tories in your program and wish to be able to return to the starting directory before the program ends, you could
store the name of your starting directory before changing to a new directory as follows:

ASK DIRECTORY old_dir$! Starting directory

SET DIRECTORY dir$! Change to new directory
Then, later switch back to the original directory with the following statement:

SET DIRECTORY old_dir$! Change to starting directory

When the program terminates, you are returned to the directory you were in when you ran the program. The final
section in this chapter describes ExecLib library routines that accomplish the same thing as the ASK DIREC-
TORY and SET DIRECTORY statements.

File Characteristics

Other ASK statements provide information about the file itself or how the file was opened. The following state-
ments may be used regardless of the file type; see the specific file types for additional statements.

The ASK ORG statement finds out the type of file that is currently associated with an open channel. For instance,
the statement:

116 True BASIC Language System

ASK #3: ORG org$

assigns a value of "TEXT", "STREAM", "RANDOM", "RECORD", or "BYTE" to the variable org$. If the channel
number refers to a printer, the value "TEXT" is assigned to org$; and if the channel number refers to a logical
window, "WINDOW" is assigned to orgs$.

The ASK RECTYPE statement finds out the nature of a file’s records. The statement:
ASK #3: RECTYPE rectype$

assigns avalue of "DISPLAY" or "INTERNAL" to the variable rectypes$. If the channel number refers to a text
file, a printer, or a logical window, the value "DISPLAY" is assigned to rectype$. For all other types of files,
"INTERNAL" is assignedto rectype$.

The ASK ACCESS statement finds out the access available for the file associated with the specified channel num-
ber. For instance, the statement:

ASK #3: ACCESS acc$

assignsto acc$ avalueof "INPUT", "OUTPUT", "OUTIN", "NETIN", "NETOUT", or "NETWORK", as deter-
mined by the ACCESS option used when channel #3 was opened. If channel #3 refers to the printer, a value of
"OUTPUT" is assigned to acc$. If channel #3 refers to a logical window, "OUTIN" is assigned.

The ASK FILESIZE statement lets you find out the size of a file. For example:

ASK #3: FILESIZE fs ! Length in bytes (in records for random & record);
! 0 for printer or logical window

If the file associated with channel #3 is a text, stream, or byte file, then the number of bytes in the file is assigned
to fs. If the file is a record or random file, then the number of records in the file is assigned to f s. If the channel
refers to a printer or a logical window, a size of 0 is returned.

The ExecLib routines Exec_ReadDir and Exec_ClimbDir (described in the last section of this chapter) provide
additional information about files and directories including size, date and time last modified, and access permissions.

Text Files

A text file consists of lines that you can create on the keyboard and display on the screen using the True BASIC
Editor (or any other application that can create and read “text-only” files). You can also create a text file entirely
from within your program. True BASIC puts information into text files in the same way it displays information on
the screen or printer, and it gets information from them just as it gets input from the keyboard. Thus, you use the
same PRINT and INPUT statements — along with an appropriate channel number — with text files.

Text files are easy to understand and use. In fact, the PRINT and INPUT statements work just as they normally
do when used with the screen and the keyboard — all the same rules apply. Because you can create and view text
files with any screen editor, you can see the file structure and understand how it interacts with your programs.
Text files often provide input data to a program or store output for later display or printing.

Text files, however, are not as efficient as the other types of files for large amounts of data. It is often hard to out-
put information (such as strings or arrays) to a text file in a format that programs can easily read. Also, you may
lose some numeric precision when you store numeric information in text files.

[!] Note: Tounderstand the loss of numeric precision within text files (and the major difference between
text files and internal files), let’s take a brief look at what happens when a program takes input from the
keyboard and displays it on the screen. At the keyboard, you type characters that True BASIC interprets
based on a standard character set. If you input a string value, True BASIC stores the actual characters you
type (less leading and trailing spaces) in internal memory; each character occupies one byte of memory.
When you use a PRINT statement to display a string value, you get exactly what is stored in memory.

If you input a numeric value, however, True BASIC converts the characters you type into the number they
represent and stores that value in an internal format. In that internal format, numeric values have a pre-

Files for Data Input and Output 117

cision of at least 14 significant digits, and each value occupies eight bytes of memory. True BASIC per-
forms all calculations using the full precision of the internal numeric format.

When a PRINT statement displays a numeric value, however, you may not see the value to its full preci-
sion. Unless you specify otherwise with a PRINT USING statement, the PRINT statement displays
characters representing the numeric value according to the rules described in Chapter 3 “Output State-
ments.” For example, the program:

LET x = 296445886 ! Population
LET y = 1.37 ' Growth rate
PRINT x * y ' New population
END

displays the value:

4.0613086e+8
even though the internal value is calculated to be 406130863.82.

If you use a PRINT statement to store this value in a text file, the same series of characters that rep-
resent the value on the screen would be used to represent it in the file. A subsequent INPUT state-
ment would retrieve the value with its reduced precision. While this may not be a problem for many
applications, you should be aware of it.

Let’s look now at a simple example that gets information from one text file and prints some of that information to
another file. The INPUT and PRINT statements work just as they normally do except that you specify a channel
number to indicate the file to be used:

OPEN #1: NAME "WAGES", ORG TEXT, ACCESS INPUT

OPEN #2: NAME "NAMES", ORG TEXT, CREATE NEWOLD
RESET #2: END

DO WHILE MORE #1 ! While there is more to read
INPUT #1: name$, age, salary
PRINT #2: name$, "Age:'"; age

LOOP

END

Each time the INPUT statement in this example is executed, it reads a line from the first file, treating it as if it
had been typed at the keyboard. The line must have just the right number of items, of the right type (i.e., using
numbers for numeric variables), separated by commas. If the value to be assigned to the name $ variable contains
a comma, the string must be enclosed in double quotes. For example, the following line in the file would be legal:
"Williams, Pat", 34, 28500
while this one would cause an error:
Williams, Pat, 34, 28500

because True BASIC would interpret Wi L Liams as the value of name$, and attempt to assign the string value
Pat to the numeric variable age.

Likewise, if a line in the file contains too few or too many items or the types do not match, an error occurs, since
there is no way of “re-asking” the file for input.

Lines being input from a file may end with a comma to indicate that there is more input on the next line. Along
with the INPUT statement, you may use the LINE INPUT, MAT INPUT, and MAT LINE INPUT statements
with text files. However, the various forms of the INPUT PROMPT statement are not allowed, since a file cannot
be prompted.

If you attempt to use the INPUT statement with a file opened with the ACCESS OUTPUT option, an error occurs.
You'll also get an error if the file pointer is at the end of the file (i.e., if there is no more information to input).

118 True BASIC Language System

Remember that you can use the SET POINTER or RESET statements to move the pointer to the beginning of the
file, and you can use the MORE or END logical clauses to test for more data in the file (see earlier section).

The PRINT statement in the example above:
PRINT #2: name$, "Age:"; age

also follows all the conventions for a PRINT statement used to display values on the screen, including commas
and semicolons. The file has a margin and a zonewidth, whose default values are 80 and 16, respectively, as they
are for logical windows on the screen. You may change these settings with the SET MARGIN and SET
ZONEWIDTH statements as follows:

SET #3: MARGIN 70
SET #3: ZONEWIDTH 10

Similarly, your program can find out the current margin and zonewidth of a file with the ASK MARGIN and ASK
ZONEWIDTH statements:

ASK #2: MARGIN m
ASK #2: ZONEWIDTH z

Since there is no cursor in a file, the SET CURSOR statement does not make any sense when applied to a file.
Similarly the two-argument version of the TAB function is forbidden with text files. You may, however, use the
TAB function with a single argument:

PRINT #2: name$; Tab(45); "Age:"; age

You may also use the MAT PRINT or PRINT USING statements to print to a text file. Here’s an example of the
PRINT USING statement used with a text file:

LET form$ = "HHHAHHHHHARAHHHBHHAHBHRARAAE> Age: HH
PRINT #2, USING form$: name$, age

If you attempt to use the PRINT statement with a file that has been opened with the ACCESS INPUT option, an
error occurs. You'll also get an error if you attempt to overwrite the existing contents of a text file. To avoid

attempts to overwrite, erase the contents of a file with the ERASE statement or reset the pointer to the end of the
file with a SET POINTER or RESET statement before printing to it.

As shown in the above example, it is easy to copy all or part of one file to another. Here’s another example that
changes all letters in a file to lowercase:

DIM Line$(1000)
OPEN #3: NAME "Program5.Tru"

LET i = 0

DO WHILE MORE #3 ! Read lines into array
LET i =i + 1
LINE INPUT #3: line$(i)

LOOP

ERASE #3 ! Erase the file

FOR j =1 to i ! Rewrite in lowercase
PRINT #3: Lcase$(line$(j))

NEXT j

END

The program reads the file into an array, erases the file, and then writes lowercase versions of the lines back into
the file.

A word of caution about using the MAT PRINT and MAT INPUT statements with text files: while both work with
text files, the MAT PRINT statement does not write information in a format that will work with the MAT INPUT
statement. The MAT INPUT statement expects items of a row to be separated by commas, but the MAT PRINT
statement separates the items of a row by spaces. There are two ways to solve this problem:

Files for Data Input and Output 119

(1) Create the file’s contents by printing individual elements, putting a comma after each item except the last:

FOR i = 1 to Ubound(array) - 1
PRINT #7: array(i); ", ";

NEXT i

PRINT array(Ubound(array))

(2) Use the LINE INPUT statement to input an entire line from the file and then “parse” the line into its com-
ponent items using the ExplodeN subroutine provided in the StrLib library.
LIBRARY "C:\TBSilver\TBLIBS\STRLIB.TRC" ! Use appropriate path name

LINE INPUT #4: Line$
CALL ExplodeN(line$, array()," ")

You should also be cautious when printing strings to text files for later input. Remember that the INPUT state-
ment requires double quotes around strings containing commas or leading or trailing spaces. To overcome this
problem you could print such strings with enclosing quotes or, better yet, print just one string value per line and
then use the LINE INPUT statement to read the entire line. The latter solution is the best if your strings contain
double-quote marks, as you would have to repeat the double quotes within the string for the INPUT statement to
read the string correctly!

Internal Files — Stream, Random, Record, & Byte

The important differences between text files and the other types of data files are the statements you use to get data
to and from the files and the way in which the files store numeric values.

Within text files, both numeric and string values are stored as series of characters. Numeric values are converted
to strings of digits that represent the value (with possible loss of full precision). Any application that can read text
can print or display such files. Because the format of text files is the same as for keyboard input or displays to the
screen, text files use the normal INPUT and PRINT statements with the addition of channel numbers.

The remaining file types are all internal files — numeric and string values are stored in the same internal format
used by the computer’s memory when it runs your programs. String values are stored internally as characters just
as they are displayed, with one byte per character. Numeric values, however, are stored in the standard IEEE
eight-byte format that cannot be displayed. Because of the storage format, internal files require READ and
WRITE statements to input and output data. While internal files cannot usually be displayed directly on the
screen or printer, they do have several advantages:

* The numeric values retrieved from an internal file are read with exactly the same precision as the values
written to the file. With a text file, numeric values may lose precision when the PRINT statement converts
them from the computer’s internal format to a sequence of characters; any greater precision is lost and can-
not be retrieved when that sequence of characters is input from the file.

* Reading and writing operations are faster with internal files, because there is no need to convert numeric
values between internal and display formats.

* True BASIC internal files may be used with programs on any computer type. The internal format is the
same no matter where you run your programs. Also, the ability to read a file as a byte file lets you read any
file created by any application on any computer. Text files, however, must often be translated when they are
moved between operating systems because of the variations in how operating systems view end-of-line
characters within text files.

* Three types of internal files — random, record, and byte — permit the more efficient random access of
records within the files. With random access you can jump directly to any part of the file, rather than having
to work through the file from start to finish. Text and stream files permit only sequential access — the items
in the file must be retrieved in exactly the same order in which they were stored.

120 True BASIC Language System

Internal files come in four types: stream, random, record, and byte files, all of which are explained below. Ran-
dom and record files are organized by records. A record is a storage location of fixed-length within a file. All the
records within a file are numbered so that you can move easily to any record in the file with a SET RECORD state-
ment. The exact structures of random and record files are explained below.

As noted above, you use WRITE and READ statements with internal files. The exact usage of these statements
varies depending on the type of file, as described below.

The OPEN, CLOSE, ERASE, and UNSAVE statements work for internal files just as they do for text files.
Remember, however, that the default organization for a newly created file is text, so you must specify the type of
file when you are creating a new internal file. The SET and ASK statements have several additional forms that
are described with the different file types below.

Stream Files

A stream file is simply a sequence of values. These values must be read back in the same order in which they were
written to the file. For example:

OPEN #1: NAME "VALUES.STR", CREATE NEW, ORG STREAM
WRITE #1: Pi, Exp(1), "This is a string.", 3.14

SET #1: POINTER BEGIN

READ #1: a, b, c$

READ #1: d

! At this point, a 1is exactly equal to PI

! b is exactly equal to EXP(1)

! c$ is the string "This is a string."
! d is exactly equal to 3.14

Notice that the WRITE and READ statements need not have the same number of variables — there is no concept
of a line of data as in text files or a record as in random and record files. The one requirement is that the type
(numeric or string) of a variable in the READ statement must match the type of the next value in the file. If the
type is wrong, an error occurs.

Although it is up to the programmer to keep track of the type and purpose of the values in a stream file, you can
“peek” at the next value’s type with an ASK DATUM statement. For example:

ASK #1: DATUM type$

SELECT CASE type$

CASE "NUMERIC"

READ #1: n

CASE "STRING"
READ #1: s$

CASE else
' type$ = "NONE" if at the end of the file
' type$ = "UNKNOWN" if can't tell

END SELECT

Random Files

Random files are composed of records. All the records within a single file have the same maximum length which is
called the record size of that file.

Each record in a random file may contain any number of string and/or numeric values, provided that the cumula-
tive length of the items (and their associated “bookkeeping” as explained below) does not exceed the file’s record
size. In fact, different records within the same file may contain different numbers and types of items.

Any record whose actual length is less than the record size of the file will be automatically “padded” to the proper
record size before being written to the file. This padding will be ignored when the values are subsequently
retrieved from the file. Thus, you need not worry about padding records yourself.

Files for Data Input and Output 121

Although True BASIC will automatically move the file pointer to the next record each time a record is read, allow-
ing you to easily process a random file from beginning to end, you can also move the file pointer to any existing
record within the file arbitrarily. The record to which the file pointer currently points may be retrieved and/or
overwritten as necessary.

Before you can write records to a new or empty random file, you must first set the file’s record size. You may do this
using a RECSIZE option in the OPEN statement, as in:

OPEN #1: NAME "“NEWDATA.RDM", ORG RANDOM, RECSIZE 50, CREATE NEW
or by using a SET RECSIZE statement after the file has been opened, as in:

OPEN #1: NAME “NEWDATA.RDM", ORG RANDOM, CREATE NEW
SET #1: RECSIZE 50

Note, however, that you may set or change the record size only for a new or empty file — if the file contains any
records you must erase it (with the ERASE statement) before you can change the record size.

If a file already exists and contains one or more records, it already has a record size which you cannot change with-
out first erasing the file. You may use the ASK RECSIZE statement to find out the record size of a file as follows:

OPEN #1: NAME "DATA", ORG RANDOM, CREATE OLD
ASK #1: RECSIZE rsize

Here, the record size of the file named DATA would be assigned to rsize.

If you attempt to write more bytes to a random file record than its defined record size, an error results. The record
size must be large enough to hold both the data that will be stored in each record and some additional “bookkeep-
ing” information. This bookkeeping information keeps track of the kinds of information in each record (remember
that random files allow an arbitrary number of values of arbitrary types within each record) and indicates the end
of the record. Although you need not worry about this information when using the file, it does require storage
space, and you must account for it when you set the record size for a new random file (or if you need to figure out
how much you can write to new records in an existing random file).

A string item stored in a random file record will occupy one byte for each character in the string plus four bytes of
bookkeeping information. On the other hand, a numeric value stored in a random file record will always occupy
exactly nine bytes — eight bytes for the internal representation of the number and one byte for bookkeeping. In
addition, you must always allow one byte in the record size for the end-of-record marker.

As an example, consider a situation in which you plan on storing two strings and three numbers in each record.
First, you need to know the maximum length of the strings that you will store. Let’s assume that the first string
will never be longer than 30 characters and the second string will never exceed 14 characters. Thus, you need to
reserve 30 + 4 bytes for the first string and its bookkeeping information and 14 + 4 bytes for the second string and
its bookkeeping information. Each of the three numeric values will occupy 8 + 1 bytes with its bookkeeping infor-
mation. And don’t forget to reserve 1 byte for the end-of-record marker. By adding all of these requirements
together, you know the proper record size for this random fileis 34 + 18 +9+9 + 9+ 1=90.

If the records in the random file will contain varying numbers and types of items, calculate the length based on the
longest record you will need. If you attempt to write more bytes to a random file record than its defined record size,
an error results.

[!] Note: True BASIC does not know how you arrived at a random file’s record size; it simply checks to be
sure total size of the record does not exceed the established record size. You might exceed a record size
because you attempted to write more items than you had planned on, or because a string in the record
is longer than you planned. True BASIC won’t know the difference; it will simply report that the record
size was exceeded. You may want to use the DECLARE STRING statement to define a maximum
length for string variables used in random file records. This lets True BASIC provide more specific
diagnostics should a problem arise.

122 True BASIC Language System

Each READ and WRITE statement reads or writes one complete record in a random file. Because individual
records may contain different numbers and types of values, the pattern of the READ statement must mirror the
pattern of the WRITE statement that produced the record; otherwise, an error will occur. In the following exam-
ple, each record contains three values: a string value, a numeric value, and another string value:

' A new RANDOM file

OPEN #1: NAME "STUFF", CREATE NEW, ORG RANDOM, RECSIZE 100

WRITE #1: name$, age, occupation$

Later on, perhaps in a different program, you can retrieve that information, as follows:

' File already exists
OPEN #1: NAME "STUFF", ORG RANDOM

' True BASIC figures out the RECSIZE by looking at the file.
! CREATE option not needed, or use CREATE old.

i .1.'he READ statement must mirror the earlier WRITE

READ #1: person$, a, occ$
The READ statement typically reads all the values in the record, and the variable types must match the value
types in the record. However, if the record contains many items and you want only the first few, you may use a
SKIP REST clause in the READ statement as follows:

READ #1: person$, a, SKIP REST
The SKIP REST clause instructs True BASIC to ignore the remaining values in the record.

Remember that the records within a random file need not have the same shape — they may have different numbers
and types of values of varying lengths (as long as they don’t exceed the record size). For example, a random file that
contains a student’s grade record might contain different information in the first few records:

OPEN #5: NAME "SMYTHE'", ORG RANDOM, ACCESS INPUT

READ #5: last$, first$, middle$, class ' First record
READ #5: street_address$! Second record
READ #5: city$, state$, zip$ ' Third record
PRINT "Grade Report for "; first$ & last$; ". Class of"; class
DO WHILE MORE #5
READ #5: course$, grade, credits ! Remaining records
PRINT course$; tab(20); grade, credits; "credits"
LOOP

Random files are so called because they permit random access. That is, you can access any particular record
regardless of the order in which records were created. The records are automatically numbered starting at 1. The
file pointer normally moves to the next record after a record has been read or written — remember that each READ
or WRITE statement reads or writes an entire record in a random file. But you may also jump around to arbitrary
records within a file using the SET POINTER and SET RECORD statements:

SET #3: POINTER SAME ! Go back to the record just read or written
SET #3: POINTER NEXT ! Skip the current record
SET #3: RECORD r ' Go to record number r

You may also use the keyword RESET as follows:
RESET #3: SAME ! Go back to the record just read or written
RESET #3: NEXT ! Skip the current record
RESET #3: RECORD r ! Go to record number r

Clearly, the last option is the most powerful one. You may find the current file pointer position, or the number of
the current record, with the ASK RECORD statement as follows:

ASK #3: RECORD r

Files for Data Input and Output 123

As an example, consider a simple computer-based dictionary. Suppose that one random file contains a list of words
and another random file contains the corresponding definitions in the same order. If you open these two files as #1
and #2, respectively, you could look up words as follows:

DO
INPUT PROMPT "Word: ": w$
CALL Find (#1, w$, n) ! Word in record n
IF n =0 then
PRINT "Word not found"
ELSE
SET #2: RECORD n ! Find definition
READ #2: def$
PRINT def$
END IF
LOOP

The program-defined subroutine F i nd searches file #1 for the word and returns its record number (or 0 if it finds
no word).
SUB Find (#9, word$, rec)

RESET #9: 1 I Start at beginning of file
ASK #9: FILESIZE last_rec ! How many records?
FOR r = 1 to last_rec
READ #9: next$! Examine each record
IF next$ = word$ then EXIT FOR
NEXT r
IF r > last_rec then LET rec = 0 else LET rec =r
END SUM

If the word is found, the program jumps to the same record number in file #2 and reads the definition. This is not
possible with text files.

Changing an existing record in a random file is just as easy. Simply jump to the record and use a WRITE state-
ment. You can add to the end of the file by first using:

SET #3: POINTER END
You may also use the MAT READ and MAT WRITE statements to read or write an entire array from or to a ran-
dom file. With random files, the MAT WRITE statement puts all the array elements in the same record, provided

the record is long enough. You may then recover the elements with a MAT READ statement — or with a READ
statement that includes a variable for each element.

Record Files

Record files are like random files, except that you can place only one value — numeric or string — in a record.
Although you will often find that a random file is better suited for a particular task, record files may be used if you
are storing a single item per record.

When used with arecord file, a WRITE statement stores each value in a separate record. And a MAT WRITE state-
ment will use as many records as there are elements in the array. For example, the WRITE statement in:

' A new RECORD file
OPEN #2: NAME "STUFF1", CREATE NEW, ORG RECORD, RECSIZE 50

WRITE #2: name$, age, occupation$
will use three records to store the three quantities. Later, you may retrieve these values with:
READ #2: person$, a, occ$

or with:
READ #2: person$
READ #2: a

READ #2: occ$

124 True BASIC Language System

The READ statement need not mirror the WRITE statement, but the variable type — numeric or string — must
be correct.

In contrast to a random file, calculating the proper record size for a record file is easy. Each record in a record file
contains four bytes of bookkeeping information. However, since the size of this information is the same for all
records, you do not need to account for it in the record size (as you would for a random file). Thus, the record size
of a record file need only reflect the length of a number (which is 8 bytes) or the length of the longest string value
you expect to store in a single record. Remember that you may freely mix numeric and string values in a single
record file, so the record size must reflect the length of the longest value you plan to store in a record.

[!] Note: The bytes actually included in the record size are different for random and record files. For ran-
dom files, the record size must include the extra, bookkeeping bytes along with the data bytes. For
record files, however, the record size need include only the length of the data item to be stored. The
bookkeeping bytes are there, but you don’t need to account for them.

In all other respects, record files are like random files. They permit random access, and you may use the same SET
and ASK statements to move around and find out information about them.

Byte Files

A byte file is not a special kind of file but rather a way of looking at a file. When a file is viewed as a byte file, it is
considered simply as a sequence of bytes with no special format. That is, True BASIC does not make any assump-
tions about a byte file, and it will not perform any of the “housekeeping” tasks that it performs for other files (other
than advancing the file pointer).

You may view any True BASIC file as a byte file by specifying the ORG BYTE option in the OPEN statement used
to open that file. Indeed, you may view any file as a byte file, including compiled True BASIC programs, files cre-
ated by other applications, or files created on another type of computer or under a different operating system.

As with other internal files, you use READ and WRITE statements to access byte files. The number of bytes read
by a single READ statement depends on the type of variable being read.

A READ statement used to access a byte file may have only one variable, which is normally a string variable, since
the contents of the file may be any sequence of bytes. Although byte files do not recognize records, True BASIC
uses the current record size to decide how many bytes to read to a string variable.

You may set the record size using a RECSIZE clause in the OPEN statement, as you would for random or record
files, or you may use a SET RECSIZE statement. Similarly, you may use an ASK RECSIZE statement to find the
current record size of a byte file, as you would for random or record files. Because byte files are reading an arbi-
trary number of bytes, not actual records, you may use the SET RECSIZE statement to change the record size of
a byte file as many times as necessary.

Alternatively, you may specify the number of bytes to be read to a specific string variable by including a BYTES
clause in the READ statement. For example:

READ #7, BYTES 32: y$
would read the next 32 bytes in the file associated with channel #7 into the string variable y $.

This method of overruling the file’s record size within an individual READ statement is commonly used with byte
files, since you may need to read strings of different lengths from a single file. Often, you might want to read an
entire file to a single string, as follows:

ASK #7: FILESIZE fs
READ #7, BYTES fs: y$

If you use a READ statement with a numeric variable, the next eight bytes in the file will be read as a numeric
value stored in the IEEE eight-byte format. When a numeric value is read, the file’s record size is ignored. Like-
wise, the BYTES clause is not allowed in a READ statement that specifies a numeric variable.

Files for Data Input and Output 125

If the file pointer is near the end of the file and the number of bytes remaining is less than the current record size,
a READ statement simply reads all the remaining bytes. If the pointer is at the end of the file, however, a READ
statement causes an error.

The WRITE statement may also be used with string or numeric values. With a string value, it writes as many bytes as
there are characters in the string. Numeric values are written to byte files in the IEEE eight-byte format.

[!] Note: The IEEE eight-byte representation used to store numeric values in a byte, random, or record
file is identical to the IEEE eight-byte representation produced by the NUM$ built-in function (see
Chapter 18). This means that numbers may be read from a byte file as eight-byte string values and con-
verted to numeric values using the NUM function. This may be a useful alternative to reading those
values directly into numeric variables.

Within a byte file, each byte is numbered as if it were a separate record (regardless of the current “record size”)
beginning with 1 at the first byte. Thus, the SET and ASK statements that require or return a record number
actually refer to a byte number. For example, the statement:

SET #3: RECORD 120

when applied to a byte file, moves the file pointer to byte number 120. A program may read any consecutive
sequence of bytes, and it may overwrite any such portion of the file. You may also use the WRITE statement to add
to the end of the file, provided that the file pointer is at the end of the file.

The following examples illustrate some instances when byte files are helpful. The first is a routine that will copy
any file, no matter what its format or content:

SUB FileCopy(from$, to$) ! Copy any file
OPEN #3: NAME from$, ORG BYTE ! Open two files
OPEN #4: NAME to$, CREATE NEWOLD, ORG BYTE
ERASE #4
SET #3: RECSIZE 1024 ' Copy in 1K pieces
DO WHILE MORE #3

READ #3: x$
WRITE #4: x$
LOOP
END SUB

This procedure uses 1024 bytes (1K) as a convenient unit to read and write at one time. (A record size that is a
power of two may allow your program to run faster.) If the file length is not a multiple of this, the last READ will
result in a shorter string x $, but it will cause no error. The new file will have precisely the same content as the old
one.

You may also use byte files to search a file for non-printing characters. Since True BASIC reads all bytes, includ-
ing those such as a line feed, each byte can be identified by its character code. (See the ORD and CHRS$ functions
in Chapter 8 “Built-in Functions.”) You could therefore extract the text from any type of file by examining each
byte and keeping only the printing characters, as follows:

SUB Text_extract (from$, to$)

OPEN #3: NAME from$, ORG BYTE ! Open two files
OPEN #4: NAME to$, CREATE NEWOLD, ORG TEXT

ERASE #4

SET #3: RECSIZE 1 ! One byte at a time

DO WHILE MORE #3
READ #3: x$
IF 32<= 0rd(x$) and Ord (x$) <=127 then ! Standard printing characters
PRINT #4: x$;
END IF

126 True BASIC Language System

LOOP
END SUB

Note that this example is presented in the simplest form possible. There is plenty of room for improvement. For
instance, you might read larger sequences of bytes and build up an output string in memory, sending it to the file
only when it reaches a certain length. Each file access takes time, and the fewer times your program accesses a file,
the more quickly it will run.

As an illustration of how byte files can store any type of information, consider how you might store a screen image,
such as a complex diagram. The BOX KEEP statement stores the image displayed within a specified area on the
screen into a string variable, which you can later display with the BOX SHOW statement (as described in Chap-
ter 13 “Graphics”). If you need to save these strings for later display, you can store them in byte files, as in the fol-
lowing program fragment:

SET WINDOW 0,1,0,1

BOX KEEP 0,1,0,1 in keep$

OPEN #5: NAME "Image", CREATE NEW, ORG BYTE
WRITE #5: keep$

Another program fragment may then retrieve and display the image as follows:

OPEN #5: NAME "Image", ORG BYTE

ASK #5: FILESIZE fs ' Number of bytes in file?
READ #5, BYTES fs: keep$! Read entire file to string
SET WINDOW 0,1,0,1

BOX SHOW keep$ at 0,0

Byte files in combination with the built-in PACKB subroutine and the built-in UNPACKB function provide an
efficient means of packing information to conserve storage space. As you have seen, numeric values stored in
internal files always occupy eight bytes — whether the value is 0 or 3.7836126523e287. Often, however, your pro-
grams need to store only integers within a specific range. Eight bytes is generally much more storage than is nec-
essary for integers, so storing many integers into an internal file can use much more disk space than would other-
wise be required.

One way to eliminate this waste is to “pack” the integer values into string values, using the PACKB subroutine,
before storing them to the file. The PACKB subroutine allows you to represent an integer value as a specific series of
bits within a string variable. For instance, the following program fragment writes a list of integers into a byte file. It
assumes that each integer fits into 16 bits (integers from 0 to 65,535) and there are n of them in the array list:

LET x$ = ""
LET j = 1

FOR i =1 to n
CALL Packb(x$,j,16,Llist(i))
LET j = j+16

NEXT i

WRITE #1: x$

Each integer is packed into x $ using the PACKB subroutine. Once all the numbers have been packed into x$, x$
is written to the byte file.

Rather than maintaining the variable j as the starting bit position within the string x $, you may find it simpler
to use the following trick:

CALL Packb(x$,Maxnum,16,Llist(i))

If the starting bit position provided to the PACKB subroutine is beyond the end of the string value, the resulting
series of bits will begin next to the last bit in the current string value. In other words, by specifying a ridiculously
large value as the starting bit position, you pack the integer valuein L i st (i) into the 16 bits immediately follow-
ing the end of the current value of x$. This eliminates the need for the variable j to keep track of the bit position.

Files for Data Input and Output 127

You could recover the resulting list from the byte file using the UNPACKB function as follows:
ASK #1: FILESIZE fs
READ #1, BYTES fs: x$
LET § = 1
FOR i =1 to Len(x$)/2
LET Llist(i) = Unpackb(x$,j,16)
LET j = j+16
NEXT i
The first two lines are the standard way of reading an entire byte file into the string. The first statement discov-
ers how many bytes are in the file, and the second reads them all with a single READ statement.

You would save storage and gain speed by packing each number into two bytes (16 bits). Such packing is particu-
larly important for storing large amounts of information. For example, if you have one million “yes/no” replies,
they can be packed into one million bits, or 125,000 bytes. A byte file is the only reasonable way of storing such
information.

Sending Textual Output to a Printer

You may use a printer as you would a text file opened with the ACCESS OUTPUT option. That is, you may send
output to a printer by opening a channel to it and using a PRINT statement with that channel number, but you
may not use any form of INPUT statement with that channel for obvious reasons.

You open a channel to the printer with a special form of the OPEN statement, without any options, as follows:

OPEN #7: PRINTER

After the above statement has been executed, channel #7 will be associated with the printer. Of course, the printer
must be turned on, placed on-line, and properly connected to the computer so that True BASIC is able to use it. If
a printer is not available, True BASIC will generally generate an error.

If the current operating environment has access to more than one printer, True BASIC opens the channel to the
printer that the operating environment identifies as the default choice. Refer to the documentation for your oper-
ating environment for more information.

Once you have associated a printer with a channel number, you may send textual output to it with the PRINT
statement as follows:

OPEN #1: PRINTER

FOR i =1 to 100

PRINT #1: i ' Prints to temporary spool file

NEXT i

CLOSE #1 I Spool file sent to printer

END

The OPEN statement associates the specified channel with a special file called a spool file. The spool file is a
temporary file that True BASIC creates automatically on the disk. When you send output to the printer channel,
that output is stored in the spool file, which continues to accumulate output until the printer channel is closed.
Once the printer channel has been closed, True BASIC sends the contents of the complete spool file to the printer
and deletes the spool file from the disk. (The channel is closed by a CLOSE statement or when the program ends.)

A temporary spool file is used because of the prevalence of page-oriented and networked printers. Page-oriented
printers, such as most laser and ink-jet printers, print their output one page at a time, rather than one line at a
time, like most dot-matrix printers. Page-oriented printers often do not behave gracefully when they are sent sin-
gle lines of text at odd intervals. Networked printers often handle the demands of several users at once, and as
such they do not cooperate when one program attempts to claim sole ownership for a significant time. By storing
your output temporarily in a spool file, True BASIC can send the entire output as a single document, avoiding
problems with page-oriented and networked printers.

128 True BASIC Language System

As with a text file, True BASIC opens a printer with a default margin of 80 characters and a default zonewidth of 16
characters. As with a text file, you may access these settings with the ASK MARGIN, SET MARGIN, ASK
ZONEWIDTH, and SET ZONEWIDTH statements. Beware, however, that most printers have a physical limitation
on the width of the lines that they can print, and setting the margin larger than this value may not have any effect.

Basic Directory Operations

True BASIC statements such as OPEN, READ, PRINT, SET, ASK, and so on open and access files. For dealing
with directories, True BASIC provides the built-in subroutine SYSTEM. This subroutine lets a program find out
the current directory, change it, create and remove directories, rename files, and get information on the contents
of a directory and possibly all its subdirectories.

The SYSTEM subroutine, however, is complex and not easy to use. Thus True BASIC also includes the ExecLib
library of subroutines that provide easier methods of performing directory operations. This section describes the
use of the ExecLib library of subroutines; for information on the built-in SYSTEM subroutine, see Chapter 18.
To use these convenience routines, you must include a library statement in your program, such as:

LIBRARY "C:\TBSilver\TBLIBS\ExecLib.Trc" 'Use appropriate path name

The ExecLib library contains six subroutines that let your programs find out the current directory, change to a new
directory, create a new directory, and find out about the contents of a directory including all its subdirectories if
desired. A seventh subroutine lets you to rename a file. (Use the True BASIC statement UNSAVE to delete a file.)

Identifying and Changing Directories
The Exec_AskDir and Exec_ChDir subroutines provide the same functionality as the ASK DIRECTORY and
SET DIRECTORY statements. For example:

CALL Exec_AskDir (dir$)
returns the path name of the current directory in the string variable dir$.

Similarly, the Exec_ChDir subroutine:

CALL Exec_ChDir (newdir$)
will change the current directory to the one specified by the contents of newd i r$. (This should be equivalent to
using the CD command on most systems.) If the argument does not specify a valid directory, an error occurs.

As with the SET DIRECTORY statement, when the program terminates the current directory returns to what it
had been before the run began.

Creating and Deleting Directories
The Exec_MKkDir subroutine lets your programs create new directories. For example:

CALL Exec_MkDir (newdir$)

creates a new directory in a location determined by the pathname conventions. If the new directory name contains
a path name that starts at root level, the new directory is placed with respect to that root directory. If the new
directory path name does not start at root level, the new directory will be placed in the current directory. If the
argument does not specify a valid directory name, an error occurs.

The Exec_RmDir subroutine removes the named directory:
CALL Exec_RmDir (dir$)

Some systems may require that the directory be empty before allowing it to be removed. You could use the
Exec_ReadDir routine described below along with the UNSAVE statement to get the names for all the files in a
given directory and delete them.

If the argument does not specify a valid directory, an error occurs.

Files for Data Input and Output 129

Finding Out About Files in a Directory

The Exec_ReadDir and Exec_ClimbDir subroutines provide list of names and statistics about the files saved
within a directory. Exec_ReadDir provides information on the files directly saved in the current directory, while
Exec_ClimbDir provides information on the files in the designated directory along with those in subdirectories
within that directory.

Calls to the routines take the following formats:

CALL Exec_ReadDir (template$, name$(), size(), dlm$(), tlm$(), type$(), vname$)

CALL Exec_ClimbDir (dir$, template$, name$(), size(), dlm$(), tim$(), type$())
Forthe temp late$ argument, you may pass a string to select a subset of files (such as "* . TRU"). Specify an
empty string if you do not wish to limit the search. For Exec_ClimbDir, you must specify the topmost directory
to search in the d i r$ argument; Exec_ReadDir searches the current directory.

Most of the information is returned in a series of one-dimensional arrays as follows:

name$ () the names of the files (and possibly directories) in the current or specified directory (for
Exec_ReadDir the names are simple names of files in the current directory; for
Exec_ClimbDir the names are returned as full path names)

size() the sizes of the files in bytes

dlm$ () the date last modified, in the True BASIC DATES function format "YYYYMMDD" where
"YYYY" is the four-digit year number, "MM" is the two-digit month number, and *DD"
is the two-digit day number

ttm$() the time last modified, in the True BASIC TIME$ function format "HH:MM:SS" where
“"HH" is the two-digit 24-hour number, “MM" is the two-digit minute number, and " SS"
is the two-digit second number

type$() the type or access permissions given as a four-character string of the form:
“drwx"
where the first characteris " d" if the entity is a directory and " =" if it is a file; the second
characteris " r'" if reading the file or directory is permitted and " ~" otherwise; the third
characteris "w" if writing or appending to the file or directory is permitted and “~" oth-
erwise; and the fourth character is "x" if the file is directly executable and "-" if not

(directories are not executable)

Renaming Files
You can change the name of existing files with the Exec_Rename routine:
CALL Exec_Rename (oldname$, newname$)

The above statement will rename the file specified in o Ldname $, giving it the name specifiedin newname$. If
either oLdname$ doesn’t exist or newname$ is not valid, an error occurs.

An Example

The following example shows how you could use some of the ExecLib subroutines to selectively delete or rename
files in a given directory:

LIBRARY "C:\TBSilver\TBLIBS\ExecLib.TRC" ! Use appropriate path name

DIM name$(1), size(1), dlm$(1), tlm$(1), type$(1)

DIM dirnames$(1)

DO
MAT REDIM dirnames$ (100)
INPUT PROMPT "Give full path name for directory to be examined": dir$

130 True BASIC Language System

CALL Exec_ChDir (dir$) ! Change to directory to be removed
CALL Exec_ReadDir ("", name$(), size(), dlm$(), tlm$(), type$(), vname$)

FOR i = 1 to Ubound(name$)
IF type$(i)L1:11 = "=" then ! A file
PRINT name$(i), size(i), dlm$(i), tlm$(i)
INPUT PROMPT "Rename (r), delete (d), or continue(c)?": action$
LET action$ = lcase$(action$[1:11)
SELECT CASE action$
CASE "r" ! Rename it
INPUT PROMPT "New name? ": newname$
CALL Exec_Rename (name$(i), newname$)

CASE "d"
UNSAVE name$(i) ! Remove it
CASE ELSE
END SELECT
ELSE ' A directory
LET num_dirs = num_dirs + 1
LET dirnames$(num_dirs) = name$(i) ! Store the name
END IF
NEXT i
IF num_dirs > 0 then ! Subdirectories were found
MAT REDIM dirnames$(num_dirs)
LET num_dirs =0 ! Reset directory counter

PRINT "The following subdirectories were found within the directory:"
MAT PRINT dirnames$
END IF

INPUT PROMPT "Examine other directories (y or n)?": more$
IF Lcase$(more$C1:11) = "y" then let flag = 1 ! Repeat loop

LOOP WHILE flag =1

END

131

CHAPTER

13

Graphics

One of the many advantages to programming in True BASIC is the power and simplicity of its graphics capabili-
ties. Using True BASIC’s various tools, you can easily create complex graphical images to enhance your programs.
And unlike those produced by many other programming languages, the graphics you create with True BASIC pro-
grams will look the same regardless of the operating environment you use.

True BASIC’s PLOT statements draw points, lines, curves, and filled regions. You can use any combination of col-
ors your computer provides, and you may freely mix printing and graphics. You define the coordinate system for
the graphic statements, and you can create several regions or “logical windows” within the physical output area
for graphical or text elements. The user can supply coordinate input to your program as it is running. BOX state-
ments can speed up many graphics operations and animate your drawings. Pictures are subroutines that let you
define graphical components that you may combine and transform to create complex drawing.

This chapter introduces all the above elements of True BASIC’s graphics statements. It introduces physical win-
dows and logical windows, and describes the coordinate systems available with True BASIC. See Chapter 14
“Interface Elements” for details on creating and manipulating physical windows and on the True Controls library
of subroutines for creating graphic and other objects such as menus, scroll bars, radio buttons, and check boxes.

Windows and Coordinate Systems

True BASIC uses two kinds of windows — physical and logical windows — and three coordinate systems — pixel
coordinates, screen coordinates, and user coordinates.

For most of your work with True BASIC graphical statements, you will use user coordinates. Graphical state-
ments place elements in the current display area based on user coordinates. You define the limits of these coordi-
nates with the SET WINDOW statement described below in the section on “User Coordinates.” For quick, simple
graphical output, all you need to do is define the limits of the user coordinates and then use the appropriate graph-
ics statements to draw images within those coordinates. In this simple case, True BASIC uses the full content area
of the output window to display output in the user-coordinate range you define (or, more technically, True BASIC
fits your user-coordinate system into the default logical window that occupies the entire default physical window).
If you are new to graphic programming, you can begin by reading the section on user coordinates below and then
skipping ahead to “Plotting Points and Lines,” returning later to the explanations below.

You can further control the graphical display area, however, by defining specific window areas to display different
ranges of user-coordinates. You do this by creating one or more logical windows within the default physical
window — the standard output window — or by creating additional physical windows for output, which could
in turn have multiple logical windows. The next two sections define physical and logical windows and show how to
use screen coordinates to create logical windows within a physical window.

You create additional physical windows — and may also position user-interface objects within physical windows
— with pixel coordinates. Pixel coordinates are introduced below. Chapter 14 “Interface Elements” describes
how to create and manipulate physical windows.

Physical Windows vs. Logical Windows

A physical window in True BASIC is the type of window your operating system uses. These windows occupy a
distinct area of the screen and often have features such as title bars, borders, and scroll bars that easily identify
them as windows.

132 True BASIC Language System

When you run a program that produces screen output, True BASIC automatically creates a physical window to dis-
play that output. This window is called the default physical window, and it is easily visible on the screen.

What you can’t easily see, however, is that True BASIC also creates another window within the default physical
window. This second window has no visually identifying features, such as a title or border. This type of window is
alogical window. The default logical window fills the entire content area of the default physical window; your
user-coordinate system fills this area if you do not define a specific logical window. (The content area of a physi-
cal window is the region that may contain output; it does not include the title bar and scroll bars.) While your com-
puter’s operating system does most of the management of physical windows, True BASIC has exclusive control of
logical windows.

True BASIC uses logical windows to partition a physical window. Logical windows serve two important functions:
(1) they provide a framework for defining user-coordinate systems, and (2) they define a “clipping region” for
graphical output. As described below, you can create several logical windows within a physical window and direct
different output elements to different logical windows.

Chapter 14 “Interface Elements” describes how you can use the True Controls library of routines to create and
maintain numerous physical windows. In this chapter, however, we assume that you are working with only the
default physical window, although you may have several logical windows within that physical window.

[!] Note: Each logical window must exist within a physical window. Although it is possible to use the
built-in Object routine (see Chapter 19 “Object Subroutine”) to create a physical window that does not
contain a logical window, it is not possible to define a logical window without a physical window. This
chapter defines all logical windows within the default physical window.

Creating Logical Windows with Screen Coordinates

As noted above, if you do not specifically create a logical window, your output will use the default logical window,
which fills the content area of the default physical window. Although you can accomplish a lot using only the
default logical window, you may sometimes want to define additional logical windows.

You may define any rectangular region of a physical window’s content area as a logical window. The OPEN statement
with the SCREEN keyword creates a logical window within the current physical window, as follows:

OPEN #1: SCREEN Lleft, right, bottom, top

The OPEN statement associates the defined area of the physical window with a specified channel number. Chan-
nel numbers always consist of a pound sign (#) followed by a number from 1 to 999 (or a numeric expression that
evaluates to such a value). Channel #0 is reserved for the default logical window, which is always open. After you've
opened a logical window, you must always refer to it by its associated channel number.

The four numeric values following the keyword SCREEN define an area of the physical window. They use screen
coordinates to represent the positions of the left, right, bottom, and top edges of the logical window within the
physical window. Screen coordinates are used exclusively for positioning logical windows. In this coordinate sys-
tem the point (0, 0) is always in the lower, left corner of the physical window’s content region. The upper, right cor-
ner is always the point (1,1). Thus, the x-axis (horizontal axis) of the physical window ranges from 0 (at the left
end) to 1 (at the right end), and the y-axis (vertical axis) ranges from 0 (at the bottom) to 1 (at the top).

You may define any region of the physical window as a logical window by giving the locations of its edges as val-
ues between 0 and 1, inclusive, in an OPEN statement. For instance, the example:

OPEN #7: SCREEN .5, 1, 0, .3

opens a logical window that occupies the lower right corner of the content area of the physical window and associ-
ates this logical window with channel #7.

Graphics 133

True BASIC Screen Coordinates

1
3
WINDOW #7
0
0 5 1
Screen Coordinates

The CLOSE statement closes channels associated with logical windows (or files or printers) For instance, the
statement:

CLOSE #7
would close the logical window associated with channel #7.

You may not use a channel number that is already open to open a logical window, but you may reuse channel num-
bers after they have been closed. Also, True BASIC does not allow more than 25 open channels at any one time (not
counting #0 which is always the default logical window). Thus, when your program no longer needs a logical win-
dow, it should close it to make that channel available for reuse. (Note that files and printers also use channel num-
bers, see Chapter 12 “Files for Data Input and Output.” A channel number may be associated with only one open
item; that channel must be closed before it can be reused for another item.)

Following an OPEN statement, the logical window just created will be the current logical window where True
BASIC will send subsequent output (either textual or graphical). Only one logical window can be the current log-
ical window at any one time. To change the current logical window, use the WINDOW statement. For instance, to
switch to the logical window associated with channel #7, use:

WINDOW #7

Or, if you have opened four logical windows using channels #1 through #4, the following code:

FOR n =1 to &4 ' Window number
WINDOW #n ! Switch window
PRINT "Window"; n

NEXT n

will label each of the logical windows.
True BASIC remembers each logical window’s currently selected options (as described below); when the program
switches to a logical window, all options defined for that window are available.

The default logical window is always associated with channel #0 and cannot be closed. Therefore, you can always
return to this window with the statement:

WINDOW #0

If you need to find out the screen coordinates that define the location of the current logical window, you can use the
ASK SCREEN statement:

ASK SCREEN left, right, bottom, top
This assigns the screen coordinates of the current logical window to Left, right, bottom, and top.

134 True BASIC Language System

User Coordinates

Each logical window has a user-coordinate system used by True BASIC’s various plotting statements to position
output within the logical window. This coordinate system is defined by a range of values along the horizontal edge
or x-axis of the window combined with the range of values along the vertical edge or y-axis of the window. Most
graphical operations described in this chapter use user coordinates. You can define any point within the logical
window simply by specifying its position in relation to both axes. A point’s position along the x-axis is its x-coor-
dinate, and its position along the y-axis is its y-coordinate. Thus, any point may be identified by its x- and y-coor-
dinates.

When a logical window is first opened, it has a default user-coordinate system in which the x-axis ranges from
0 (on the left) to 1 (on the right) and the y-axis ranges from 0 (at the bottom) to 1 (at the top). Thus, by default, the
user-coordinate point (0, 0) is the lower, left corner of a logical window, and the point (1,1) is the upper, right cor-
ner of the window.

You may change a logical window’s user-coordinate system to anything you wish with the SET WINDOW state-
ment. For example:

SET WINDOW 0, 2*pi, -1, 1
specifies that the values along the x-axis range from 0 (on the left) to 21 (on the right) and the values along the y-
axis range from -1 (at the bottom) to 1 (at the top). This user-coordinate system would be suitable for plotting a

sine curve. If you wanted to graph population data (in millions) between 1900 and 1990, you might use the follow-
ing coordinates:

SET WINDOW 1890, 2000, -30, 300
Notice how these coordinates define an area slightly larger than the graph itself, allowing room for labels.

Remember that each logical window you create has its own user-coordinate system. Thus, if you open several dif-
ferent windows, you may want to specifically set their user-coordinate ranges:

OPEN #1: SCREEN .5, 1, 0, .& ! Lower right portion
SET WINDOW -10, 10, =10, 10 ! Define coordinate system
OPEN #2: SCREEN .5, 1, .5, 1 ! Upper right portion
SET WINDOW -1, 11, -5, 100 ! Define coordinate system

You will usually find that your code will be easier to understand if you place the SET WINDOW statement imme-
diately after the OPEN statement. However, True BASIC does not require this; you may use a SET WINDOW
statement at any time to change the user coordinates of the current logical Window.

You can find the current user-coordinate ranges of the current logical window with the ASK WINDOW statement:
ASK WINDOW Lleft, right, bottom, top

This example would assign the user coordinates of the current logical windowto Left, right, bottom, and
top.

User coordinates provide great power and flexibility. You may specify any axes range you wish including ranges
from larger to smaller values. In fact, the only limitation of the SET WINDOW statement is that the values of the
left and right ends of the x-axis may not be equal, nor may the values of the top and bottom ends of the y-axis. You
will find that most graphical applications are easy to implement when you can choose a coordinate system suited
to your needs.

The user-coordinate system adapts itself as the size or shape of the logical window changes. Regardless of the size
or shape of the logical window, its user-coordinate range will remain the same — units along the axes are stretched
or condensed so that the defined ranges always fill the current logical window. This greatly simplifies graphical pro-
gramming in varied environments, since programs can draw equivalent images in logical windows of any size and
shape on any computer without changes to the source code. This is a significant advantage over the third type of
coordinate system available within True BASIC — pixel coordinates.

Graphics 135

Pixel Coordinates

Each physical window has a pixel-coordinate system in addition to the screen-coordinate system used to define log-
ical windows.

The word “pixel” is an abbreviation of the phrase “picture element,” and it refers to the units that form images on
the computer screen. A computer screen is divided into a very fine grid of a very large number of rectangles. By
changing the color of some of these rectangles, the computer displays “pictures” on the screen, thus the rectangles
are called picture elements or pixels.

A pixel-coordinate system is, therefore, another way of identifying points within the content area of a physical
window. Each point has two pixel coordinates. The first represents the point’s location as a number of pixels from
the left edge of the window, and the second represents the point’s location as a number of pixels from the top edge
of the window. (Note that pixel coordinates start from the top edge, while screen coordinates and user coordinates
begin at the bottom edge.)

Everything displayed on a computer screen is a pattern of pixels of various colors, but not all computer screens dis-
play the same number of pixels. The number of horizontal and vertical pixels determines the screen’s resolution.
Pixel-coordinate ranges therefore vary depending upon the resolution of the current computer hardware, the com-
puter’s operating environment, and the size of the physical window in relation to the full screen.

Because they can vary so easily, pixel-coordinate systems are less desirable than user-coordinate systems for most
types of graphics. True BASIC graphical statements described in this chapter automatically translate user coor-
dinates into pixel coordinates, thus you need not worry about pixel coordinates when using them. Most of the inter-
face objects described in Chapter 14 “Interface Elements” also let you use user coordinates if you wish, but there
are times when you might wish to use pixel coordinates directly.

You may also define a user-coordinate system to mimic pixel coordinates. To do so use the ASK PIXELS state-
ment, which reports the number of pixels within the current logical window in the horizontal and vertical direc-
tions, along with the SET WINDOW statement. For example:

ASK PIXELS hpix, vpix

SET WINDOW 0, hpix-1, vpix-1, 0
Notice that the vpix value sets the bottom range of user coordinates. In pixel coordinates “bottom” is always
greater than “top” because pixels are counted from the top edge.

Aspect Ratios

You may be disappointed when you ask True BASIC to draw a circle or a square; a square may look like a rectan-
gle, and a circle may look like an ellipse (or oval). Getting square squares and round circles can be tricky as it
involves adjusting the aspect ratio of the current logical window.

The aspect ratio of a window compares the distance of a horizontal line segment to an equivalent vertical line seg-
ment — in user-coordinate units. When a window’s aspect ratio is 1, equivalent horizontal and vertical lines will
appear to be the same length, and as a result squares will look like squares and circles will look like circles.

Since most computers today have square pixels, you can adjust the aspect ratio of a window by matching the x to
y ratios for pixel and user coordinates. For the current logical window for example, the following code would set up
a user-coordinate system with the origin (0,0) in the center of the window and with an aspect ratio of 1:

ASK PIXELS hpix, vpix

LET pratio = hpix/vpix ! Find x to y ratio for pixels
LET vrange = 20
LET hrange = 20 * pratio ! x to y ratio for user coordinates will

!' = pixel ratio
SET WINDOW -Chrange/2), (hrange/2), -(vrange/2), (vrange/2)

136 True BASIC Language System

Plotting Points and Lines

The PLOT POINTS and PLOT LINES statements let you draw points or lines on the screen. For example, the
following statement plots the corners of an isosceles triangle:

PLOT POINTS: 1,1; 3,1; 2,2
And the following draws the sides of the triangle:
PLOT LINES: 1,1; 3,1; 2,2; 1,1

In the PLOT LINES statement the first point must be repeated at the end so that the last point connects to the
original one. Notice that both statements have a colon after the keywords, before the list of points.

If the statement is quite long, you can divide it into more than one statement. But for PLOT LINES, each state-
ment other than the last must end with a semicolon to indicate that the lines should be connected:

PLOT LINES: 1,1; 3,1;
PLOT LINES: 2,2; 1,1

The following program draws fifty randomly chosen points:

SET WINDOW O, 1, 0, 1 ! ALL points between 0 and 1 for each axis
FOR n =1 to 50
PLOT POINTS: Rnd, Rnd ! Random point
NEXT n
END
Replacing the PLOT POINTS statement with:
PLOT LINES: Rnd, Rnd; ! Random Llines

will produce a random zig-zag pattern.

You may use the PLOT statement as an abbreviation for either the PLOT POINTS or PLOT LINES statement.
If you are plotting unconnected points, however, you must place each coordinate-pair on a separate PLOT state-
ment. For example, to draw the points of a triangle you would need three statements:

PLOT 1,1

PLOT 3,1

PLOT 2,2
A semicolon between or after coordinate pairs on a PLOT statement connects the points with lines. Thus, a trian-
gle could be drawn with the statement:

PLOT 1,1; 3,1; 2,2; 1,1
Similarly, the random points in the loop above could be drawn with:

FOR n =1 to 50

PLOT Rnd, Rnd ! Random point
NEXT n

and the random lines with:

FOR n =1 to 50
PLOT Rnd, Rnd; ! Random Llines
NEXT n

Notice that there is no colon in a PLOT statement.

Although, True BASIC can draw only straight lines between two points, you can plot a curved line as a series of sev-
eral short lines. As an example, look at the following code segment that prints a table of the sine function:
FOR x = 0 to 2*Pi step .1 ! Use built-in functions Pi and Sin

PRINT x, Sin(x)
NEXT x

Just changing the PRINT statement to a PLOT statement will plot the corresponding points (in a suitable user-
coordinate system). And adding a semicolon at the end of the PLOT statement will plot the sine curve:

Graphics 137

SET WINDOW 0, 2*Pi, -1, 1
FOR x = 0 to 2*Pi step .1
PLOT x, Sin(x); ! Plot sine curve
NEXT x
PLOT ! Stop connecting points

END

A PLOT statement with no coordinate pair and no punctuation, sometimes called a vacuous PLOT statement,
starts a new line or curve. This is analogous to a PRINT statement with nothing after it. Thus, the above program
uses a vacuous PLOT statement after the NEXT statement in case it later plots another point or line. Without a
vacuous PLOT, the last point of the sine curve would be connected to the next point plotted. While it is not essen-
tial in this example, it is a good habit to use vacuous PLOT statements to avoid stray lines when expanding or
maintaining your programs.

In the previous example, the entire curve will be visible. If, however, the user coordinates did not include the entire
range, the curve would be clipped at the logical window boundary. That is, only the part of the curve that lies
within the window is drawn. For example, with the user coordinates:

SET WINDOW 0, 2*Pi, 0, 1

only the top half of the curve would be visible. No error results; the entire curve is “drawn,” but that portion out-
side the bounds of the current logical window is not shown.

Note that all plotting is performed using the current color, as explained later in this chapter.

If you want to plot many points, it may be convenient to compute the coordinates first and store them in an array.
The array must be two-dimensional, with one row for each point and exactly two columns. The first column con-
tains the x-coordinates and the second contains the corresponding y-coordinates. The statements MAT PLOT
POINTS and MAT PLOT LINES work like the corresponding PLOT statements, plotting points or lines con-

tained in the array named with the statement.

For example, the following program plots a sine curve by first storing the values in an array and then using MAT
PLOT LINES to plot the points in the array:

SET WINDOW 0, 2*Pi, -1, 1
DIM sincurve (100,2)

FOR x = 0 to 2*Pi step .1
LET point = point + 1

LET sincurve (point,1) = x ! Store values in array
LET sincurve (point,2) = Sin(x)
NEXT x
MAT redim sincurve(point,2) ! Remove any uncomputed points
MAT PLOT LINES: sincurve ! Plot values in the array
END
Plotting Areas

The PLOT AREA statement draws the outline of a region (which may be quite complex) and colors its interior in
the current foreground color. It works very much like the PLOT LINES statement, but, since the region must be
enclosed, it automatically connects the last point to the first. Thus:

PLOT AREA: 1,1; 3,1; 2,2
will draw a triangle and fill it in. If the boundaries of the region cross each other, it is not obvious which points are
on the inside. True BASIC uses a standard mathematical solution of this problem.
You can also color an area with the FLOOD statement. After you have drawn the boundaries of a region, you may
color a contiguous piece of it with the statement:

FLOOD x, y

138 True BASIC Language System

Flooding uses the current foreground color starting from the point x , y and continuing out to the boundaries,
which are identified by any color different from the original color of the point x , y. You may color different areas
by using several FLOOD statements. To color the exterior, use a coordinate point outside the region.

[!] Note: If the color on the screen is a dithered color, FLOOD will not work correctly. Colors need to be
solid (realizing them if necessary) for FLOOD to work correctly.

As mentioned above for plotting points, you can store and plot coordinates in two-dimensional arrays. The first
column of the array must contain the x-coordinates and the second, the corresponding y-coordinates. The MAT
PLOT AREA statement works like the PLOT AREA statement for each coordinate pair in the array. The fol-
lowing program produces the picture shown below:
DIM points(201, 2)
SET WINDOW -1, 1, -1, 1
FOR t = 0 to 2 step .01
LET ¢ = c+1
LET points(c,1)
LET points(c,2)

Compute points
Count points
x-coordinate
y-coordinate

Sin(3*t*Pq)
Cos(5*t*Pj)

NEXT t
MAT PLOT AREA: points ! Draw and fill in
END

MAT PLOT AREA Example

See the section below on “Box Statements and Animation” for additional statements that can quickly draw or fill
simple shapes.

Mixing Text and Graphics

Logical windows may contain text as well as graphics. In fact, they are often used exclusively for text. To print text
to a logical window, you may use the standard PRINT statement or the more flexible PLOT TEXT statement.

Output from a PRINT statement goes to the current logical window. Each logical window maintains its own text cur-
sor position, margin, and zone width. Thus, the SET CURSOR, SET MARGIN, and SET ZONEWIDTH state-

Graphics 139

ments (plus their associated ASK statements and the ASK MAX CURSOR statement) apply to the current logical
window. As you switch between logical windows, subsequent PRINT statements in each window will send output to
that window’s current text cursor position. (See Chapter 3 “Output Statements” for information on these statements.)

When the text cursor reaches the bottom of a logical window, the contents of that window scroll up to make room
for a new line, and the topmost line is lost. Text, like graphics, may be clipped at logical window boundaries if the
margin is greater than the width of the logical window. Lines that are too wide to fit within the current margin will
be wrapped to the next line; since True BASIC sets an appropriate margin for any logical windows you create, text
will normally be wrapped at the window boundary. However, if you reset to a wider margin, that part of a text line
that extends beyond the window boundary will be clipped.

[!] Note: Operating environments with graphical user interfaces generally do not support automatic text
scrolling as efficiently as the text-only environments prevalent during much of True BASIC’s evolution.
Reliance on True BASIC’s automatic text scrolling may not produce fully satisfactory results. If you
encounter such a situation, you may be able to produce more pleasing results by handling the scrolling of
text yourself (see Chapter 14 “Interface Elements”) or avoiding it altogether.

Despite its usefulness for many simple tasks, the PRINT statement is limited to specific cursor locations within
a logical window. Thus, you may prefer the PLOT TEXT statement when combining text with graphics.

The PLOT TEXT statement is more convenient because it positions text output using the graphical user-coordi-
nate system. For example, the statement:
PLOT TEXT, AT x, y: "Sine curve"

places the text label “Sine curve” at the coordinate point x , y.

PLOT TEXT can print only string values, but you can easily convert numbers into strings using the STR$ or
USINGS functions (see Chapter 8 “Built-in Functions”). For example:
PLOT TEXT, AT 1990, y: Str$(y)

or
PLOT TEXT, AT x, y: UsingS$("##.44", y)
The PLOT TEXT statement normally places the lower-left corner of the text at the point defined by x , y. How-

ever, you can use the SET TEXT JUSTIFY statement to control the alignment of the text at the defined point.
The general form of the SET TEXT JUSTIFY statement is:

SET TEXT JUSTIFY horiz$, vert$

For horiz$ youmay use one of the values "LEFT", "CENTER",or "RIGHT" toindicate a point along the length
of the text; for vert$ you indicate a point in the height of the text as "T0P", "HALF", "BASE", or "BOTTOM".
The “bottom” of the text is the lowest point (or descender) of any character, while the “base” of the text refers to its
baseline, or the line along the lowest points of uppercase characters.

SET JUSTIFY Values

top

it Justify That Text! s

bottom

left center right

For example, if you want to center the lowest point of the text at a specified point, you should use:
SET TEXT JUSTIFY "center", "bottom"
before using the PLOT TEXT statement.

140 True BASIC Language System

The text alignment established by a SET TEXT JUSTIFY statement remains in effect for all subsequent PLOT
TEXT statements until another SET TEXT JUSTIFY statement is encountered. The SET TEXT JUSTIFY
statement controls the alignment of PLOT TEXT output only; it has no effect on the alignment of PRINT state-
ment output.

The statement:
SET TEXT JUSTIFY "left", "base"

returns to the default alignment that True BASIC uses, and the statement:
ASK TEXT JUSTIFY horiz$, vert$

lets your program find the current text alignment.

Consider an example. The following program draws the values of the array prof i t as a bar chart and labels the
years. It centers the label at the specified point and uses the STR$ function to convert numeric values to string.
(The SET COLOR statement is described below.)

SET WINDOW 1975, 1989, -10, 100

SET COLOR "GREEN"
PLOT 1975,0; 1989,0 ! Axis

SET TEXT JUSTIFY "LEFT", "HALF" ! Position label
FOR y = 1975 to 1988
SET COLOR “YELLOW"

BOX AREA y, y+.5, 0, profit(y) ! Bar

SET COLOR "red"

PLOT TEXT, AT y+.25, 1: Str$(y) ! Label
NEXT vy

END

Whether you use text, graphics, or a combination of both, you can clear the contents of a logical window with the
CLEAR statement:

CLEAR

The CLEAR statement erases the contents of the current logical window, filling it with the current background
color and repositioning the window’s text cursor in the upper-left corner. The window’s margin, zone width, beam
state (whether or not a line will be drawn to the next PLOT point), and graphics cursor position are not changed.

Using Colors
True BASIC lets you use any color available in your computer’s operating environment. At any given time, you
may work with two colors — a foreground color and a background color.

The foreground color is used for objects drawn on the screen including points, lines, and text. By changing the
foreground color between plotting or print statements you can produce multi-colored output. The background
color is used behind text produced by the PRINT statement and when the window is cleared.

The SET COLOR statement establishes the foreground color. There are two forms of this statement; one takes a
string and the other takes a number. When used with a string, as in:

SET COLOR "RED"

the SET COLOR statement sets the current foreground color to the named color After the above statement, all
drawing and printing will be in red until a new SET COLOR statement is executed.

The available color names are:

RED MAGENTA YELLOW
GREEN BLUE CYAN
BROWN WHITE BLACK

BACKGROUND

Graphics 141

The value of a string expression used with the SET COLOR statement must evaluate to one of these names; oth-
erwise an error occurs. If your computer does not provide all these colors, True BASIC will use another color. For
example, red may be used in place of magenta, or vice versa.

Although there are only ten color names, most computers can display many more colors. The second form of the
SET COLOR statement uses a numeric value to specify the foreground color, as follows:

SET COLOR 12

The default foreground color is color number -1 (black); the default background color is -2 (white). True BASIC also
initially defines color numbers 0 through 15; the rest are set to black. Your computer, however, may likely be able
to produce many more colors. The ASK MAX COLOR statement will tell you how many colors your computer can
simultaneously display. See the next section on “Making Custom Colors” to learn how to define additional color
numbers.

You may also specify color numbers as string values. Thus, the following two statements are equivalent:

SET COLOR "1"
SET COLOR 1

You can find out the current foreground color with the ASK COLOR statement. It too has a string form and a
numeric form, as follows:

ASK COLOR cname$
ASK COLOR cnumber

True BASIC assigns the name or number of the current foreground color to the specified variable. If you ask for a
string variable and the current color is not one of the official color names, True BASIC assigns a null string to the
variable.

The color numbers that correspond to color names vary among computer operating environments. You can use the
ASK COLOR statement to find out the color number assigned to a particular color name as follows:

SET COLOR "RED"

ASK COLOR red
These statements first set the current color to "RED" and then assign the corresponding color number to the vari-
able red.

The SET BACK (or SET BACKGROUND COLOR) statement establishes the background color. As with the
SET COLOR statement, it may take a string or numeric value. The same color names and rules for the string
expression apply to the SET BACK statement as for the SET COLOR statement.

The specified background color will be used to surround subsequent printed text and to clear regions of the screen
until anew SET BACK statement is executed. Any existing background is not affected, however, until it is cleared
or printed on.

You can find out the current background color with the ASK BACK (or ASK BACKGROUND COLOR) statement,
which like ASK COLOR has both string and numeric forms:

ASK BACK bname$
ASK BACK bnumber

If you ask for a string variable and the current color is not one of the official color names, True BASIC assigns a
null string to the variable.

The color name "BACKGROUND" represents the current background color. For example, the statement:
SET COLOR "BACKGROUND"

sets the current foreground color to match the current background color. By drawing or redrawing an image in the
current background color, you can easily erase or cut a hole in a previously drawn image.

You may simultaneously change current color and background color as follows:
SET COLOR "BLUE/WHITE"

142 True BASIC Language System

for drawing or printing in blue on a white background.

To better understand the use of colors, consider the following program that draws blue axes and a red curve on a
yellow background:

SET WINDOW -1, 10, -3, 3

SET BACK "YELLOW"

CLEAR ! Re-paint background with new color
SET COLOR "BLUE"
PLOT 0,0; 10,0 ! x-axis
pPLOT 0,-3; 0,3 ! y-axis
SET COLOR "RED"
FOR x = .1 to 10 step .1 ! Draw curve
PLOT x, Log(x);
NEXT x
END

The CLEAR statement is needed to erase the entire logical window and re-draw it in the new current background
color. Without the CLEAR statement the axes and curve would be drawn on the default background color.

Making Custom Colors

Your computer can probably display many more colors than the 16 color numbers (0 through 15) initially defined
by True BASIC. The ASK MAX COLOR statement:

ASK MAX COLOR m

will assign to m the number of colors your computer can display simultaneously. You can use the SET COLOR
MIX statement to define any available color number.

A computer screen displays colors by directing beams from “color guns” at the phosphor coating on the screen. The
nature, intensity, and combination of these beams determine the precise color they produce. There are three such
color guns — red, blue, and green — and all can be directed at any single pixel on the screen. By controlling the
intensity of the beams from each color gun, you can control the colors displayed on the screen.

The SET COLOR MIX statement gives you control of these beam intensities, as follows:

SET COLOR MIX (colornum) red, green, blue

For colornum, you specify a number for the color you want to create. You may choose any number between 0 and
the value returned by the ASK MAX COLOR statement. Note, however, that a single color number may repre-
sent only one color at a time; when you associate it with a new color, any existing color is replaced.

You define the color for ¢ o L o rnum by specifying the intensity levels of the red, green, and b Lue color guns.
The intensity levels can vary between 0 and 1, where 0 is off and 1 is full intensity. Thus,

SET COLOR MIX (14) 0, 0, O
associates pure black with color number 14 (since all the color guns are off), and

SET COLOR MIX (13) 1, 1, 1

associates pure white with color number 13 (since all the color guns are at full intensity). Likewise, you can use
values between 0 and 1 to create different colors:

SET COLOR MIX (2) 1, 1/3, 0 ! Color 2 is orange
SET COLOR MIX (5) 0, 0, 1 ! Color 5 is bright blue

By varying intensity values, you can create any color your current operating environment can display. If your sys-
tem cannot display the exact color intensities you specify, True BASIC uses the color closest to the defined mix.
Thus, very small changes in the valuesof red, green, and b lue may not produce different colors.

Graphics 143

True BASIC selects a color mix for each legal color number, including (if possible) the nine colors that have names.
To find out the current mix for a color number, use the ASK COLOR MIX statement:

ASK COLOR MIX (colornum) red, green, blue
This places the color intensities for color number colornumintored,green,andblue.

If you mix your own colors, we advise that you avoid the lower numbers or use color numbers (and not color names)
throughout your program. When you use a color name, True BASIC establishes a new color mix for its corre-
sponding color number. Thus, if you have established a custom color and then use a color name that happens to
correspond to that same color number, your custom color will be replaced by the color name.

BOX Statements and Animation

You can draw simple shapes quickly and animate your drawings with BOX statements. Each BOX statement
operates on a rectangular region of the screen called its bounding rectangle. This bounding rectangle is speci-
fied as four values in user coordinates representing its left, right, bottom, and top edges:

BOX LINES left, right, bottom, top ! Draw rectangle

BOX AREA left, right, bottom, top ! Draw filled rectangle

BOX CLEAR left, right, bottom, top ! Erase rectangle

BOX CIRCLE left, right, bottom, top ! Inscribe an ellipse within rectangle

BOX ELLIPSE left, right, bottom, top ! Inscribe an ellipse within rectangle

BOX DISK Left, right, bottom, top ! Inscribe a filled ellipse within rectangle
The BOX LINES statement draws the outline of its bounding rectangle in the current foreground color. The BOX
AREA statement fills its bounding rectangle with the current foreground color. The BOX CLEAR statement fills
its bounding rectangle with the current background color, effectively erasing its contents. The BOX CIRCLE
statement (which is identical to BOX ELLIPSE) draws the outline of the circle (if the bounding rectangle is a
square) or ellipse (if it is not) inscribed within its bounding rectangle. The BOX DISK statement fills the circle or
ellipse inscribed within its bounding rectangle with the current foreground color.

While many of these BOX statements can be reproduced using PLOT, PLOT AREA, or FLOOD statements, the
BOX statements execute faster and are easier to use. For example, the following program draws six rectangles, each
inside the previous one, and each in a different color. If the logical window is square, the result will be six squares.
SET WINDOW -6, 6, -6, 6
FOR n = 6 to 1 step -1

SET COLOR n

BOX AREA -n, n, -n, n
NEXT n
GET KEY k

END
BOX AREA Example

144 True BASIC Language System

You can use BOX LINES to easily “frame” a window:

ASK WINDOW Lleft, right, bottom, top ! Get user coordinates
BOX LINES left, right, bottom, top ' Draw "frame" around window

Note that the same four numbers are used, in the same order. The next series of statements draws a circle (or
ellipse) in one color and fills it with a different color:

SET COLOR "RED"

BOX CIRCLE 1, 3, 6, 8
SET COLOR "GREEN"
FLOOD 2, 7

The FLOOD statement uses a point in the middle of the figure to color the area. If you want the outline and the
interior to be the same color, the BOX DISK statement is faster.

Saving and Showing Screen Images

The BOX KEEP and BOX SHOW statements let you store and redisplay rectangular regions of the screen. The
BOXKEEP statement “memorizes” the contents of its bounding rectangle, storing the image in an image string.
The BOX SHOW statement displays a stored image string (in its original shape and size) at any location in the
window. You can produce animation by alternating BOX SHOW and BOX CLEAR statements to move a draw-
ing or series of drawings across the screen.

For example, suppose that your program has drawn a picture of a dog that you want to display again later in the
program. You can use the BOX KEEP statement:
BOX KEEP 2,4,7,9 IN dog$

to save the rectangular area containing the dog picture in the string variable dog$. You can then redisplay this
image using the BOX SHOW statement. The statement:

BOX SHOW dog$ AT 5, 8

would redisplay the image stored in dog$ with its lower, left corner at the point (5, 8). The displayed image will

be the same size and shape as the rectangular region saved by the BOX KEEP statement.

If you combine the BOX KEEP and BOX SHOW statements with the BOX CLEAR statement, you can simulate

movement on the screen. As an example, consider the following program, which shoots an arrow across the screen:
SET WINDOW 0, 10, 0, 20

PLOT 0,9; 1,9 ! Draw arrow
PLOT .6,8; 1,9; .6,10
PAUSE 1
BOX KEEP 0, 1, 8, 10 IN arrow$! Memorize it
LET x = 0
FOR move = 1 to 50 ! Move in small steps
PAUSE 0.1 ' Slow it down
BOX CLEAR x, x+1, 8, 10 ! Erase old
LET x = x + .2
BOX SHOW arrow$ AT x,8 ! Draw at new position
NEXT move
END

You could create more complex animation with several slightly different image strings. For example if you had
images of a dog with its legs in different positions, you could save each as a separate image. You could then have
the dog walk across the screen by showing and clearing each image in rapid sequence.

You can store BOX KEEP images in byte files for use by other programs. For example, you could write the
arrow$ image to a file as follows:

Graphics 145

OPEN #8: name "arrow.tru", org byte, create newold

ERASE #8 ! Be sure file is empty
WRITE #8: arrouw$

CLOSE #8

Another program could then read and display that image as follows:
OPEN #4: name "arrow.tru", org byte

ASK #4: FILESIZE fs ' Find number of bytes in file
READ #4, BYTES fs: image$! Read entire file
CLOSE #4

BOX SHOW image$ AT 0,.5
For more information on byte files, see Chapter 12 “Files for Data Input and Output.”

BOX SHOW USING Effects
The BOX SHOW statement may also take the following extended form:
BOX SHOW image$ AT x, y USING option

where op t i on may be any value from 0 to 15, inclusive. Each value of op t 1 on produces a different result in
displaying the designated image. The nature of this result depends both on the contents of the image string being
displayed and the current contents of the rectangular region on the screen. These options can produce reverse
images and spectacular color effects.

The following table summarizes the 16 available options, which are explained below. The first column shows the
option, and the others show the resulting bit-value, depending on the bit in image$ and the corresponding bit
currently displayed on the screen.

Numeric BOX SHOW Options

Bit in BOX SHOW string: 0 0 1 1
Bit on screen: 0 1 0 1

0 0 0 0 0

1 (AND) 0 0 0 1

2 0 0 1 0

U 3 0 0 1 1
S 4 0 1 0 0
I 5 0 1 0 1
N 6 (XOR) 0 1 1 0
G 7 (OR) 0 1 1 1
8 1 0 0 0

C 9 1 0 0 1
0 10 1 0 1 0
D 11 1 0 1 1
E 12 1 1 0 0
13 1 1 0 1

14 1 1 1 0

15 1 1 1 1

Three of these options represent common logical operations and have names. You can use AND instead of 1, OR
instead of 7, and X OR instead of 6.

The interpretation is simplest if only one color is available and therefore the “color” of a pixel is represented by one
bit, 0 or 1, off or on. Under the AND option, a bitis 1 ifitis 1in image$ and also 1 on the screen. The common

146 True BASIC Language System

part of the two images is displayed. Under the OR option a bit is 1 if either bit was 1, therefore a combination of the
two images is displayed. The XOR (exclusive or) option equals 1if image$ or the screen had a 1 in this position,
but not both; it produces a combination of the non-overlapping regions of the images.

USING 3isequivalenttoa BOX SHOW statement without any option (i.e. the BOX SHOW string bit takes prece-
dence over what was on the screen), while USING 0 is the same as BOX CLEAR. USING 12 ignores the screen
but displays a reverse image of the show string. For example, if it was black-on-white, it is shown white-on-black.

If more than one color is available, the color value of each pixel is coded by more than one bit. The options still
apply, combining corresponding bits of the color codes. Working out the effect of each option is trickier. For exam-
ple, if there are 16 colors, a four-bit code is used. Say that image$ has color five for one pixel (coded 0101) while
the screen has color six (0110). Then the AND option produces color four (0100), the OR option produces color seven
(0111), the XOR option produces color three (0011), and option 12 produces color ten (1010). Some experimentation
with the options is recommended when working with colors.

Using Pictures

True BASIC provides special subroutines for graphics, called pictures. For instance, if you want to create several
hexagons, you could define a picture and simply draw that picture when needed rather than repeat the PLOT
statements each time. Pictures are more flexible than either subroutines or BOX KEEP images because you can
transform them geometrically. When you draw a picture you can rotate it, change its scale, tilt it, or move it any-
where on the screen.

PICTURE structures are defined just like subroutines, except that they begin with a PICTURE keyword and end
with an END PICTURE statement. A picture has a name, may have parameters, may be internal or external, and
may be placed in a library file.

A simple example is a picture that draws axes for the current logical window:
PICTURE Axes

ASK WINDOW Lleft, right, bottom, top ! Find user-coordinate range
PLOT left,0; right,0 I x-axis
PLOT O,bottom; 0,top ! y-axis

END PICTURE

You invoke a picture with a DRAW statement:
DRAW Axes

The EXIT PICTURE statement corresponds to the EXIT SUB statement and immediately returns control to the
line following the DRAW statement.

Pictures may include most valid True BASIC statements, including DRAW statements to invoke other pictures.
However, a picture cannot open a logical window or set user coordinates — this must be done in the invoking pro-
gram. Pictures can use WINDOW statements to switch to existing windows, and you can pass channel numbers
to pictures as parameters.

Here’s a picture that uses a parameter to draw a regular polygon with s sides inscribed in a unit circle. The poly-
gon is centered about the point (0,0).

PICTURE Polygon(s)
OPTION ANGLE DEGREES
FOR i = 0 to s
LET a = 360*i/s
PLOT Cos(a), Sin(a);
NEXT i
PLOT
END PICTURE

The parameter s indicates the number of sides. If the above picture is in a library file, the main program could use:
SET WINDOW -1, 1, -1, 1

Polygon of s sides
Use degrees instead of radians
Run through vertices

!
!
!
! Angle

Graphics 147

FOR n = 3 to 9 step 2

SET COLOR n
DRAW Polygon(n)
NEXT n

to draw odd-sided polygons with three to nine sides, each in a different color.

oz

Output of the Ploygon Picture

Transformations

The important difference between subroutines and pictures is that you can transform pictures when you invoke
them. Transformations are options applied to the picture to change its appearance. True BASIC’s built-in trans-
formations let you resize, move, tilt, and rotate pictures.

For example, the statement:
DRAW Polygon(4) with Rotate(pi/4) * Shift(1,2)

uses the polygon picture defined above to draw a rotated square (or rectangle) that is centered about the point
(1,2). First the DRAW statement constructs a square centered on the origin as defined by the picture. Before it
draws the image, however, it applies the transformations to rotate the square counterclockwise by an angle of Pi/4
(45 degrees) around the origin and then shift the rotated square one unit horizontally and two units vertically, so
that its centeris at (1, 2).

[!] Note: While the external picture uses degrees, its OPTION ANGLE statement has no effect on the
main program. Unless otherwise specified, the main program measures in radians. See Chapter 8 “Built-
in Functions” for information on specifying degrees or radians with the OPTION ANGLE statement.

Multiple transformations — which must be separated by an asterisk — are applied from left to right. Thus, the
square above is rotated before it is shifted. Pictures are always rotated about the origin (0,0) which happens to be
the square’s center. Thus, the square remains centered on the origin until it is shifted. Had the square been shifted
first, the result would have been different. The shift would move the center of the square to (1, 2). Then, rotation
about the origin would move the square away from its shifted position (as if it were riding on the hand of a clock
moving backwards).

148 True BASIC Language System

Effects of Multiple Transformations

DRAW polygon(4) DRAW polygon(4) with DRAW polygon(4) with
Rotate(pi/4) * Shift(1,2) Shift(1,2) * Rotate(pi/4)

2N
)\

True BASIC defines four transformations that you can use with pictures:
Picture Transformations

Transformation Effect

SHIFT(a,b) Move by a horizontally and by b vertically

SCALE(a,b) Change scale, multiplying horizontal coordinates by a,
and vertical coordinates by b;ifa = b, then you may
specify SCALE (a)

ROTATE(t) Rotate around origin counterclockwise by an angle t

SHEAR(t) Lean vertical lines forward (clockwise) by an angle t

In the SHIFT and SCALE transformations, all calculations use user coordinates. In the ROTATE and SHEAR
transformations, angles are normally measured in radians, but you may change that with an OPTION ANGLE
statement.

[!] Note: Transformations are applied only to the various forms of the PLOT statement within a picture;
they are not applied to BOX statements.

As mentioned above, a picture may include DRAW statements to call other pictures. For example, a picture that
draws a house may repeatedly call a picture that draws a window applying different transformations each time to
place different-sized windows in various locations. The main program, in turn, might apply a transformation to
the house picture. Any transformation applied to the house picture will also affect the window pictures it invokes,
maintaining the integrity of the house as a whole. For example you could build a neighborhood of houses by scal-
ing and shifting the houses. For an illustration of this, see the HOUSES.TRU program in the TBDEMOS direc-
tory installed with True BASIC.

Constructing Your Own Transformations

This section gives technical details on how transformations work and shows how you can construct additional
transformations.

Transformations may be represented by a four-by-four matrix. For example:

o1 0 0 0 O
o 0 1 0 0 O
Shift (3,5) = o 0 0 1 0 O
o 3 5 0 1 O

Graphics 149

When this transformation is applied to a picture, each plotted point (x, y) is represented by the four-element
vector (x, y, 0, 1), which is multiplied on the right by the transformation matrix. The shift yields the result (x + 3,
y+5,0, 1) and the point is changed into (x + 3, y + 5). With repeated transformations, several multiplications are
carried out. Thus, the asterisk separating transformations actually represents matrix multiplication.

True BASIC will accept any four-by-four matrix as a transformation. Thus, you may define your own transforma-
tion as a four-by-four matrix and use this matrix as a transformation. For example, you may introduce a reflection
around a 45 degree line:

DIM Reflect(4,4) I Reflection transformation
MAT READ Reflect

DATA 0, 1, 0, O

DATA 1, 0, 0, O

DATA O, 0, 1, O

DATA 0, 0, 0, 1

DRAW Polygon(5) with Reflect ! Pentagon reflected

The third and fourth components of (x, y, 0, 1) are currently not used.

Graphical Input

True BASIC provides two simple methods for obtaining graphical input — the GET MOUSE and GET POINT
statements.

The GET MOUSE statement returns the current position of the mouse pointer and the state of the leftmost mouse
button. The GET POINT statement, on the other hand, pauses the program and waits for the user to press the left
mouse button; it then returns the position at which the click occurred. Both statements return the position of the
mouse pointer in the user coordinates of the current logical window. The mouse pointer must be within the cur-
rent physical window, but it need not be in the current logical window. Points outside the logical window are
returned in appropriate user coordinates as if the coordinate range were extended beyond the window. As usual,
however, any lines or points drawn to coordinates outside the user-coordinate range will be clipped at the window
edge and not shown.

The following program uses the GET POINT statement to draw a figure connecting points selected by the user:

DO
GET POINT x,y

PLOT x,y;

IF key input then GET KEY k
LOOP UNTIL k = 27 ! Use escape key to exit
END

There is no special prompt to indicate the program is waiting for GET POINT input. You may therefore wish to
print instructions to the user before using GET POINT.

The GET MOUSE statement requires three numeric variables:

GET MOUSE x, y, s
The current position of the mouse pointer is returned in x and y and the status of the left mouse button in s. The
possible values for s are:

No button down

Button is down

Button clicked at this point
Button released at this point
Button shift-clicked at this point

> W = O

150 True BASIC Language System

Thus, the above example could use the GET MOUSE statement as follows:

DO

GET MOUSE x, y, s

IF s = 2 then PLOT x,y;

IF key input then GET KEY k
LOOP UNTIL k = 27 ! Use escape key to exit
END

Note, that omitting the IF test before the PLOT statement produces a program that draws a curve following every
movement of your mouse (as if s =0).

[!] Note: The TC_Event routine, described in Chapter 14 “Interface Elements,” provides more sophisti-
cated mouse-handling capabilities. The GET MOUSE and GET POINT statements are primarily for
compatibility with earlier versions of True BASIC, and for simpler programs.

Drawing Charts and Graphs

There are certain graphing tasks that many programmers face fairly often. For some of these common tasks, True
BASIC includes subroutines that simplify the display of a wide array of charts and graphs.

These routines are not built into the language, but rather are stored in separate library files (see Chapter 11
“Libraries and Modules”). Thus, you must name the library file in a LIBRARY statement before you can invoke
the subroutines.

The charting and graphing routines are in the library files:

BGLib.TRC for pie charts, bar charts, and histograms
SGLib.TRC for plotting data and function values
SGFunc.TRC for plotting values of functions that you define

which are stored in the TBLIBS subdirectory when you install True BASIC. Remember that the LIBRARY state-
ments must use the appropriate “path name” to indicate the location of the library files for the computer you will
use to run your program; see “The True BASIC Environment” chapter in the introductory section for information
on the correct formats.

See Chapter 23 “Additional Library Routines” for descriptions of the subroutines in these libraries.

151

CHAPTER

14

Interface Elements

Graphical user interfaces, such as Windows, 0S/2, and Macintosh, use menus, buttons, windows, and dialog boxes
to make applications easier to use. With True BASIC, you can create and control such objects in your own pro-
grams. The easiest way to do this is with the True Controls and True Dials libraries of subroutines provided with
the language.

True Controls is a library of subroutines that let you manage windows, menus, graphical objects, buttons, edit
areas, and other interface elements from your True BASIC programs. True Dials is a similar library of routines
that let you create dialog boxes as part of your programs. This chapter explains how you can create user-interface
elements using the routines from these two libraries.

The routines described in this chapter are relatively easy to use, allow control of all user-interface elements, and,
in most instances, will meet all of your needs. (Advanced users might want to gain further control of interface ele-
ments through direct use of the built-in subroutines OBJECT and TBD. All of the user-interface “objects” are ulti-
mately controlled by these two extremely powerful and complex subroutines. The OBJECT subroutine is used by
all the True Controls routines, while True Dials routines call the TBD routine to create and display all dialog
boxes and return the user’s response. Advanced programmers who wish to use the OBJECT and TBD routines
directly should refer to the reference sections (see Chapters 19 and 21). Examining the source code of TRUEC-
TRL.TRU in the TBLIBS folder should help.)

The example programs ARCHERY2.TRU, DAYCALC.TRU, PISTON.TRU, and SURVIVE.TRU (in the
TBDEMOS directory) provide a good overview of how the convenience routines described in this chapter may be
used to enhance programs. The TBDEMOS directory also contains several programs that illustrate the individual
objects; those programs have names that begin with DEM.

User Interface Objects and Controls

The True Controls routines let you create and control the following objects or controls:

Window Physical window

Menu Pop-down selections for a window’s menu bar
Push button Push button with text

Radio group Several radio buttons, only one of which can be on, with text
Check box Text with check box that may be checked on or off
Group box Box with or without a title

Static text One-line piece of text that cannot be edited

Edit field One-line text input region that can be edited

List box A (scrollable) selection list of items

List button Button with a pop-down selection list

List edit button Edit field with a pop-down selection list

Graphics Several types of graphics objects

Scroll bar Horizontal or vertical scroll bar

Text editor Fully-scrollable text-edit object

152 True BASIC Language System

Some of the items, such as the graphics and windows, are objects, while others, such as check boxes, buttons, text
editors, and radio groups, are controls. For convenience, we may refer to both types as objects, since there is no
distinction in how you use the True Controls routines to handle objects or controls.

Dialog boxes are the only control objects not handled by True Controls routines. They are handled by routines in
the True Dials library as described later in this chapter. Dialog-box routines are in a separate library because they
return information to the program differently than the objects handled by the True Controls routines. Otherwise,
dialog boxes are similar to other interface objects.

Program Structure with Interface Elements

By programming with the interface-element routines you can greatly enhance the appearance and “user-friendli-
ness” of your programs. Along with these enhancements, however, you as the programmer must accept the
responsibility for processing all the events that may occur as the user responds to the controls and objects in your
program. To do this correctly, you may need to re-think the structure of your programs. The two versions of the
Archery program (ARCHERY.TRU and ARCHERY2.TRU in the TBDEMOS directory) illustrate the difference in
approach needed for work with interface elements.

In programs that don’t use interface routines, input statements may typically be scattered about various program
structures. In the original ARCHERY.TRU program, the main loop asks if the player wishes another game and
responds appropriately, while the MakeShot subroutine gets the user input for angle and velocity. In both
instances, the program pauses until there is a user response. Thus, the program could “spend a lot of time” in the
MakeShot subroutine. This works fine for that version of the program, because the user has no opportunity for any
other input until a shot is completed and control returns to the main loop. The limited order of events is clearly
defined in the main loop, as follows:
DO
CALL MakeScene ! Draws the scene
CALL PlayGame ! Calls MakeShot to get velocity and angle input
' and draw resulting shots until success
PRINT "Play another (y or n)?";
GET KEY key
PRINT
LOOP while key = 0rd("y") or key = Ord("Y")

When you program with interface controls and objects, however, you present the user with a greater possibility of
responses and your program must be ready to process those responses or “events” as soon as possible. Such pro-
grams generally work best with a main “event processor” loop to handle all potential user input. The main event
loop may call subroutines to carry out an appropriate action, but those subroutines should not themselves process
input. Thus, control can return immediately to the main event loop and prevent events from piling up.

In ARCHERY2.TRU, control objects let the user input velocity or angle, fire a shot, call for a new game scene, or quit
the game. These objects are always available; the user need not use them in any particular order. To prevent the pro-
gram from waiting in one subroutine, say for a new velocity and angle, when the user may be indicating a different
action, such as firing a shot or getting a new game scene, all event handling is placed in the main loop. The subrou-
tines carry out the same actions as before, but they do so with input obtained in the event loop, as follows:

DO ! Main event loop
LET x1, x2 =0
CALL TC_Event (0, event$, window, x1, x2) ! Get next event

IF event$ = "KEYPRESS" and x1 = 27 then EXIT DO ' Escape will stop program
IF x2 = quit then ' Quit button pressed
EXIT DO
ELSE IF x2 = fire and event$ = "CONTROL DESELECTED" then
CALL MakeShot ' Fire shot with current angle & velocity
ELSE IF x2 = newgame and event$ = "CONTROL DESELECTED" then
CALL MakeScene ! Draw new scene

END IF

Interface Elements 153

CALL TC_Sbar_GetPosition (angleset, angle) ! Get current angle setting
LET angle = 90 - angle
IF angle <> currentangle then
LET currentangle = angle
CALL TC_SetText (angledial, Str$(currentangle))
END IF

CALL TC_SBar_GetPosition (speedset, speed) ! Get current velocity setting
IF speed <> currentspeed then
LET currentspeed = speed
CALL TC_SetText (speeddial, Str$(currentspeed))
END IF
LOoOP

This loop continually looks at the latest user event via the TC_Event routine and carries out the appropriate
action, if any. Control always returns immediately to this main loop. The loop also updates the values for the cur-
rent angle and velocity variables; MakeShot uses those same variables. The TC_ subroutines used above are all
explained in this chapter.

For additional examples of event processors, examine the DAYCALC.TRU, MATHQUIZ.TRU, PISTON.TRU, and
SURVIVE.TRU programs in the TBDEMOS directory. These programs all use True Controls routines, illustrat-
ing variations in how a program may be structured to handle events.

Routines Common to all True Controls

Using the True Controls Library

Unlike the underlying and complex OBJECT routine, the True Controls routines are not built-in to the True BASIC lan-
guage. Instead, they are contained in a library called TRUECTRL.TRC. To use any of the routines you must identify the
library at the beginning of your program. For example, with 0S/2 and Windows, the statement:

LIBRARY "¢:\TBSilver\TBLibs\TrueCtrl.trc" ! Or appropriate path name

uses the compiled library. With the Macintosh, you would use something like the following (substituting the
appropriate disk and folder names):

LIBRARY "harddisk:TrueBasicSilver:TBLibs:TrueCtrl.trc"

[!] Note: The language includes both the compiled (.TRC) and source-code versions (.TRU) of the TrueC-
trl library so that you may examine the routines to learn more about how they work and how they use
the built-in OBJECT routine. However, your programs will start faster if you always use the compiled
version of any library routines.

You must also call an initiating routine before you respond to events in an event loop:
CALL TC_Init
This routine tells True BASIC that your program will be handling the “events” that occur when a user clicks on a
push button, makes a menu selection, or otherwise uses one of the objects you create.
When you are finished using the True Controls routines, you should call the “close-down” routine, as follows:
CALL TC_Cleanup

This routine ensures that True BASIC will resume handling any “events” that may occur rather than passing
them to your program.

For easy identification, all of the True Controls routines have names that begin with “TC_”". Names of general pur-
pose routines give the “method” or function of the routine after the “TC_”, such as TC_Init and TC_Cleanup,
above, or TC_Show and TC_Event, described in the next sections. Names of routines specific to a particular

154 True BASIC Language System

object first identify the object and then the function, such as TC_Win_Create, TC_Menu_Set,
TC_Menu_SetCheck, TC_PushBtn_Create, etc.

The True Controls routines share many public variables, which are all initialized the first time any one of the rou-
tines uses any one of the variables. You should therefore be careful not to assign spurious values to those public
variables. For the names of the public variables used by the True Controls routines, see the module CONSTANTS
located at the end of the file TRUECTRL.TRU (in the directory TBLIBS).

Creating Objects
To create an object and display it on the screen, you generally follow three steps. Each of these steps is explained
more fully as the individual objects are described later in the chapter.

1. Create the object. Separate routines are available for each object type; these are described in the appropri-
ate sections below. True BASIC assigns an ID number to each object that you create; you then use that ID
number to identify an object in other True Controls routines. Windows are assigned IDs from 1 to 99 (the
default physical window is always numbered 0), menus have IDs from 10001 to 14999, groups (such as radio
button groups) have IDs from 15001 and up, while all other controls and objects are assigned IDs from 101
t0 9999. All objects and controls, except for windows, are always placed in a physical window, so you must
first create a physical window or use the default physical window.

2. Specify additional attributes of the object, if necessary. There are specific routines for many of the
objects. For example, for a select list box you need to supply the list of names using TC_SetList:

CALL TC_SetList (slbid, List$()))

3. Show the object. A window is not shown automatically; you must use the TC_Show routine to display it:
CALL TC_Show (id)

All other objects are automatically shown when they are created, as long as the window that contains
them is visible. If you are creating several objects within a window, you may wish to create the objects
before you explicitly show the window so that all objects are revealed at once.

You can also change the default so that, even if the containing window is shown, an object is not shown
until you specifically use TC_Show for it. To change the default, use:

CALL TC_Show_Default (flag)

If f Lag is set to 0, no new objects or controls are shown until you use TC_Show for the specific object. If
f Lag has the value 1 (or any non-zero value), all new objects and controls are shown when created as long
as the containing window is visible (this is the default setting for f Lag).

(You can hide an object or a window and all the objects it contains at any time with the TC_Erase routine,
as explained below in “Erasing and Showing Objects.” Note that an erased object or control still exists and
may be shown again later.)

Handling Events — Getting Input from Objects

After you've created control objects, such as menus, buttons, and check boxes, you must also make them do some-
thing — your program must be able to get appropriate input from the objects. The TC_Event routine gets that
input for your program.

Each time a user makes some response to your program, such as selecting a menu item, clicking on a push button,
or pressing a key, True BASIC stores that action in an event queue. Each action is added to the queue in the order

in which it occurs. A call to the TC_Event routine from a program returns the first event in the event queue; any
additional events stay in the queue until subsequent calls to TC_Event.

A call to TC_Event requires five arguments:
CALL TC_Event (timer, event$, window, x1, x2)

The first argument, t ime r, indicates how long the routine should wait for an event. If there are any events in the
event queue, the routine always takes the first event and returns immediately. Otherwise, the routine waits for

Interface Elements 155

an event up to the number of seconds specified by t ime r before returning. If there are no events in the queue and
nothing happens during the t i me r interval (the user has made no response), the routine returns an empty string
toevents$.

If an event has taken place, the remaining three arguments return information about the event. W1indow returns
the physical window ID, and x 1 and x 2 return values specific to the event type. These items are described in the
sections for the individual controls and are summarized in a table in the “True Controls Events Summary” section
later in this chapter.

The recommended way to handle events is within a loop that continually calls TC_Event and includes a decision
structure to carry out the appropriate action. The TC_Event t ime r would be set to 0, since the loop will contin-
ually check the queue until an event takes place.

The TC_Event routine also performs the following functions in response to certain events:

* It provides automatic handling for scroll bars either connected to text edit controls or if the event returned
is an action in the scroll bar of a text edit object, the routine carries out the appropriate action on the
screen.

* Tt toggles check boxes and radio buttons.
* [t converts x1 and x2 into menu and item numbers for menu events.

[!] Note: After your program calls TC_Init so that it may use True Controls routines, the program must use
the TC_Event routine to handle all user actions until you “turn off” event handling with a call to
TC_Cleanup. If the user closes or hides a window by clicking in the window’s close box (upper left corner),
the program must handle the "HIDE" event — perhaps by terminating the program then or later re-showing
the window so the user may terminate the program some other way. Take care to provide adequate “escape
routes” when you program with True Controls routines.

Erasing and Showing Objects
You can erase or hide any True Controls object, with the TC_Erase routine:
CALL TC_Erase (wid)

This makes the object “invisible”; it cannot be seen on the desktop even if there are no overlapping windows. When
a window is invisible, any controls it contains are also invisible. You must use the TC_Show routine to make the
window, and any objects it contains, visible.

Individual controls may also be erased (hidden) and shown with the TC_Erase and TC_Show routines. However,
if the window is invisible, that status overrides the visible status of any control contained within it. Thus, you can
erase (hide) controls within a visible window, but you cannot show controls in an erased (hidden) window.

Note that erasing any True Controls object does not destroy the object; it is merely hidden from view. An erased
window still exists, output may be sent to it, and it may be shown again. When you are done with an object (except
amenu) or with a window and all its associated objects, you should permanently remove it with the TC_Free rou-
tine described in the next section on “Removing and Freeing Objects.”

Removing and Freeing Objects
When you are finished using an object or a window and the objects contained within it, you can destroy that object
or window with the TC_Free routine:

CALL TC_Free (id)

When this routine is used with a window ID, it frees the window and all objects and controls associated with it. If
TC_Free is used with the ID for another type of object, other than a menu, it frees the object but not the contain-
ing window. If you wish to free a menu, use TC_Menu_Free as described in the sections on “Creating and Using
Window Menus.”

156 True BASIC Language System

In “freeing” an object, the routine first hides the object and then frees the memory associated with it. Freeing a
window automatically frees its menu and controls contained in it. Once an object has been freed it no longer exists
and it cannot be shown or manipulated.

[!] Note: TC_Erase simply hides an object but does not destroy it; an erased object may be used and later
shown again with TC_Show. TC_Free completely destroys an object so that it no longer exists.

Physical Windows and Coordinate Systems

As introduced in Chapter 13 “Graphics,” True BASIC uses two kinds of windows: (1) physical windows, which
are typical of your computer’s operating system and usually have a visible border that may include title bars,
menus, and scroll bars, and (2) logical windows, which are invisible partitions in a physical window providing a
framework for user-coordinate systems and a clipping region for graphical output.

Physical windows are one of the user-interface elements you can create and control with True Controls routines.
All of the other True Controls objects are placed within a specific physical window. You may use the default phys-
ical window, which always has the window ID of 0 (zero), or you may create additional physical windows using the
TC_Win_Create routine as described later in this chapter.

In using True Controls routines, you must keep in mind the distinctions between physical windows and logical
windows. These may be summarized as follows:

* The position of physical windows is defined by screen coordinates. referring to the full screen. Other
True Controls objects are placed within physical windows according to the current user coordinates, as
from SET WINDOW or ASK WINDOW. Logical windows are placed within physical windows with screen
coordinates as described in Chapter 13; positions within logical windows are always defined by user
coordinates.

* True Controls routines follow the usual True BASIC order of specifying coordinates (that is, left,
right,bottom, top).

* True Controls objects are placed in the current farget physical window, which is the physical window des-
ignated to receive output from PRINT statements, etc. To switch output to another physical window, you
must use the routine TC_Win_Target or TC_Win_Switch (which also moves the window to the front).
Regular True BASIC statements such as PRINT and the graphics statements (PLOT LINES, BOX
AREA, etc.) are placed in the current logical window. The current logical window is either the default log-
ical window that fills the current target physical window or a defined logical window you have opened
(with an OPEN statement) and specified with a WINDOW statement. For more details about switching
between physical and logical windows, see the section below on “Creating and Using Physical Windows.”

You place most True Controls objects on the screen or within a window by specifying a set of rectangular coordinates
with the CALL to the appropriate routine. These coordinates have the order Left, right, bottom, top,asin
regular True BASIC statements. In the calling sequences described in this chapter, they are designated:

xl, xr, yb, yt

[!] Note: The True Controls routine that creates a physical window always creates a logical window that
fills that physical window, just as there is always a default logical window for the default physical win-
dow. The default user coordinates of this logical window are 0, 1, 0, 1 as in the default logical window.

Interface Elements 157

[!] Note: Itis possible to place windows on the screen and objects and controls within windows using pix-
els coordinates. This approach is not discussed in this chapter.

Creating and Using Physical Windows

All True Controls objects, except windows, must be placed in a specific physical window, so you must first create
and define a physical window or use the default physical window (window ID 0).

Even if you intend to use only the default physical window for object creation, you must make it visible on the
screen with a call to TC_Show as follows:

CALL TC_Show (0)

If you do not explicitly show the default window, it will be shown automatically with the first PRINT or PLOT
statement (CLEAR does not show the window), but it is not shown automatically when a control object is created
within it. You may wish to create objects within the window before you show the window (and the objects it con-
tains), but you must explicitly show the window at some point.

To create a new physical window, use the TC_Win_Create routine in the format:
CALL TC_Win_Create (wid, options$, xLl, xr, yb, yt)
For this routine, w i d must be a numeric variable; True BASIC will assign the window object’s ID to that variable.

Options$ is a string variable or expression for setting certain aspects of the window. Separate multiple values
in options$ by spaces or vertical bars “I”. If options$ contains the word "TITLE" (case does not matter),
the window will be created with a title bar. If opt i ons$ contains the word " CLOSE", the window will include
a close box; if it contains the word "SI1ZE", the window will have a resize box. To create a window with a vertical
scroll bar, include "VSCROLL" in options$; for a horizontal scroll bar, use “HSCROLL". For information on
controlling the action of scroll bars attached to windows, see the section “Creating and Using Scroll Bars” later in
this chapter.

For additional details on the options available for window creation, see the description of TC_Win_Create in Chap-
ter 22 “Interface Library Routines.” The options include: different border types, parent versus child windows, and
immune versus nonimmune windows.

Asnoted earlier, x L, xr, yb, y t must be numeric expressions giving the left, right, bottom, and top locations of the
window on the full screen in screen coordinates. Screen coordinates are always between 0 and 1, and left < right and
bottom < top. True Controls will adjust screen coordinates that are out-of-range, and will also make sure that all
portions of the window are visible. (Use pixel coordinates if you have other requirements.)

You can set or change a title to a window with the TC_Win_SetTitle routine:

CALL TC_Win_SetTitle (wid, title$)
For example, if you wish to create a physical window that nearly fills the full screen and contains a close box, a
resize box, and a title, you could do the following:

LIBRARY "c:\TBSilver\TBLIBS\TrueCtrl.trc" ! Use appropriate path
CALL TC_Init ! Initialize

CALL TC_GetScreenSize (ls, rs, bs, ts)
CALL TC_Win_Create (wid, "close size title", .1, .9, .1, .9)
CALL TC_Win_SetTitle (wid, "New Window")

CALL TC_Show (wid) ! Display the window

The coordinates in the TC_Win_Create routine define the user-accessible area for the window; borders, title
bars, and menu bars (if any) are placed outside that area. The user-accessible area is sometimes called the client
area. Thus, all the elements of a window created with full-screen coordinates would not be visible. 0.1 should be

158 True BASIC Language System

ample to allow room for all elements, but you may wish to experiment if you want to use the full screen. (Note: if
you do not add menus to your window, on certain platforms that space will be added to the client area.)

When you use TC_Win_Create to create a new physical window, the routine automatically opens a logical win-
dow to fill the content area of that physical window. The logical window is given the default user coordinates of
0,1,0,1. (This is similar to the default logical window, channel #0, that fills the default physical window and has
user coordinates 0,1,0,1.)

Creating (and showing) a physical window makes it the active, target window. The active physical window is
always in front of any others on the screen, and its title bar will appear differently than those of other windows;
the active physical window will never be partially or completely hidden from view. The target physical window
is where subsequent output and other objects will be placed,; it is not necessarily active or even visible. (Creating
but not showing a physical window makes it the target window, but does not make the window active because it is
not visible.)

Shown, Active, and Target Windows

Physical windows may be shown (visible) or they may be erased (invisible or hidden). When one or more physical
windows are shown on the screen, one window is the active physical window. If the windows are overlapped, the
active window is always on top; it is never partially or completely hidden from view. The active window also has a
title bar with a different appearance than those of other windows; thus even if windows are tiled (more than one
window is “in front” and not overlapping any others), the active window is easy to identify. (It may occasionally
happen that being “in front” and having an “active” title bar will not occur together.) On the Macintosh, it is nec-
essary that a window be active for its menu to appear in the menu bar position at the top of the screen.

The target physical window is the one that contains the logical window to which subsequent output will be sent.
Although it may be the same as the active physical window, it doesn’t need to be active or even visible. In fact, a
common technique is for a program to fill a hidden window with output and then make it visible.

As noted above, windows must be explicitly shown (made visible) after they are created with the TC_Show rou-
tine:
CALL TC_Show (wid)
As with all True Controls objects, visible windows may be erased (hidden) with the TC_Erase routine:
CALL TC_Erase (wid)
Erased windows may later be shown again with TC_Show. As with any True Controls object, erasing a window

merely removes it from view; the window still exists, it may be made the target window, and it may later be shown
and made active.

Many physical windows may be shown simultaneously (though some may be fully or partially hidden behind other
windows), but at any one time there can be only one active window and only one target window. A program can
switch among physical windows with the following routines:

CALL TC_Win_Target (wid) ' To receive output
CALL TC_Win_Active (wid) ! Move to the front, if visible
CALL TC_Win_Switch (wid) ! Makes target and, if visible, active

Calling TC_Win_Switch makes the identified window both the target window and, assuming the window is visible,
the active window. TC_Win_Target and TC_Win_Switch also automatically issue a WINDOW statement so that
subsequent program output is sent to the logical window that fills the target physical window.

Only a shown window may be made active. If a window has not yet been shown after it is created or if it has been
erased (hidden), TC_Win_Active has no effect and TC_Win_Switch makes the window the target but does not
show it or make it active. TC_Show merely makes a window visible and capable of becoming active; it does not
make a window active or the target. Any window, whether shown or erased, may be made the target window.

Interface Elements 159

A shown window may be made active by several means:

When a program first creates and shows a window with the TC_Show routine, that window becomes
active.

The TC_Win_Switch routine makes the designated window both the active and target window, as
noted above.

The TC_Win_Active routine designates a new active window, but does not change the target window,
as noted above.

If a TC_Erase routine erases the active window, another visible window becomes the new active win-
dow.

Using the mouse, the user may click in any visible window to make it active. Similarly, if the user moves
or resizes a window on the screen (see below), that window becomes the active window.

A window can become the target window for output as follows:

The most recently created window is the target (only one window may be a target at any one time).

The TC_Win_Switch routine makes the designated window the target as well as the active window, if
visible, as noted above.

The TC_Win_Target routine specifies a new target window as noted above, although it does not make
that window active or even visible.

A WINDOW statement, which directs output to a specific logical window, also selects the appropriate
physical window as the target for subsequent output, but that physical window does not automatically
become active or shown if it is currently erased (hidden). (Generally, if you want to redirect the pro-
gram’s output and insure that it is shown, you should first call the TC_Show and TC_Win_Switch rou-
tines to make the appropriate physical window the active target. Then, if you want a logical window
within that physical window other than the default logical window, you can use a WINDOW statement.)

Note that the target window is controlled exclusively by the program — there is no way the user can directly
change the target window — whereas the active window may be changed either by the program or by the user
clicking in it.

[!] Note: In the default physical window, the default logical window is always available as channel #0;

you can switch among that and other logical windows with the WINDOW statement. That is not the
case for additional physical windows you create. Although TC_Win_Create automatically creates a
logical window to fill any new physical window, that logical window channel is not known outside of
True Controls; thus you cannot use a WINDOW statement to direct output to such windows.
TC_Win_Switch does that for you, sending subsequent output to the logical window that fills the
physical window you designate, and that may be adequate in most cases.

Placing Objects Within Physical Windows

To place another object in a physical window, you must specify the location of that object. This is normally done in
the user coordinates of the current logical window contained in the physical window.

To find the user coordinates of a logical window, use:

WINDOW #3

ASK WINDOW left, right, bottom, top
To find the user coordinates of an unnumbered logical window that fills a certain physical window, or the logical
window that fills the default physical window, use

CALL TC_Win_Switch (the_physical_window)

ASK WINDOW left, right, bottom, top

(Examples of placing objects in windows are shown in the sections on the various objects below; see Chapter 13 for
more on logical windows and user coordinates.)

160 True BASIC Language System

Redrawing and Resizing Windows

As noted above, physical windows may become partially or fully hidden from view, either by an overlapping active
window or by being made invisible with the TC_Erase routine. When such a window is re-shown or made active,
True BASIC by default redraws the contents of the window; such windows are called immune.

This redrawing of a window may not be a problem in many cases, but it does use memory. If you do not want a win-
dow to be immune, use the option “NONIMMUNE” when you create it with TC_Win_Create.

See Chapter 19 on the OBJECT routine for more information about immune and non-immune windows.

The size of a window may be changed either by the program or by the user. The TC_SetRect routine lets your pro-
gram change the size of a physical window (or of any other object or control) as follows:
CALL TC_SetRectUsers (wid, xl, xr, yb, yt)

When you resize a window, any existing contents of the window do not change. If you make the window larger,
there will be unused portions of the window; if you make the window smaller, existing contents will be clipped. The
full contents of the window are still there, however; making the window larger will show them. When you resize a
control or graphical object, you must make sure to be in the correct logical window. This can be done using a WIN-
DOW statement, or, if the logical window is part of a physical window, using TC_Win_Switch.

Note, however, that user coordinates are readjusted to fit the new window size. Thus, any subsequent output that
relies on user coordinates (such as PLOT or BOX or other graphics statements) will be fit to the new window size.

Keep in mind that a user may resize an active window at any time and such a resize has the same effect on exist-
ing and subsequent output as the TC_SetRectUsers routine. The TC_Event routine returns such “SIZE"
events, so you could include an appropriate decision structure in your program if the user resizes a window.

Changing Window Attributes
You can add or change attributes to physical windows with several TC_Win routines or with the general TC_Set
routine. You can also add menus to windows with the TC_Menu routines described in the next section.

You can set or change the title on a window with:
CALL TC_Win_SetTitle (wid, title$)

where t 1t Le$ contains the new string. If the window is currently visible, the title is changed dynamically. You
can also find out the current title of a window with the routine:

CALL TC_Win_GetTitle (wid, title$)

This returns the current title of window w i d in the variable tit L e$.

You can change the shape of the text cursor in a window with the TC_Win_SetCursor routine:
CALL TC_Win_SetCursor (wid, shape$)

sets the cursor to the shape given in the string variable shape$. Allowable shapes may vary with the computer
being used, but they include "ARROW" , "IBEAM", “PLUS","CROSS",or "WAIT" symbols.

You can control the font used in a window with the TC_Win_SetFont routine:
CALL TC_Win_SetFont (wid, fontname$, fontsize, fontstyle$)

The available fonts and styles will vary with the operating system, but some common fonts can be found on all sys-
tems. Fontname$ values common to all systems are:

"FIXED" "HELVETICA" "TIMES" "SYSTEM"
You can find out what fonts are available on the current system with the TC_FontsAvailable routine.
CALL TC_FontsAvailable (fonts$)
All currently available font names are returned in the string argument fonts$, separated by vertical bars.

Interface Elements 161

Available fontstyle$ values are:

"PLAIN" "BOLD" "ITALIC" "BOLD ITALIC"
The fontsize must be a numeric value in points. The default font is 10 points, " FIXED",and "PLAIN".
Three routines let you control the shape and appearance of graphics, lines, and filled objects that are drawn in the

window by regular True BASIC statements, such as PLOT, etc. These are explained later in this chapter in the
section on “Pens, Brushes, and Drawmodes for Windows & Graphical Objects.”

The following example creates a nonimmune window with a title bar, close box, and resize box. It will be as large
as possible on the screen.

LIBRARY "c:\TBVSilver\TBLIBS\TrueCtrl.trc" ! Use appropriate path name
CALL TC_Init ' Initialize
LET options$ = "close size title nonimmune"

CALL TC_Win_Create (wid, options$, 0, 1, 0, 1)

CALL TC_Win_SetTitle (wid, "My New Window")

CALL TC_Win_SetFont (wid, "helvetica", 12, "plain") ! Change font
CALL TC_Show (wid) ! Show the window

Checking for Valid Windows
As described earlier, you can destroy a window (and the objects within it) when you are finished with:

CALL TC_Free (wid)
When this routine is used with a window ID, it frees the window and all objects and controls associated with it. The
routine first hides the window and then frees the memory associated with it and all associated objects. Once a win-
dow has been freed it no longer exists and it cannot be shown or manipulated. Also, its ID number becomes invalid
and may be reused later.
You can check that a certain window is valid (i.e., has been created but not “freed”) with the routine:

CALL TC_Win_Valid (wid)
If the window with identifier w 1 d is not open, the routine generates an error with the message:

Illegal window number: ### (711)
See Chapter 16 on “Handling Errors” for information on handling errors within your programs.

Creating and Using Window Menus

The TC_Menu routines let you add menus to any of your physical windows. To create a menu, you must first cre-
ate a two-dimensional array to contain the text for the menus. The rows represent menus, and the columns con-
tain the items for each menu. The lower bounds for menu array columns must be zero. The first item (0) in each
row is the menu title.

Note: On a Macintosh, the menu for the active window always appears on the menu bar at the top of the
screen, not attached to the window, but the menu is created and controlled just as with other systems.

So, to create two menus containing up to three choices plus the menu title, you might create an array such as the
following (this is similar to the menu in the MATHQUIZ.TRU program in the TBDEMOS directory):

DIM menu$ (1:2, 0:3) ' 2 menus and 4 items (title plus up to 3 choices)
MAT READ menu$

DATA Main, Next Problem, @, QuitaQ ! Menu 1

DATA Level, Beginner, Intermediate, Advanced I Menu 2

You can include special characters along with the menu text to place lines between menu items or indicate a key
that may be used as a menu shortcut. An ampersand (@) as a separate item places a line before the next menu item.
A menu item followed immediately by an @ and one of the characters from the item designates that character as a

162 True BASIC Language System

keyboard equivalent and causes that character to be underlined in the menu item. Keystroke equivalents are
shortcuts for menu items. (In Windows and OS/2, the character must be one of the letters in the text of the menu
item.) The menu created by the DATA statements above is illustrated below.

A menu item may also be followed by two ampersands (@@) to signal the start of a hierarchical menu — where
another menu is associated with that menu. See the section below on hierarchical menus.

Once an array is dimensioned and initialized, you must call the TC_Menu_Set routine to pass the menu$ array
to create the menu in the desired window:

CALL TC_Menu_Set (wid, menu$)

After you have created the menu, you can add check marks to individual items. In the menu example above, the
last menu offers three choices of levels: Beginner, Intermediate, and Advanced. To set up the program to show that
one level is selected at the beginning, you can use TC_Menu_SetCheck to add a check to an item:

CALL TC_Menu_SetCheck (wid, menu, item, flag)

W1id is the ID for the window that contains the menu. The array subscripts for the menu item to be checked are
indicated by me nu (row) and i t em (column). If f L a g equals 1 (or any value other than 0), the item is checked; if
f Lag equals 0, any existing check is removed. By default when you create a menu with TC_Menu_Set, no items
are checked, but a space for a check is reserved to the left of each item.

As an example, the following program segment sets up the default physical window with a new title and a menu
for a simple arithmetic quiz program:
' Arithmetic Quiz

LIBRARY "c¢:\TBSilver\TBLIBS\TrueCtrl.trc" ! or appropriate path name

DIM menu$ (2, 0:3) ' 2 menus and 4 items (title plus up to 3 choices)
MAT READ menu$

DATA Main, Next Problem, @, QuitaQ

DATA Level, Beginner, Intermediate, Advanced

CALL TC_Init ! Initialize

CALL TC_Win_SetTitle (0, "Arithmetic Quiz") ! Change window title
CALL TC_Menu_Set (0, menu$) ! Set the menu

CALL TC_Menu_SetCheck (0, 2, 1, 1) ! Check menu$(2,1)

CALL TC_Show (0) ' Make the default window visible

The above statements would change the title of the default output window to "Arithmetic Quiz" and create
the following menus (the Info menu is ignored on Windows and 0S2):

Main Lewvel
Mext Prablem ~ Beginner
Quit Intermediate
Advanced

Getting Input from Menus

So far, of course, this menu won’t do anything; the program won'’t respond when you select a menu item. You need
to create an event processing routine that looks for mouse clicks on menu choices (or keyboard equivalents) and
carries out the appropriate action, such as presenting the next problem, ending the program, or resetting the dif-
ficulty level (and resetting the check mark in the third menu).

You could do this with a DO structure that includes a call to TC_Event:
CALL TC_Event (timer, event$, window, x1, x2)

Interface Elements 163

The timer can be set to 0 so that the loop does not wait but takes the first event (if any) in the event list. The event
type will be returned as event$. The window ID in which the event occurs will be returned as window; in this
case Window will be returned as 0 since the program uses only the default physical window. If the event$ is
"MENU", x1 and x 2 return the subscripts corresponding to the original menu$ array: x 1 will contain the num-
ber or subscript of the menu selected and x 2 will contain the number or subscript of the item selected. The fol-
lowing lines show just such a loop that might occur at the end of the main program:

' Difficulty levels: beginner = 5, intermediate = 11, advanced = 20

LET difficulty =5 ! Default difficulty is beginner
LET cur_check = 1 ! Current menu item checked
DO
CALL TC_Event (0, event$, window, x1, x2)
IF event$ = "MENU" then
LET menu = x1
LET item = x2
IF menu = 1 then I Main menu
IF item = 1 then CALL NextProblem (difficulty, answer, response)
IF item = 3 then EXIT DO ! Quit is 3rd item (2nd is separator)
ELSEIF menu = 2 then I Level menu

CALL TC_Menu_SetCheck (0, 2, cur_check, 0) ! Remove current check

IF item = 1 then
LET difficulty =5 I Beginner
CALL TC_Menu_SetCheck (0, 2, 1, 1) ! Add check to first item
LET cur_check =1

ELSEIF item = 2 then
LET difficulty = 11 I Intermediate
CALL TC_Menu_SetCheck (0, 2, 2, 1) ! Add check to 2nd item
LET cur_check = 2

ELSEIF item = 3 then
LET difficulty = 20 I Advanced
CALL TC_Menu_SetCheck (0, 2, 3, 1) ! Add check to 3rd item
LET cur_check = 3

END IF

END IF

END IF
LOOP

CALL TC_Cleanup

END
Note that other events may be occurring (and be returned from the event queue), but this loop ignores all except
""MENU" events. Also, the DO and LOOP statements contain no tests to end the loop, but the Quit choice in the
Main menu leads to an EXIT DO, which exits the loop, calls TC_Cleanup, and ends the program.

All that remains to be done to make this a workable program is to write a Nex t Prob L em subroutine to present
a random arithmetic problem in the window, using the value of difficul ty to determine how hard the prob-
lem will be.

Creating Hierarchical Menus
In a hierarchical menu, one or more menu items may in turn be menus themselves. For example, an Options
menu might provide the choices: Pen Style and Color. Each of these in turn could offer additional choices.

You establish hierarchical menus as follows. A trailing double ampersand (@@) indicates that an item is the start
of a hierarchical menu; a single ampersand (@) before a menu header, which must match a hierarchical menu item,
indicates the menu choices for a hierarchical menu. Consider the following example:

164 True BASIC Language System

LIBRARY "¢:\TBSilver\TBLIBS\TrueCtrl.trc" ! or appropriate path name

DIM menu$ (6, 0:3) ! 6 menus and 4 items (title plus up to 3 choices)
MAT READ menu$

DATA File, Open, Close, Quit ' Menu 1
DATA Edit, CutdT, CopyaC, PasteaP ! Menu 2
DATA Options, Pen Styledaa, Coloraa, "" ! Menu 3
DATA @Pen Style, Solid, Dashed, Dotted ! Menu 4
DATA aColor, Redad, White, Blue, ' Menu 5
DATA aRed, Light Red, Dark Red, "" !' Menu 6
CALL TC_Init ' Initialize TC routines

CALL TC_Win_Switch (0)
CALL TC_Menu_Set (0, menu$) ! Set the menu

Here the Options menu (menu 3) contains two hierarchical menus: Pen Style and Color. Menus 4 and 5 define the
hierarchical menus for those items. Note that the Color menu, in turn, contains a second level hierarchical item
for Red, which is defined in Menu 6. When this menu is created and the user selects the Color item under Options,
the menus will open appropriately as follows:

| File | Edit Options
Pen Style »
Calar » | Red ¥
White
Blue

Notice also that menus 3 and 6 use empty quotes to indicate that there are fewer items in those menus.

Command Key Equivalents

All platforms provide command key equivalents for menu selection. (The terms “accelerator keys”, “command
keys” and “alt mode keys” are often used.) In the above example the ampersand and character following a menu
choice (for example: CutaT) indicates such a key. Different platforms have different conventions. On Windows
and 0S/2, the specified letter must appear in the menu text itself; that letter will be underlined when the menu
shows. (On these platforms, one can select a particular menu by holding down the Alt key while pressing the key
of the underlined letter. Then, press the key of the underlined letter in the menu item itself.) On the Macintosh,
the letter defines a command key combinations. (On this platform, one can select a particular menu item, regard-
less of which menu it is in, by holding down the command key while pressing the letter key indicated.)

See TC_Menu_Set in Chapter 22 for additional information, including ways to have the menu text correspond to
the conventions of particular platforms; that is, where one would use “Exit” on Windows or OS/2, one would used
“Quit” on the Macintosh.

Disabling & Editing Menu Items
Just as you can check certain items in a menu, you can disable — or gray out — certain items with
TC_Menu_SetEnable:

CALL TC_Menu_SetEnable (wid, menu, item, flag)

The arguments are the same as those for TC_Menu_SetCheck. If f Lag is 0, the item is disabled or grayed out;
for any other value, the item is enabled or visible. If i t em is 0, then the entire menu can be disabled or enabled.
By default when you create a menu with TC_Menu_Set all items are enabled. You may find the current state of
a given menu item with the TC_Menu_GetEnable routine:

CALL TC_Menu_getEnable (wid, menu, item, flag)

Interface Elements 165

Other routines let you change, add, or delete menu items. You can change the text for a menu item with
TC_Menu_SetText:

CALL TC_Menu_SetText (wid, menu, item, text$)
Similarly, you can find out the current text for a menu item with TC_Menu_GetText:
CALL TC_Menu_GetText (wid, menu, item, text$)

Use caution when adding or deleting menu items as this can cause confusion with the array subscripts used to
identify menu items returned by events. TC_Menu_AddItem lets you add an item at the end of a menu with spec-
ified text$:

CALL TC_Menu_AddItem (wid, menu, text$)
The wid and me nu arguments identify the menu as in the routines above. The array subscripts used to identify
menu items are automatically updated.

Similarly, TC_Menu_Delltem deletes a menu item from the window and menu specified:

CALL TC_Menu_DellItem (wid, menu, item)
You can delete the last item in a menu without serious confusion about how subscripts identify menu items. But,
if you wish to delete an item in the middle of a menu, it would be better to delete the entire structure (with
TC_Menu_Free) and then rebuild it.
You may also add or delete a menu at the end of the current menu structure, using the routines:

CALL TC_Menu_AddMenu (wid, menu$())
and

CALL TC_Menu_DelMenu (wid)

TC_Menu_AddMenu adds an entirely new menu onto the end of the current menu structure. The new menu is
given in the list menu$ (), where item 0 must contain the menu header. Note that these two routines work only
on the end of the current menu structure. They are most helpful for adding a special menu that may later be
deleted.

Removing Menus
When you no longer need a menu in a window, it is a good idea to delete it and free the memory associated with it.
You can do this with the TC_Menu_Free routine:

CALL TC_Menu_Free (wid)

Creating and Using Push Buttons

Push buttons are buttons containing text that the user can click on to indicate a certain action. To see an example
of a simple push button, you can examine and run the DEMPUSH.TRU program in the TBDEMOS directory.

As another example, consider the arithmetic quiz being set up in the previous section. If this program presents a
problem to the user and gives them a space to enter an answer, you might want to have a push button that the user
can click to have the computer check the answer.

The routine that creates a push button is:

CALL TC_PushBtn_Create (cid, text$, xl, xr, yb, yt)

where ¢ 1d returns the control ID for the button, t e x t $ is the text that will appear in the button, and the remain-
ing arguments give the left, right, bottom, and top corners of the button in pixel coordinates for the current phys-
ical window.

As an example, you could place a push button in the bottom left of the window with the following statements.
Remember that the default user coordinates are 0, 1, 0, 1 (unless you change them with a SET WINDOW state-
ment as described in Chapter 13 on “Using Graphics”).

166 True BASIC Language System

LIBRARY "¢:\TBSilver\TBLIBS\TrueCtrl.trc" ! or appropriate path name
CALL TC_Init ' Initialize TC routines
CALL TC_Show (0) ! Show default window

CALL TC_PushBtn_Create (pbid, "Check my answer", .1, .4, .1, -99999)

The value of -99999 passed as one of the locations for the push button signals that you want to use the default but-
ton height.

The above code merely puts the push button in the window; it cannot do anything yet. To process input from a push
button, you would need to test for event$ of “CONTROL DESELECTED" returned from the TC_Event rou-
tine. For example, you could add an additional test to the DO loop that checks for menu input as follows:

DO
CALL TC_Event (0, event$, 0, x1, x2)

IF event$ = "MENU" then
<code as shown in earlier section; the Main menu includes choices
to present a problem or end the loop>

ELSEIF event$ = "CONTROL DESELECTED" then
IF x2 = pbid then CALL Check_Answer (answer, response)
! ignore x1

END IF
LOOP

CALL TC_Cleanup
END

"CONTROL DESELECTED" fora push button means that the user has clicked and released on it. (In the case of a
push button,a *CONTROL SELECT" event always precedesa "CONTROL DESELECTED" event, butthe "CON-
TROL SELECT" event is not returned until the object is deselected. Thus, the program can ignore the "CONTROL
SELECT" event and simply test for the appropriate "CONTROL DESELECTED" event.)

For these events, the value returned by x 2 is the ID number for the control that was selected or deselected; x 1 is
not used and can be ignored. Thus, if event$ equals "CONTROL DESELECTED" and x2 equals the ID for the
push button (stored in pb i d in this example), the user has clicked on the push button and the decision structure
will carry out the appropriate action (here, checking the user’s response).

Creating and Using Groups of Radio Buttons

Another way to offer users a choice of options is to provide a group of radio buttons, in which one button (and only
one button) is always checked or selected. For example, in the MathQuiz program, radio buttons could provide the
user with a choice of addition, subtraction, multiplication, or division problems. (The DEMRADIO.TRU program
in the TBDEMOS directory also provides a simple example of radio buttons.)

The format for the TC_RadioGroup_Create routine is:
CALL TC_RadioGroup_Create (rid, text$(), xl, xr, yb, yt)

The text for each button should be passed in the tex t$ () array, whose lower bound must be 1. The ID of the
group as a whole is returned in r 1 d. Initially, none of the buttons is on. If you wish to set one of the buttons to be
“on”, use the TC_RadioGroup_Set routine:

CALL TC_RadioGroup_Set (rid, button)

For example, to add a group of four radio buttons to the lower-right corner of the MathQuiz window, you could add

the following statements:
DIM radio_text$ (&) ! 4 buttons

MAT READ radio_text$
DATA Addition, Subtraction, Multiplication, Division

Interface Elements 167

CALL TC_RadioGroup_Create (radio_id, radio_text$(), .6, .9, .1, .4)
1

CALL TC_RadioGroup_Set (radio_id,
LET operation$ = radio_text$(1)
These statements indicate the first radio button (Addition) as the “on” button initially. The variable operation$
is a new parameter to be passed to a NextProblem subroutine that would present an appropriate type of problem.

)

The above statements create a set of radio buttons but those buttons cannot do anything yet. To test for input from
the buttons, you would test for event$ of "CONTROL DESELECTED" returned from the TC_Event routine.
Whenevent$ is"CONTROL DESELECTED", x2 returns the ID for the radio button group (as noted above, you
canignore x 1 for any "CONTROL DESELECTED" event).

Your program can find out the currently “on” radio button at any time with the TC_RadioGroup_On routine:
CALL TC_RadioGroup_On (rid, button)

The first argument must be the ID for the radio group as a whole, the second argument returns the ordinal num-
ber of the button that is currently on. For example, you might add the following test to the DO loop in the Math-
Quiz program:

0
CALL TC_Event (0, event$, 0, x1, x2)
IF event$ = "MENU" then ! Menu item selected

<code to CALL NextProblem or EXIT DO as shown in menu section above,
adding operation$ parameter to CALL to NextProblem:>

CALL NextProblem (difficulty, operation$, answer, response)

ELSEIF event$ = "CONTROL DESELECTED" then ! Control item selected
IF x2 = pbid then CALL Check_Answer (answer, response) ! Push button
! ignore x1
ELSE ! Radio button

CALL TC_RadioGroup_On (radio_id, on)
LET operation$ = radio_text$(on)
END IF

END IF
LOOP
CALL TC_Cleanup
END

If the user clicks a radio button, the above statements reset the value of operation$ so that the proper value
is passed to the subroutine NextProblem (not shown) that will present a problem. The program need not reset the
radio buttons as TC_Event does that automatically. (Remember that no more than one radio button can be “on”.)

As with push buttons, a “CONTROL DESELECTED" event is always preceded by a “CONTROL SELECT" event,
which is not returned until the object is deselected. Thus, the program need be concerned only with the deselection
of the object.

Creating and Using Check Boxes

Check-hox objects let you create one or more choices similar to radio buttons. Unlike radio buttons however, in
which only one button in the group can be “on”, each check box is a separate object and any one may or may not be
checked “on” independently of any other check box. To see an example of a check box, you can examine and run the
DEMCHECK.TRU program in the TBDEMOS directory.

168 True BASIC Language System

The TC_CheckBox_Create routine is:
CALL TC_Checkbox_Create (cid, text$, xL, xr, yb, yt)

You supply the text to go with the check box as tex t$. To indicate if a box is to be checked or not, use the sepa-
rate routine TC_Checkbox_Set:

CALL TC_Checkbox_Set (cid, status)
If status is0,the box is not checked; if it is 1 (or any non-zero value), the box is drawn with an X in it.

For example, suppose you want to give the user the option of receiving warnings about something (such as mis-
spelled words, numbers outside a certain range, etc.) and you provide three ways of giving warnings. The follow-
ing statements would create three check hoxes, corresponding to three warning methods. Initially, no box is
checked, indicating that no warnings are desired:

LIBRARY "c:\TBSilver\TBLIBS\TrueCtrl.trc" ! or appropriate path name
CALL TC_Init ! Initialize TC routines
CALL TC_Show (0) ! Show default window

DIM check_id (3), check_text$ (3), warn_flag (3)

MAT READ check_text$
DATA "Sound", "Flashing bar", "Message on screen"
MAT warn_flag = 0 ' ALL warnings turned off initially

FOR i =1 to 3
CALL TC_Checkbox_Create (check_id(i), check_text$(i), .6, .8, &4+.3*i, -99999)
NEXT i

The user could then check one or more of the boxes indicating how they wish to receive warnings. The program
may testfora " CONTROL DESELECTED" event on a check box, but more importantly, it needs to find out the new
status of the box (checked or not).

In addition to returning "CONTROL SELECT" and "CONTROL DESELECTED" events for check boxes,
TC_Event automatically changes the status of the check box. If the box was not checked before the event,
TC_Event adds a check and changes the status of the box to 1; if the box had been checked, the check is removed
and the status is changed to 0. TC_Event does not return the status, however; to find that you must use the
TC_CheckBox_Get routine, as follows:

CALL TC_Checkbox_Get (cid, status)

In some cases, a program may not need to test for a check-box event, as long as it checks the status of appropriate
check boxes before carrying out related tasks. More commonly, however, a program would check the status of the
boxes and set appropriate flags as part of an event processor. For example:
DO
CALL TC_Event (0, event$, window, x1, x2)

IF event$ = "CONTROL DESELECTED" then
FOR i =1 to 3

IF x2 = check_id (i) then ' If a check box, ...
CALL TC_CheckBox_Get (x2, status) ! Get new status
LET warn_flag (i) = status ! Reset flag
END IF
NEXT i
END IF

<additional event processor code>

LOOP

Interface Elements 169

Similarly, a program can change the status of a check box at any time with the TC_Checkbox_Set routine:
CALL TC_Checkbox_Set (cid, status)
passing the desired status, 0 or 1, along with the appropriate ID number.

Putting a Box Around a Group of Objects

The TC_Groupbox_Create routine puts a box around a group of objects such as radio buttons or related check
boxes. The format for the routine is:

CALL TC_Groupbox_Create (cid, title$, xl, xr, yb, yt)

The second argument, t it Le$, lets you place a title on the box; if t it L e$ is an empty string then no title is
added. Thus, to place a simple box around the radio button group above, you could insert this statement before you
create the radio button group:

CALL TC_Groupbox_Create (box_id, "", .6, .8, .5, .8)
If you wish to put a title on the box, you could do so as follows:

CALL TC_Groupbox_Create (box_id, "Select Problem Type", .6, .8, .5, .8)
Since the group box may be opaque, it must be shown before other controls that it may contain.

No events are returned for group boxes; group boxes merely organize other control objects, .
The DEMGROUP.TRU program in the TBDEMOS directory provides an example of a simple group box.

Adding Titles or Other Static Text Boxes

The group box routine can put a title on a group box. Another routine lets you place a title anywhere in a window,
either as part of another object or by itself. The TC_SText_Create routine creates an object that contains one line
of text. This text cannot be edited by the user; it is called static text. Your program, however, can change the text
in a static text box using the TC_SetText routine as described below. (Edit fields, list edit buttons, and text edi-
tor objects — all described in this chapter — can be edited by the user.)
You create a one-line static text object as follows:

CALL TC_SText_Create (cid, text$, xl, xr, yb, yt)
You supply the text for the object in tex t $. If the defined area is too small, the text is truncated.
By default, the text is left-justified in the defined area. If you wish otherwise, you may use the TC_Set.
TextJustify routine, but it must be invoked before the control is shown the first time:

CALL TC_SetTextJustify (cid, justify$)
In justify$,youcan specify “"CENTER", "RIGHT", or "LEFT" to indicate how the text is to be placed in
the area defined by x L, xr, yb, and y t. (Note: text justification may not work on all systems.)
Alternatively, you can extend the text in the create statement with an appropriate justifer, For example:

CALL TC_SText_Create (cid, text$ & "|center", ...)
can be used.
Thus, you could add a title to the check boxes created earlier, with or without a group box, as follows:

DIM check_id (3), check_text$ (3), warn_flag (3)

MAT READ check_text$

DATA "Sound", "Flashing bar", "Message on screen"

MAT warn_flag = 0 ' ALL warnings turned off initially
LET check_title$ = "Select Warning Type"

CALL TC_Groupbox_Create (box_id, "", .6, .8, .4, .85)

170 True BASIC Language System

FOR i =1 to 3
CALL TC_Checkbox_Create (check_id(i), check_text$(i), .6, .8, .4+.1%i, =99999)
NEXT i

CALL TC_SText_Create (title_id, check_title$ & "|center", .62, .78, .9, =-99999)
CALL TC_ SetTextJustify (title_id, "CENTER")

The bottom of the static text box is placed above and slightly inside the edges of the first check box. The final value
0f -99999 indicates that the default height for static text should be used.

If you do not want a box around the check boxes and their title, you could omit the call to TC_Groupbox_Create.

Although users will not be able to edit or select static text items, a program can change the text in a static text
object at any time with the TC_SetText routine:

CALL TC_SetText (cid, text$)
where c id is the ID for the static text object and t e x t$ is the new text for that object. For example, you could
change the static text object created above as follows:

CALL TC_SetText (title_id, "Warning Method")

If that object is shown on the screen, the text will be updated immediately.

Creating and Using an Edit Field for Text Entry

If you wish to have a single-line field where the user can enter text, you can create an edit field. You can also spec-
ify a format for the text to be entered in an edit field. You create an edit field with the TC_Edit_Create routine:

CALL TC_Edit_Create (cid, text$, xl, xr, yb, yt)
The routine returns the field’s ID in ¢ 1 d; you specify the initial text to appear in the field as t e x t $. If you wish
to indicate a desired format for that text, use the routine TC_Edit_SetFormat:

CALL TC_Edit_SetFormat (cid, format$)
Here, format$ specifies a format for the text to be entered in an edit field; see the table below. You can check
that the text conforms to the format at any time by calling

CALL TC_Edit_CheckField (cid, errormess$)

If all is okay, errormess$ will be the null string; otherwise, errormess$ will contain a descriptive error
message.

For example, if you wanted to create fields for the user to enter a name, phone number, and amount owed, you
could create edit fields as follows:

LIBRARY "¢:\TBSilver\TBLIBS\TrueCtrl.trc" ! or appropriate path name
CALL TC_Init ! Initialize TC routines

CALL TC_Show (0) ! Show default window

LET xL = .2

LET xr = .6

LET yb = .8

CALL TC_Edit_Create (name_id, "First Last", xl, xr, yb, -99999)

CALL TC_Edit_Create (phone_id, "(000) 000-0000", xL, xr, yb-.1, =-99999)
CALL TC_Edit_SetFormat (phone_id, "phone")

CALL TC_Edit_Create (balance_id, "000.00", xl, xr, yb-.2, -99999)

CALL TC_Edit_SetFormat (balance_id, "number")

The format string "PHONE " allows any of the telephone-number formats shown below; "NUMBER" allows any real
number. The table below shows other edit-field format strings that are allowed; case does not matter.

Interface Elements

171

Edit Field Format$ Strings

format$ string
"number"”
"integer"
"range 123 456"
"frange 12.3 45.6"
nzip"
"phone'

SS
ndate"

“length 12"
“format *xxk

list

Allowable texts (examples)
123.456 (any real number)
123 (no decimal point)
any integer in specified range
any real number in specified range
19096 or 19096-1234

222-2222

222-222-2222

(222) 222-2222

123-45-6789

MM-DD-YY

DD MMM YY

DD MMM YYYY

MMM_DD_YYYY

YYYYMMDD

any number having the specified number of characters

customized format string as indicated by any combination of the fol-
lowing codes in place of the *s:

A = any character

9 = any digit

X = any letter

? = any character at all

(other characters are literals)

a, b, ¢ (must be one of these)

Although you can check the contents of an edit field at any time, you should probably wait until the user has moved
on. When TC_Event and returnsa "CONTROL DESELECTED" event for the field (the field ID is returned as x2,)
the user has finished using the edit field and has selected something else. You can then find out the text entered
in the field with a call to TC_Edit_GetText:

CALL TC_Edit_GetText (cid, text$)
You can also check the contents against the format with TC_Edit_CheckField.

Thus, you could get input from the edit fields created above with the following code:

DO

CALL TC_Event (0, event$, window, x1, x2)

IF event$ = "CONTROL DESELECTED" then
CALL TC_Edit_CheckField (x2, error$)

IF error$ <> "" then

CALL TD_Warn (error$, "Accept|Correct", 1, r)

IF r =1 then

I "Accept" button pressed

CALL TC_Edit_GetText (x2, text$)
IF x2 = name_id then

LET name$

ELSEIF x2 =

text$
phone_id

LET phone$ = text$

ELSEIF x2 =

END IF

balance_id
LET amount_due

= Val(text$) I Convert to numeric value

172 True BASIC Language System

ELSE
CALL TC_Select (x2)
END IF
END IF
END IF
LOOP until event$ = "KEYPRESS" and x1 = 27 ! Escape key ends the Lloop

(A description of TD_Warn appears later in this chapter.) Notice that the contents of the edit field are always
returned as a string value, t e x t $. You may wish to convert to some other form, such as a numeric value or indi-
vidual values for month, day, and year.

Your program can reset the text or format for an edit field at any time with the two routines:

CALL TC_Edit_SetText (cid, text$)
CALL TC_Edit_SetFormat (cid, format$)

The new text is shown in the edit field immediately if that object is visible.

For another way to let the user enter a selection, see the list edit button described in the next section.

Creating and Using Selection Lists

There are three types of controls that let you create a list of items the user may select from. A list box is a box show-
ing the items in a list; if the list of items it too long for the size of the list box, a scroll bar is automatically added and
handled by True Controls. List buttons appear on the screen as a single button with an arrow to the right of the but-
ton text. When the user selects the arrow, the list pops down (possibly with a scroll bar) and remains in view until the
user selects an item from the list. List edit buttons are similar to list buttons, but the main difference is that the
user may enter a choice not given in the pop-down list. List buttons and list edit buttons allow only single selections,
while list boxes may be set to allow for multiple selections on some operating systems.

List Boxes (ListBox)
To see an example of a list box, you can examine and run the DEMLISTS.TRU program in the TBDEMOS direc-
tory.
The format for the TC_ListBox_Create routine is:
CALL TC_ListBox_Create (cid, mode$, xl, xr, yb, yt)

C i d returns a single ID number that identifies the list box as a whole. The second argument allows you to set the
selection mode. Possible values are:

SINGLE Only single selections are allowed (default)
MULTIPLE Multiple selections are allowed
READONLY The list may be read but not selected

Ifthe mode is not recognized or is the null string, the default (SINGLE) mode will be used. Multiple selections may
not be available on all operating systems.

The contents of the list box may be set using the subroutine TC_SetList:
CALL TC_SetList (cid, List$())

The array s L ist$ contains the text for the items in the list. Its lowest subscript must be <= 1. If the list is too
long for the space defined by yb and y t, a scroll bar is added and handled automatically. For example, the fol-
lowing statements create a list box containing 10 items, although the box cannot display them all:

LIBRARY "c:\TBSilver\TBLIBS\TrueCtrl.trc" ! or appropriate path name
CALL TC_Init ' Initialize TC routines
CALL TC_Show (0) ! Show default window

DIM List$ (10), selection (0) ! Selection array

Interface Elements 173

MAT READ Llist$

DATA apple, banana, cranberry, dandelion, eggplant
DATA forsythia, hyacinth, iris, jasmine, kiwi

CALL TC_ListBox_Create (list_id, "SINGLE", .6, .8, .3, .5)
CALL TC_SetList (list_id, List$())

Events returned for list boxes are “CONTROL SINGLE" or "CONTROL DOUBLE" depending on whether the user
selects an item with a single click or double click of the mouse button. A" CONTROL DOUBLE" is always preceded
by a "CONTROL SINGLE" event. For these event types, TC_Event returns the control ID as x2 (x1 can be
ignored). To find out what item or items have been selected, you must use the TC_ListBox_Get routine, as fol-
lows:

CALL TC_ListBox_Get (cid, selection())

For the designated list box ID, the routine returns one or more numbers in the array selection(). The
returned numbers correspond to positions in the list — or list-text array subscripts — of any item the user selected.
For example, if the user selects “dandelion” from the above list, the se Le ct i on () array would contain the sin-
gle value 4. (On some operating systems, the user can select only one item.)

First, here’s a sample section of an event handler that would detect an event in a list box and find out what had
been selected:

DO
CALL TC_Event (0, event$, window, x1, x2)

IF event$ = "CONTROL SINGLE" or event$ = "CONTROL DOUBLE" and x2 = list_id then

CALL TC_ListBox_Get (list_id, selection()) ! Get selected item #
LET plant$ = list$(selection(LBOUND(selection))) ! Get name
END IF

LOOEII
A program can redefine the items in a list box at any time with the TC_SetList routine:
CALL TC_SetList (cid, slist$())

For example, you could redefine the list box above to contain a list of animals with the code:
DIM animals$ (7)
MAT READ animals$
DATA aardvark, buffalo, cow, dog, elephant, flamingo, giraffe

CALL TC_SetList (list_id, animals$())
All previous items in the list box are removed and replaced by the new array of items; the number of items need
not be the same. If the box is showing, the list items are changed immediately.
A program can also pre-select one of the items in a list box with the TC_ListBox_Set routine:

CALL TC_ListBox_Set (cid, selection)
The value of selection must be in the range from 1 to the number of items in the list. For example, the following
statement would preselect "dog" in the list above:

CALL TC_ListBox_Set (list_id, 4)

Multiple selections, where allowed, are usually made by clicking on several items while holding down the shift key,
then using a double click when finished. In this case the event handler would be interested only in the event type
“CONTROL DOUBLE", and the array returned by TC_ListBox_Get would contain multiple items. (See Chap-
ter 19 on the Object Subroutine for more details.)
DO
CALL TC_Event (0, event$, window, x1, x2)

174 True BASIC Language System

IF event$ = "CONTROL DOUBLE" and x2 = Llist_id then
CALL TC_ListBox_Get (list_id, selection()) ! Get selected item nos.
LET plants$ = ""
FOR i = 1 to UBOUND(selection)
LET plants$ = plants$ & list$(selection(i)) & " " I Get
corresponding names
NEXT i
END IF

LOOP

List Buttons (ListBtn)
A list button also lets the user select from a list of items, but it initially appears on the screen as a single button
with a down arrow. The currently selected item is shown in the button.

When the user clicks on the down arrow, the rest of the list pops down from the button. When the user clicks on an
item in the list to select it, that item replaces the selected text in the button and the pop-down list disappears.

To create a list button, use the TC_ListBtn_Create routine with a string array to pass the items for the list:
CALL TC_ListBtn_Create (cid, List$(), xl, xr, yb, yt)

The first item in the list appears initially in the list button. For example, the following code creates the list button
shown above:

LIBRARY "¢:\TBSilver\TBLIBS\TrueCtrl.trc" ! or appropriate path name
CALL TC_Init ! Initialize TC routines
CALL TC_Show (0) ! Show default window

DIM List$ (10)

MAT READ List$

DATA apple, banana, cranberry, dandelion, eggplant
DATA forsythia, hyacinth, iris, jasmine, kiwi

CALL TC_ListBtn_Create (listbtn_id, Llist$, .6, .8, .4, .6)

The last two arguments determine the space available for the pop-down list when you select the list button. If
there is not enough room for all the items in the list, a scroll bar is added and handled automatically.

The only event returned for a list buttonis "CONTROL SINGLE", with the control ID returned as x2 (x1 can
be ignored). To find out what item or items have been selected, you must use the TC_ListBtn_Get routine, as fol-
lows:

CALL TC_ListBtn_Get (cid, selection)
The item’s position in the list — its subscript in the L ist$ () array —is returned by se Lec tion. Thus, the
following code could handle events in the list button created above:

DO
CALL TC_Event (0, event$, window, x1, x2)

IF event$ = "CONTROL SINGLE" and x2 = Llistbtn_id then
CALL TC_ListBtn_Get (listbtn_id, selection)! Get selected item #
LET plant$ = Llist$ (selection) ! Get corresponding name
END IF

LOOEII
To see an example of a list button, you can examine and run the DEMLISTB.TRU program in the TBDEMOS
directory installed with TB Silver.

Interface Elements 175

List Edit Buttons (ListEdit)

List edit buttons are similar to list buttons in appearance, but the user may either select an item from the pop-
down list or enter a new item in the button. (There is a slight difference in appearance, as list edit buttons have a
box around the button text.) To see an example of a list edit button, you can examine and run the DEMLISTE.TRU
program in the TBDEMOS directory.

List edit buttons are created by the TC_ListEdit_Create routine:
CALL TC_ListEdit_Create (cid, Llist$(), xlL, xr, yb, yt)

The List$() array supplies the items for the pop-down list, and the List$(0) string supplies the item to
appear initially in the button itself. For example, the following code establishes a list edit button:

LIBRARY "¢:\TBSilver\TBLIBS\TrueCtrl.trc" ! or appropriate path name
CALL TC_Init I Initialize TC routines
CALL TC_Show (0) I Show default window

DIM List$ (0:10)

MAT READ List$

DATA Plants I Title for the button
DATA apple, banana, cranberry, dandelion, eggplant

DATA forsythia, hyacinth, iris, jasmine, kiwi

CALL TC_ListEdit_Create (listedit_id, list$(), .6, .8, .2, .4)

When the user selects an item not already in the button field, that item moves up to the button field, where it may
be edited. When done editing, the user deselects the button by clicking in an area outside the button. A CONTROL
DESELECTED" event is then returned with the list edit button’s ID.

Thus, to handle list edit button events, the program would first test fora "CONTROL DESELECTED" event for
the button and then use the TC_ListEdit_Get routine to get the new text in the button:

CALL TC_ListEdit_Get (cid, text$)
The following code segment shows an event handler for the list edit button created above:

DO
CALL TC_Event (0, event$, window, x1, x2)

IF event$ = "CONTROL DESELECTED" and x2 = listedit_id then
CALL TC_ListEdit_Get (x2, text$)
LET plant$ = text$

END IF

LOOP
You can change the list by using TC_SetList, just as with a list button. But here the 0-th element will be used as
the new text for the button itself.

Creating and Using Scroll Bars

As noted in the earlier section on “Creating and Using Physical Windows”, you may add vertical or horizontal
scroll bars to windows by including “VSCROLL" or "HSCROLL" as options$ in the call to the TC_Win_Create

routine. You may also place horizontal or vertical scroll bars in any window or object with the routine
TC_SBar_Create:

CALL TC_SBar_Create (cid, type$, xl, xr, yb, yt)

For avertical scroll bar t ype$ shouldbe "VSCROLL", and for a horizontal scroll bar it should be "HSCROLL".
The scroll bar is placed at the indicated location.

176 True BASIC Language System

Three similar sets of routines let you control the range the scroll bar will cover and the action of the scroll bar and
its slider “thumb”. Which set you use depends on how you created the scroll bar:

Scroll Bar Routines
TC_SBar_Create TC_Win_Create TC_Win_Create
type$ = VSCROLL or HSCROLL option$ = VSCROLL option$ = HSCROLL
TC_SBar_SetRange TC_WinVSBar_SetRange TC_WinHSBar_SetRange
TC_SBar_GetRange TC_WinVSBar_GetRange TC_WinHSBar_GetRange
TC_SBar_SetPosition TC_WinVSBar_SetPosition TC_WinHSBar_SetPosition
TC_SBar_GetPosition TC_WinVSBar_GetPosition TC_WinHSBar_GetPosition
TC_SBar_SetIncrements TC_WinVSBar_SetIncrements TC_WinHSBar_SetIncrements
TC_SBar_GetIncrements TC_WinVSBar_GetIncrements TC_WinHSBar_GetIncrements

The rest of this section describes the TC_SBar routines for separate scroll bars created with the TC_SBar_Cre-
ate routine. The TC_WinVSBar and TC_WinHSBar routines are used in the same way, except that events for
window-associated scroll bars are identified by the window id number.

Two routines let you indicate the beginning and end of the range the scroll bar will cover, as well as the “page incre-
ment” or range that will be scrolled per “page” when the user clicks on the bar above or below the scroll slider or
“thumb”:

CALL TC_SBar_SetRange (cid, srange, erange, prop)
CALL TC_SBar_SetIncrements (cid, single, page)

When the slider is at the left or top, its position is equal to s range; when the slider is at the right or bottom, its posi-
tion is equal to erange minus prop. On operating systems that let you control the size of the scroll slider, prop
determines the proportional size of the slider as related to the range of the scroll bar. The sing L e value indicates
how far the screen should be scrolled when the user clicks the up or down arrow at either end of the scroll bar; the
page value indicates how far the screen should be scrolled when the user clicks above or below the scroll slider.

By default, the scroll slider is initially set to the s range position, but another routine lets you reset a slider’s
position within the scroll-bar range at any time:

CALL TC_SBar_SetPosition (cid, position)
The position is always set (or reported in GetPosition) for the top of the slider. Thus, if the slider is moved to the
very end of the scroll bar, the pos it 1 on will be the value of e range minus the value of prop.

The DEMVSBAR.TRU program in TBDEMOS provides a simple illustration of a vertical scroll bar. The following
code fragments from the ARCERHY2.TRU program in TBDEMOS shows how that program defines the scroll bars
that let the user define the angle and velocity of each shot:

! Archery?2
LIBRARY "..\TBLibs\TrueCtrl.trc"

EALL TC_Init ' Initialize for True Controls
CALL TC_Show (0) ! Show the default output window
! Create speed-setting scroll bar and related controls.

CALL TC_SText_Create (st1, "Force", .42, -20, -38, -99999)
CALL TC_SText_Create (speed0, "0", -12, -5, -38, -99999)

CALL TC_SText_Create (speed200, "200", 170, -185, =38, -99999)

CALL TC_SText_Create (speeddial, "0", -42, -20, -99999, -40)
CALL TC_SBar_Create (speedset, "HSCROLL", -12, 185, -99999, -40)

Interface Elements 177

! Create angle-setting scroll bar and related controls.

CALL TC_SText_Create (st3, "Angle", 160, 180, -99999, 98)

CALL TC_SText_Create (angledial, "0", 185, 194, -99999, 98)
CALL TC_SText_Create (angle90, "90", 170, 180, -99999, 88)
CALL TC_SBar_Create (angleset, "VSCROLL", 185, -99999, -26, 88)
CALL TC_SText_Create (angleO, "0", 170, 180, -26, -99999)

! Set the scroll bar parameters and increments.

CALL TC_SBar_SetRange (angleset, 0, 100, 10)! Range from 0 to 90 (100-10)
CALL TC_SBar_SetIncrements (angleset, 1, 10)! Slider "page" by 10

CALL TC_SBar_SetPosition (angleset, 90) I Initial slider position = 90
CALL TC_SBar_SetRange (speedset, 0, 210, 10)! Range from 0 to 200 (210-10)
CALL TC_SBar_SetIncrements (speedset, 1, 10)! Slider "page" by 10

CALL TC_SBar_SetPosition (speedset, 0) ! Initial slider position =0

When initially created, the scroll-bar sliders are placed at the left end or top of the scroll bar, which is position 0 in
the scroll-bar range. Because the ARCHERY2 program inverts the vertical scroll bar, a TC_Sbar_SetPosition
routine resets the slider to the bottom of the range, or 90 (which is inverted to 0). Each time the user clicks in the
bar outside the slider, the scroll position is changed by 10 (the value set for the page increment for both scroll bars).

A program can also find out the scroll-bar ranges, page increments, and slider position at any time, with the rou-
tines:

CALL TC_SBar_GetRange (cid, srange, erange, prop)

CALL TC_SBar_GetIncrements (cid, single, page)

CALL TC_SBar_GetPosition (cid, position)

When the user clicks on the scroll bar or arrows associated with it, or moves the slider, TC_Event carries out all
adjustments to the scroll bar automatically and returns the event type . The x 2 value returns the ID number for
the control; x 1 isignored. Because TC_Event carries out most adjustments automatically, a program often needs
only to find out the new position of the scroll bar to do something appropriate within the window. The main event
loop in the ARCHERY2.TRU program handles scroll-bar events with two calls to TC_SBar_GetPosition:

CALL TC_SBar_GetPosition (angleset, angle) I Vertical scroll bar
LET angle = 90 - angle
IF angle <> currentangle then
LET currentangle = angle
CALL TC_SetText (angledial, Str$(currentangle))
END IF

CALL TC_SBar_GetPosition (speedset, speed) ! Horizontal scroll bar
IF speed <> currentspeed then

LET currentspeed = speed

CALL TC_SetText (speeddial, Str$(currentspeed))
END IF

Each time through the loop, the slider position is updated, resetting the value for angle and speed of the shot; the
current settings are used elsewhere in the game as needed.

The events that may be returned by scroll bars are as follows. Keep in mind, however, that you may not need to
use these directly much of the time.

178 True BASIC Language System

Events Returned by Scroll Bars

"PAGEDOWN" user has clicked on the bar below the slider; position advances by value of the page
increment

"PAGEUP" user has clicked on the bar above the slider; position decreases by value of the page
increment

“DOWN" user has clicked the arrow at the bottom of the scroll bar; position advances by one

"yp" user has clicked the arrow at the top of the scroll bar; position decreases by one

"VSCROLL" user is in process of moving the scroll-bar slider

"END VSCROLL" user has finished moving the scroll-bar slider; position is final location of slider
"PAGERIGHT" user has clicked on the bar to the right of the slider; position advances by value of the

page increment
"PAGELEFT" user has clicked on the bar to the left of the slider; position decreases by value of the page
increment
"RIGHT" user has clicked the arrow at the right of the scroll bar; position advances by one
“LEFT" user has clicked the arrow at the left of the scroll bar; position decreases by one
"HSCROLL" user is in process of moving the scroll-bar slider

"END HSCROLL" wuser has finished moving the scroll-bar slider; position is final location of slider

Creating Graphics Objects

True BASIC’s graphics statements described in Chapter 13 provide one method for producing graphical elements.
You may also produce such objects via True Controls routines. The main routine that creates a graphics object is:

CALL TC_Graph_Create (gid, type$, xl, xr, yb, yt)

As usual, ¢ id returns the ID number for the object. For the argument type$ you may pass any of the strings
listed below. The arguments x L, xr, yb, and y t are applied differently depending on the object type:

Graphics Object Types
Type$ How coordinates are used
"RECTANGLE", "CIRCLE", "ARC", "PIE", "ROUNDRECT" deﬁnerectangulararea
“"ALINE", "LINE" define start x, end x, start y, end y
"POLYGON", "POLYLINE" ignored (except for scaling)
"IMAGE" define rectangular area; may distort

Graphical objects are not controls; they return no events. They simply provide another way for your programs to
create graphical output. They are displayed in their own “layer”, which is “above” ordinary True BASIC printed
and plotted output. They may also be layered underneath any and all real controls, such as push buttons, although
this property is not consistent across all platforms.

RECTANGLE, CIRCLE, ARC, PIE, and ROUNDRECT

For the first five object types, the arguments x L, xr, yb, and y t must define the left, right, bottom, and top of a rec-
tangle. A "RECTANGLE" is drawn to fill the defined area; the other object types in this group are fit within that rec-
tangle. For example,a "CIRCLE" is placed within the defined rectangular area with the edges of the circle touching
each side of the area. Thus,a "CIRCLE" may appear as an ellipse if the coordinates do not define a square rectangle.
Additional routines further define the appearance and placements of arcs, pies, and rounded rectangles.

A "ROUNDRECT" is a rectangle with curved corners. The sides of a "ROUNDRECT" are drawn just as a similarly
defined "RECTANGLE" would be, except that the corners are curved. The size of the arcs in the corners may be

Interface Elements 179

defined with the TC_Graph_SetRoundRect routine:

CALL TC_Graph_SetRoundRect (gid, ovalwidth, ovalheight)
The ovalwidth and ovalheight arguments define the size of an oval whose four quadrants will form the cor-
ners of the rectangle. Thus, the larger the values for ovalwidth and ovalheight, the more rounded the cor-

ners of the rectangle. A "ROUNDRECT" drawn with no call to TC_Graph_SetRoundRect will have square cor-
ners (the ovalwidth and ovalheight each equal 0).

An "ARC" and a "PIE" are segments of circles drawn within the defined rectangular area. An "ARC" is a seg-
ment of a circle, and a "PIE" is an arc with lines from the ends of the arc to the center. The size of the "ARC" or
the "PIE" segment is defined with the TC_Graph_SetArc routine:

CALL TC_Graph_SetArc (gid, starta, stopa)

The starta and stopa arguments define two angles, in degrees. The arc is defined as the portion of the cir-
cumference of the circle (defined by the rectangular area in by TC_Graph_Create) that starts at starta and
ends at s topa, proceeding counterclockwise. The angle 0 is the positive x-axis.

To see examples of a arcs and pies, you can examine and run the DEMARC.TRU and DEMPIE.TRU programs in
the TBDEMOS directory installed with Silver Edition.

ALINE and LINE (Arrows and Lines)

The next two object types — "ALINE" and "LINE" — draw an arrow or a plain line. For them, the arguments
xL, xr, yb, and yt indicate that the line or arrow should begin at the point defined by the first x and y coordi-
nates (x L and yb) and end at the point defined by the second x and y coordinates (x r and y t). The following
example draws a line that slants down and to the right:

CALL TC_Graph_Create (cid, "LINE", .2, .8, .7, .3)

The line will be drawn from the coordinate point (.2,.7) to the coordinate point (.8,.3).

Lines with arrowheads are similarly created.
CALL TC_Graph_Create (cid, "ALINE", .2, .8, .7, .3)
The TC_Graph_SetAline routine then is used to define which end will have an arrowhead:
CALL TC_Graph_SetAline (gid, start, end)
Ifthe value of s t a r t is non-zero, an arrowhead is placed at the beginning of the line; if s t a r t equals zero, there

is no arrowhead at the start of the line. Similarly, a non-zero value for e nd places an arrowhead at the end of the
line. An "ALINE" drawn with no call to TC_Graph_SetAline will have no arrowheads.

The following example creates an arrow and places an arrowhead at the lower, right end of the line.

CALL TC_Graph_Create (cid, "ALINE", .2, .8, .7, .3)
CALL TC_Graph_SetAline (cid, 0, 1)

POLYGON and POLYLINE

For the remaining two object types — "POLYGON" and "POLYLINE" — the coordinates passed by the
TC_Graph_Create routine have no meaning (unless the object is scaled with TC_Graph_Scale described below).
The placement of these objects are defined by an array that is passed by the TC_Graph_SetPoly routine:

CALL TC_Graph_SetPoly (gid, pts(,))
The array pts must be a two-dimensional numeric array, with each row containing an x-y coordinate pair. The
“"POLYLINE" or "POLYGON" will be drawn connecting the points in the array in the order in which they are
given. Witha "POLYGON" object, a line is also drawn from the last point defined to the first, enclosing the polygon.
The following segment of the DEMPOLY.TRU program in TBDEMOS creates a star-shaped polygon:

LIBRARY "c¢:\TBSilver\tblibs\TrueCtrl.TRC" ! or appropriate path name
CALL TC_Init

180 True BASIC Language System

SET WINDOW -3, 3, -2, 2 ! Define user coordinates
CALL TC_Show (0) ! Show default window

! Generate points for a star

DIM start (10,2)

OPTION ANGLE degrees

LET i, r =1

LET short = Cos(72) / Cos(36)

FOR a = 90 to 414 step 36
LET star (i, 1) r * Cos(a) I x-coordinate
LET star (i, 2) r * Sin(a) ! y=coordinate
LET i =1 + 1
IF r =1 then LET r

NEXT a

short else LET r =1

CALL TC_Graph_Create (poly1, "POLYLINE", O, 1, 0, 1)
CALL TC_Graph_SetPoly (poly1, star(,))

To see the star shape created by the above code, run the DEMPOLY.TRU program in the TBDEMOS directory.

Images

You may be familiar with BOX KEEP and BOX SHOW, which are described in Chapter 13. These instructions per-
mit extraction of a portion of the True BASIC output screen into a string, called a “box keep string”, and later redis-
playing it at perhaps a different location. The box keep string keeps the image in pixel format; thus, the resolution
is dependent on the resolution of the screen. Furthermore, the box keep string format is different for different plat-
forms.

True BASIC also offers a way to display images in the image layer as a graphics object. The image layer is above
the plotting layer (used by box keep) on most platforms. True BASIC also provides a way to convert between
images and box keep strings.

Images as stored in files may be any one of several types: JPEG, BMP, and PICT (Macintosh only).

True BASIC provides two subroutines for converting between an image as stored in a file and a box keep string.

CALL Read_Image (imagetype$, boxkeepstring$, filename$)
CALL Write_Image (imagetype$, boxkeepstring$, filename$)

The first subroutine reads an image from a file, converting it into a box keep string in the local platform format,
and stores the result in boxkeepstring$. Permissible image types are: "JPEG",
""MS BMP", "0S/2 BMP",and "PICT",the last one being valid only for the Macintosh. The type must be spec-
ified exactly as shown, although you may use lowercase or mixed case letters. If you don’t know the image type,
leave that argument a null string; True BASIC will do its best to determine the image type from the contents of
the file.

The second subroutine does the reverse; it takes a box keep string, converts it to an image file format, and stores
the result in a file. Here you must specify the image type, but type " JPEG" is not allowed.

Once in a box keep string, an image may be displayed using the BOX SHOW statement. Or, you can grab part or
all of the contents of a window using a BOX KEEP statement, and then save it in a file in an image format.

Three subroutines allow you to deal with the image layer:

CALL TC_Graph_SetImageFromFile (gid, filename$, filetype$, adjustflag)
CALL TC_Graph_SetImageFromBox (gid, boxkeepstring$)
CALL TC_Graph_GetImageToBox (gid, boxkeepstring$)

The first subroutine allows you to display a graphics image in the image layer. Of course, the graphics object must
have been created using TC_Graph_Create, which also defined the id number g1 d. The filetype$ must be one of

Interface Elements 181

"JPEG","MS BMP","0S/2 BMP",and "PICT", the last one being valid only for the Macintosh. If you don’t

know the file type, use a null string; True BASIC will do its best to determine the image type from the contents of
the file.

The value of adjustflag tells the subroutine whether you want the image displayed in the rectangle you previously
defined (in which case it may be distorted,) in a rectangle of the same size as the image and centered at the center
of the rectangle you defined in TC_Graph_Create, or in a rectangle the same size as the image and centered in the
center of the logical window.

adjustflag = -1 ! center it in the window, keep original size
adjustflag = +1 I center it in the rectangle, but keep original size
adjustflag = 0 ! use the rectangle, scaling image if necessary

If you are displaying a startup logo, you'll probably want to have adjustflag = -1, as that will center the logo and
display it without scaling.

The second subroutine allows you to display the contents of a box keep string as an image in the image layer. No
provision is made here for adjusting the size of the image to fit the rectangle defined by your call to TC_Graph_Cre-
ate. You will probably know the exact size of the box keep image, and use rectangular coordinates consistent with
that size. Or, you can first write the box keep string into a file using the Write_Image subroutine, and then bring
it back using the TC_Graph_SetImageFromFile subroutine, allowing you to display without scaling.

The third subroutine allows you to take an image that has previously been displayed in the image layer and store
it in box keep format in a box keep string. This subroutine uses the rectangle of the image to define the limits of
the box keep process.

Suppose you wish to construct an image that would normally appear in the graphics layer and combine it with
graphics from the plotting layer. The idea is simple. Just read a graphical image from a file into a box keep string
using the Read_Image subroutine, display it using BOX SHOW, add additional True BASIC graphics as desired,
keep the whole using BOX KEEP, and finally saving the result in a file in image format using the Write_Image
subroutine. The following example shows typical code:

CALL Read_Image ("", bks$, imagefile$) ! Get the bit-mapped image
BOX SHOW bks$ at .2, .2 ! Display it in the plot Llayer
PLOT TEXT, at .4, .7: "Welcome to ABC Corp." ! Add other graphics

BOX KEEP 0, 1, 0, 1 in bks2$! Grab the entire window

CALL Write_Image ("MS BMP", bks2%, outfile$) ! and save it in MS BMP format

If you like, you can now display the combined result in the image layer with
CALL TC_Graph_Create (gid, "IMAGE", .1, .9, .1, .9)
CALL TC_Graph_SetImageFromFile (gid, outfile$, "MS BMP", 0)

Of course, you can always save box keep strings in their local format using the WRITE statement to a byte file, and
read them back the same way. But this approach is not platform-independent.

The possibilities can summarized as follows:

From an image in a file to: Use

Box Keep String Read_Image

Graphics Layer Read_Image, BOX SHOW

Image Layer TC_Graph_SetImageFromFile
From a BOX KEEP string to: Use

Image File Write_Image

Graphics Layer BOX SHOW

Image Layer TC_Graph_SetImageFromBox
From an image in the graphics layer to: Use

Image File BOX KEEP, Write_Image

BOX KEEP String BOX KEEP

Image Layer BOX KEEP, TC_Graph_SetImageFromBox

182 True BASIC Language System

From an image in the image layer to: Use
Image File TC_GetImageToBox, Write_Image
BOX KEEP String TC_GetImageToBox
Graphics Layer TC_GetImageToBox, BOX SHOW

Shifting and Scaling
Graphics objects may be shifted (translated or moved within the window) using the TC_Graph_Shift routine:

CALL TC_Graph_Shift (gid, xdelta, ydelta)

The object indicated by g1id will be shifted by xde L ta in the x direction and by yde L ta in the y direction.
Xdeltaand ydel ta should use the same coordinate system as the original graphics object.

Graphics objects may also be scaled (expanded or contracted) with TC_Graph_Scale:
CALL TC_Graph_Scale (gid, xscale, yscale)

If xscal e isgreater than 1, the object identified by g 1 d will be expanded in the x direction; if xscal e is less
than 1, the objected will be contracted in the x-direction. The same holds true for the y direction. The scaling is rel-
ative to the center of the object’s defining rectangle. For "POLYGON" and "POLYLINE" objects, the defining
rectangle, though ignored otherwise, is used for scaling the objects.

Pens and Brushes for Windows and Graphics Objects

Two sets of routines let you control the shape and appearance of lines, filled objects, and other graphics drawn in
windows. Three TC_Win routines set the attributes of objects drawn by regular True BASIC statements such as
PLOT, etc., while similar TC_Graph routines control the same attributes for True Controls graphical objects:

TC_Win_SetPen specify width, color, style and pattern of lines
TC_Graph_SetPen
TC_Win_SetBrush specify appearance of filled areas

TC_Graph_SetBrush

Although the two sets of routines are similar, they act a bit differently. The TC_Win routines affect subsequent
lines or graphics drawn by True BASIC statements in the designated window; it has no affect on any True Con-
trols objects. TC_Graph routines, however, act only on a designated True Controls object; they do not affect any
existing or subsequent objects, nor do they affect anything drawn by True BASIC statements.

TC_Win_SetPen and TC_Graph_SetPen let you specify the width, color, style, and pattern of any lines drawn
by True BASIC graphics statements or a True Controls object, respectively:

TC_Win_SetPen (wid, width, color, style$, pattern$)

TC_Graph_SetPen (gid, width, color, style$, pattern$)

For TC_Win_SetPen you supply the ID for a physical window (w i d) and for TC_Graph_SetPen you supply the
ID for a specific graphical object (g1 d). You specify the width of the line in pixels; the default widt h is 1 pixel.
You may use any of True BASIC’s color numbers (see Chapter 13) to specify the pen co Lor;the default color is
-1 (black). Thepen sty Le$ may be one of the following (case does not matter):

“sSoLID" solid line (default)
"poT" dotted line; only if widthis 1
"DASH" dashed line; only if widthis 1

If the pen width is something other than 1 pixel, the line will be solid regardless of the style$ setting. The
pattern$ string lets you specify a fill pattern for lines drawn as follows:

"SOLID" solid (default)
"HOLLOW" no visible pattern; overrides sty L e$ regardless of pen width
"RUBBER" grayish or dappled pattern; occurs only if sty le$ is solid and widthis 1

Interface Elements 183

The pen attributes may be changed at any time. For windows, the attributes affect all subsequent output from
True BASIC graphics statements, and existing True BASIC graphics may also be affected if the window is
redrawn. For True Control graphic objects, the object is redrawn on the screen to reflect the new attributes; no
other objects are affected. If wi d t h is less than zero, it is not changed; if co L o r is less than -2, it is not changed,;
if style$ or pattern$ is the null string, it is not changed. The demonstration program DEMSTYLE.TRU
illustrates how pen widths, styles, and patterns interact.

The TC_Win_SetBrush and TC_Graph_SetBrush routines control the appearance of filled areas created with
graphics statements or the area inside the specified graphical object, respectively:

TC_Win_SetBrush (wid, backclr, color, pattern$)
TC_Graph_SetBrush (gid, backclr, color, pattern$)

For TC_Win_SetBrush you supply the ID for a physical window (w i d) and for TC_Graph_SetBrush you sup-
ply the ID for a specific graphical object (gid). The backclr and color attributes, which may be any valid
True BASIC color number, set the background and foreground color for the entire window or the fill pattern,
respectively. The default co Lor is black (-1) and the default backc Lr is white (-2). The brush pattern$ string
may be any of the following patterns:

“soLIp" solid (default)

"HOLLOW" no visible pattern

"HORZ" horizontal lines

"VERT" vertical lines

"FDIAG" diagonal lines running from lower left to upper right
"BDIAG" diagonal lines running from upper left to lower right
"CROSS" crossing horizontal and vertical lines

"DIAGCROSS" crossing diagonal lines

As with pen settings, TC_Win_SetBrush changes affect all subsequent graphics statements, and may alter exist-
ing graphics, while TC_Graph_SetBrush affects only the designated object.

Creating and Using Text Edit Controls

You can include a text editor in your program. This type of control acts on all keypress and mouse events that occur
within it. It can handle several different fonts, font styles, and font sizes. The user can select text by clicking and
dragging the mouse. If you include scroll bars, they will be automatically synchronized with the text itself. You
may specify wrapped text in which lines are folded when they reach the margin. The True Controls library
TRUECTRL.TRC includes routines to carry out the cut, copy, and paste functions, and to find certain text
sequences.

Text Editor Options
To create a text edit control, make sure you are in the correct target window and use:
CALL TC_Txed_Create (cid, op$%, xl, xr, yb, yt)

The first argument will be the ID assigned to the control. The four coordinates define the outer limits of the text
edit control and include scroll bars and borders, if such are specified. The actual interior size available to the text
itself will be slightly smaller.

The options allowed for op$ are given in the following table. Multiple options must be separated by vertical bars (1).

184 True BASIC Language System

Text Edit Control Options

Op$ value Meaning

"ATTACHED" Embed in the window, resize if the window is resized
"READONLY" The user will not be allowed to change the text
"WRAP" Lines will be folded when they reach the margin
"MARGIN n" The desired margin, ignored unless the text is wrapped
"BORDER" Include a border

"VSCROLL" Include a vertical scroll bar

"HSCROLL" Include a horizontal scroll bar

"KEY EVENTS" Return key events as well as absorbhing them

"MOUSE EVENTS" Return mouse events as well as absorbing them

If youinclude "ATTACHED" as an option, the four positioning parameters will be ignored and the text editor will fill
the available space in the window. Furthermore, if the window is resized, the text edit control will be resized along
with it. And, if you have specified wrapped text with “WRAP", True Controls will reset the ma r g i n sothat all of aline
will be visible. Thus, if youuse "ATTACHED" with wrapped text, you will not need a horizontal scroll bar, as the entire
horizontal aspect of the text will be visible. Note also, if you want to use scroll bars with an attached text-edit control,
you must specify "VSCROLL" or "HSCROLL" or both as options when you create the window. True Controls will
therefore ignore the "VSCROLL" and "HSCROLL" options for an attached text edit control, as well asthe "BORDER"
option, since the window itself will provide a border.

"READONLY" can be used to present text that the user can not modify, such as help screens. "WRAP" specifies
that the lines of the text will be folded at the margin specified. If you use "WRAP", you may also specify a margin
with "MARGIN", which has the format:

MARGIN 120

where the number that follows the word "MARGIN" specifies with maximum width of the text in pixels. If the
option "ATTACHED" is used, then the margin is set automatically if the text is wrapped.

You can change the MARGIN setting at any time by using
CALL TC_Txed_SetMargin (cid, margin)

Remember that the margin must be expressed in pixels. If you specify a margin < 0, then the margin will be set to
the current width of the text edit control.

Include "BORDER" as an option if you want a border. Include "VSCROLL" if you want a vertical scroll bar; include
"HSCROLL" for a horizontal scroll bar. True Controls automatically places the scroll bars where they belong, and
takes care of synchronizing them with the text. (Do not include these options if the text editoris "ATTACHED" to
awindow.)

Mouse and Key Events in Text Editors

If you need to know about mouse events, in addition to having them acted upon by the text edit control, include
“MOUSE EVENTS" asan option. For example, you may wish to notify the user of the exact line and character posi-
tion of the cursor. These will be returned by TC_Event as " TXE MOUSE" events.

If you need to examine the user’s keystrokes, in addition to having them acted on by the text edit control, include
"KEY EVENTS" asan option. You may need to do this if, for example, you have defined one or more characters as
menu equivalents. With the "KEY EVENTS" option, all keystrokes will then be returned by TC_Event as " TXE
KEYPRESS" events, and the code (ASCII) of the key will be returned in x 1.

Instead of specifying "KEY EVENTS", you may wish to specify only certain characters as “trap characters” for spe-
cial treatment. Occurrences will be returned as “TXE KEYPRESS" events with the character number (ASCII

Interface Elements 185

code) in x 1. (The end-of-line character is always returned.) To specify a trap character, use:
CALL TC_Txed_SetTrapChar (cid, char, action)
Char is the (ASCII) code of the character to be trapped. Ac t ion is a numeric defined as follows:

Text Edit Trap Character Actions

Action Effect
1 The text edit control is suspended, and the character is ignored by the text edit control
2 The text edit control is not suspended, and the key is acted upon by the text edit control
3 If and only if there is selected text, the text edit control is suspended, and the character
is ignored by the text edit control
<0 The particular character is unregistered

All other action codes are ignored.

As examples, if you wish to use the Escape key to exit from the text edit control, give it a stop code of 1. If you wish
to readjust the scroll bars whenever the user presses the Enter or Return key, give it a stop code of 2. If you wish
toindent selected text when the user enters a “>”, give it a stop code of 3. (Note: True Controls always registers the
Return key (13) as a trap character with action 2.) In the cases of actions 1 and 3, you will need to have the text edit
control resume by issuing:

CALL TC_Txed_Resume (cid)

Text Input and Output with Text Editors
Once you establish the text edit control, you may wish to supply it with text. And later, if the user has made mod-
ifications, you may wish to retrieve the text, perhaps for saving to a file. Six routines are used for these purposes:

CALL TC_Txed_ReadTextFromFile (txid, filename$)
CALL TC_Txed_WriteTextToFile (txid, filename$)

CALL TC_Txed_ReadTextFromArray (txid, lines$())
CALL TC_Txed_WriteTextToArray (txid, Llines$())

The first two read and write the text edit control text from and to a file. The last two read and write the text edit
control text from and to a string array. These routines actually use the slightly more primitive routines:

CALL TC_Txed_SetText (cid, text$) ! Supply the text to the editor
CALL TC_Txed_GetText (cid, text$) ! Retrieve the text from the editor

The form of the text in the string variable tex t$ will be exactly as the text might be stored in a text file. Lines of
the text are assumed to be terminated with the system-dependent end-of-line sequence. The end-of-line character
sequence is typically character 13 (Return) or character 13 followed by character 10 (Line feed).

Be aware that what are called lines in a text file are called paragraphs in the text editor. These consist of strings
of ASCII characters terminated by an end-of-line sequence. What the text editor calls /ines are portions of a para-
graph that fit within the specified margin. The way paragraphs are divided into lines depends on the width of the
text editor, as well as on the font (name, size, and style) being used.

Fonts, Styles, Sizes, and Colors in Text Editors
The default font is ten-point , plain Helvetica. To specify another font, use:

CALL TC_Txed_SetFont (cid, fontname$, fontsize, fontstyle$)
Acceptable font names are "Helvetica", “"Times", “Fixed", and "System". Acceptable font styles are
"plain”, "bold", "italic", and "bold italic". Case (upper or lower) doesn’t matter. Additional font
names and font styles may be available on some systems. The font size is specified in points (a point is approxi-
mately 1/72 of an inch). If the font name or the font style is the null string, the previous value will not be changed.

186 True BASIC Language System

If the font size is a negative number, the previous size will not be changed.
You can find out what fonts are available by calling TC_FontsAvailable.

The default colors are black (-1) on white (-2) , with a black border. If you wish to specify other colors, use
CALL TC_Txed_SetColor (cid, forecolor, backcolor, bordercolor)

The three colors are numbers that refer to the color mix table currently in use (see Chapter 13 “Graphics”). If you
specify a number less than -2, the previous value of that color will not be changed.

Cut, Copy, and Paste with Text Editors
True Controls provides for the usual cut, copy, and paste functions.
CALL TC_Txed_Cut (txed)

CALL TC_Txed_Copy (txed)
CALL TC_Txed_Paste (txed)

In each case, it is assumed that text has been selected by the user, so that it shows in reversed color. Cut removes the
text from the text editor and places it on the system clipboard. Copy just places the selected text on the system clip-
board. Paste inserts the contents of the system clipboard at the insertion point, indicated by the insertion cursor; if
text has been selected, paste replaces the selected text with the contents of the clipboard.

If you have included menus in the window that contains the text editor, you may wish to create menu items for cut,
copy, and paste. You can then use the TC_Txed_SetCutCopyPaste routine to have True Controls intercept
those menu items and call the appropriate subroutine above. The format for this routine is:

CALL TC_Txed_SetCutCopyPaste (wid, cutm, cuti, copym, copyi, pastem, pastei)
For cutmand cut i, you supply the appropriate subscripts for the menu and item choice for Cut, and so on for
the remaining arguments. True Controls keeps track of a text edit control attached to a particular window, and

invokes appropriate cut, copy, or paste operations. Warning: the text edit control must be attached, and there can
be no more than one such attached text edit control.

Find Text in Text Editors
True Controls includes a search utility that works with either wrapped or unfolded text.
CALL TC_Txed_Find (cid, case, word, key$, par, Ln1, ch1, Ln2, ch2, found)

If you wish the search to be case-sensitive, set the variable ca s e to 1; otherwise, set it to 0. If you wish the search
to concentrate on entire words, set the variable wo rd to 1; otherwise, set it to 0.

The search key must be supplied in the string variable ke y $. The next five arguments specify where the search
should begin. (Note that if the text is not wrapped, then the line number is always 0. Also note that paragraph,
line, and character numbering start with 0.) To start the search at the beginning of the text, set all five values to
0.

If the search is successful, then the argument f ound will have the value 1. The matched text will be selected in
the text editor, and its position returned in the five arguments. If the search is not successful, f ound will have the
value 0, and the prior values of the five arguments will not be changed.

Note that the matched text must be contained within a single paragraph, whose number is returned in par.

Selecting Text in Text Editor
Finally, you may wish to select or highlight certain text in the text editor. For example, you may wish to highlight
certain portions of a help file. This can be done with

CALL TC_Txed_SetSelection (cid, par1, Ln1, ch1, par2, Ln2, ch2)

You must, of course, determine the correct values of the starting and ending paragraphs, lines, and characters.
And remember that paragraph, line, and character numbering starts with 0.

Interface Elements 187

Example of Text Edit Control

To see an example of a text edit control, you can examine and run the DEMTXED.TRU program in the TBDEMOS
directory.

True Controls Events Summary
The True Controls subroutine TC_Event returns the first event on the event queue. The calling sequence is:

CALL TC_Event (timer, event$, window, x1, x2)

If there is an event in the event queue, TC_Event returns immediately reporting the event type in event$. If
there is no event in the event queue, then TC_Event will wait for the number of seconds specified by timer. If
an event happens during that time, TC_Event returns immediately with that event$; if no event occurs, the
routine returns an empty stringto events$.

Note that, even if the event is returned by TC_Event, that subroutine may already have taken certain actions.

If an event has taken place, the remaining three arguments return additional information about the event. Win-
dow returns the physical window ID, and x1 and x 2 return values specific to the event type. The values of x 1
and x 2 returned for each e ven t $ type are summarized in the table that follows. (The event$ string is returned
in upper case. The notation “—-” means that the value of the variable is ignored.)

Events Returned by TC_Event

Event$ x1 x2
From mouse activity in windows:
“SINGLE x-coord y-coord
“DOUBLE” x-coord y-coord
“EXTEND” x-coord y-coord
“SINGLE RIGHT” x-coord y-coord
“DOUBLE RIGHT” x-coord y-coord
“EXTEND RIGHT” x-coord y-coord
“SINGLE MIDDLE” x-coord y-coord
“DOUBLE MIDDLE” x-coord y-coord
“EXTEND MIDDLE” x-coord y-coord
“MOUSE UP” x-coord y-coord
“MOUSE UP RIGHT” x-coord y-coord
“MOUSE UP MIDDLE” x-coord y-coord
“MOUSE MOVE” x-coord y-coord
From key press in a window
“KEYPRESS” ASCII code 1if shift key down; 2 if control key down;
3 if both; 0 if neither
From menu selection
“MENU” menu number item number
Events related to windows
“SIZE” — —
“REFRESH” — —
“SELECT” — —
“HIDE” — —
From scroll bars
“UP — ID of scroll bar; —- if attached to a window
“DOWN” — ID of scroll bar; — if attached to a window

“LEFT” — ID of scroll bar; —- if attached to a window

188 True BASIC Language System

“‘RIGHT” — ID of scroll bar; —- if attached to a window
“PAGEUP” — ID of scroll bar; —- if attached to a window
“PAGEDOWN” — ID of scroll bar; —- if attached to a window
“PAGELEFT” — ID of scroll bar; —- if attached to a window
“PAGERIGHT” — ID of scroll bar; —- if attached to a window
“VSCROLL” — ID of scroll bar; —- if attached to a window
“HSCROLL” — ID of scroll bar; —- if attached to a window
“END VSCROLL” — ID of scroll bar; —- if attached to a window
“END HSCROLL” — ID of scroll bar; —- if attached to a window
Events from list boxes and list buttons
“CONTROL SINGLE — control ID
“CONTROL DOUBLE — control ID
From push buttons, radio buttons, check boxes, edit fields, list edit buttons, & text edit controls.
“CONTROL SELECT — control ID
“CONTROL DESELECTED — control ID
From text edit controls.
“TXE KEYPRESS char ID
“TXE MOUSE 0 ID

Creating and Using Dialog Boxes (True Dials)

The True Dials routines let you create warning dialog boxes, yes-no response dialog boxes, one-line and multiple-
line dialog boxes, file open and file save dialogs, and list selection boxes. The dialog box routines are saved in a sep-
arate library from the other user interface items because they act and are used a bit differently than the other
objects.

All dialog boxes are modal; that is, no action can occur outside the dialog box until the dialog box activity is completed
or has “timed out”. By default, dialog boxes are placed in the center of the active window by True Dials. Thus, the True
Dials routines are a bit easier to use than the True Controls routines.

All of the True Dials routines call on the powerful TBD built-in subroutine. Users who want direct control of dia-
log boxes should refer to the TBD routine in Chapter 21. Additional control over placement and size is provided by
the TBDX subroutine.

The True Dials routines have names that begin with TD_ and are saved in the TRUEDIAL.TRC library, which
must be named at the beginning of any program that will call the routines. Your programs will start faster if you
use the compiled version of the library. The following statement uses the compiled library in Windows or OS/2:

LIBRARY "¢:\TBSilver\TBLIBS\TrueDial.trc" ! or appropriate path name
On the Macintosh, the statement might be:

LIBRARY "hdisk:TBSilver:TBLIBS:TrueDial.trc" ! use appropriate disk & folder names
There is no initialization routine that must be called and no need to “clean up” after you've used dialog boxes.
Different types of dialog boxes are set up by different routines as described below. These routines share many of
the same arguments:

Arguments Used by True Dials Routines

title$ specifies the title that appears at the top edge of some of the dialog boxes. On some plat-
forms, such as the Macintosh, the title will not show for any of the dialog boxes.

message$ specifies the message that is to appear in the dialog box. The message may contain several
lines, which should be separated in the me s sage$ string by vertical bars (1). If there is
not enough room for the message, it will be truncated.

Interface Elements 189

button$ specifies from one to four buttons that may be displayed in the dialog box. The texts for the
buttons should be separated in the string but ton$ by vertical bars (1). If there is not
enough room in a button to display the text, it will be truncated.

default specifies which button, if any, is to be outlined. An outlined or selected button can be acti-
vated by pressing the Return or Enter key.

result specifies which button was selected to terminate the dialog box. If timeout has occurred,
result = 0.

When a dialog box is created, it remains on the screen and no other activity can occur until the user responds, or
until it has “timed out.” You can set the timeout parameter, which by default is 0 (which means no timeout), using
the following routine:

CALL TD_SetTimeout (seconds)
Dialog boxes will be displayed for the specified number of seconds. If seconds is 0 (the default), there is no
timeout and the dialog box will remain until the user responds. This statement must be executed to set the time-
out before a dialog box is displayed; it remains in effect until another call to TD_SetTimeout. A similar routine
may be used to find out what the current timeout is:

CALL TD_GetTimeout (seconds)

The True Dials routines that create the various kinds of dialog boxes are described in the following sections.

Warning Box

CALL TD_Warn (message$, button$, default, result)
TD_Warn displays the messageinmessage$. The but t on$ string may contain text for up to four buttons, with
vertical bars separating the buttons. The box remains on the screen until the user presses a button or until timeout
occurs. (Note: it is not possible in this version of True BASIC to display special icons along with the warning message.)
The message may contain up to ten lines with the vertical bars “|” separating the lines.

The DEMWARN.TRU program in TBDEMOS illustrates a simple warning box:

LIBRARY "¢:\TBSilver\TBLIBS\TRUEDIAL.TRC ! or appropriate path name
DO
CALL TD_Warn ("message from ET", "Read it|Ignore it]|Quit", 1, result)
IF result = 3 then EXIT DO ' Quit
IF result = 1 then ' Show message
LET title$ = "Here is a message from ET"
LET message$ = "From outer space:|Hello, down there."

CALL TD_Message (title$, message$, "Again|Quit", 1, result)
IF result = 2 then EXIT DO

ELSE
PAUSE 1

END IF

LOOP
END

Run the DEMWARN.TRU program to see the warning box created by this code.

Message Box with Title

CALL TD_Message (title$, message$, button$, default, result)
TD_Message displays the message in message$. The dialog box is slightly larger than the one used for
TD_Warn, and has a title bar. Again, the box remains on the screen until the user presses a button or until time-
out occurs. As with TD_Warn, the message may contain up to ten lines; the vertical bar “|” is the line separator.

190 True BASIC Language System

Note: On the MacOS, message boxes cannot have titles.
The DEMWARN.TRU example shown above uses a message box to print the message if requested

Yes-No Box
CALL TD_YN (message$, default, result)

TD_YN displays the message in me s sage$ along with two buttons, one labeled “Yes” (button 1) and the other
“No” (button 2). The box remains on the screen until the user clicks on one of the boxes or until timeout occurs. As
in TD_Warn and TD_Message, the message may contain up to ten lines, with multiple lines separated by verti-
cal bars ().

Yes-No-Cancel Box
CALL TD_YNC (message$, default, result)

TD_YNC displays the message in message$ along with three buttons, one labeled “Yes” (button 1), the next
“No” (button 2), and the last “Cancel” (button 3). The box remains on the screen until the user clicks on one of the
boxes or until timeout occurs. As in TD_Warn and TD_Message, the message may contain up to ten lines, with
multiple lines separated by vertical bars ().

The program DEMYNC.TRU in TBDEMOS illustrates a yes-no-cancel box:
LIBRARY "c¢:\TBSILVER\TBLIBS\TRUEDIAL.TRC ! or appropriate path name

DO
CALL TD_YNC ("Do you want to quit?", 1, result)
SELECT CASE result

CASE 1 ' Yes
PRINT "Quitting"
PAUSE 1
EXIT DO
CASE 2 ' No
PRINT "Continuing"
PAUSE 3
CASE 3 ! Cancel
Print "Canceling"
PAUSE 1
END SELECT
LOOP
END

Run the DEMYNC.TRU program to see the box created by this code.

Input Box
CALL TD_Input (message$, button$, text$, default, result)

TD_Input displays a one-line text field that may be edited; the initial and final values arein text$.
The program DEMINPUT.TRU in TBDEMOS illustrates this dialog box:
LIBRARY "c:\TBSilver\TBLIBS\TRUEDIAL.TRC ! or appropriate path name

"Enter your name."
"0K|Cancel |Quit"

LET message$ =
LET buttons$ =
DO

LET name$ = " " ' Initially must be non-blank

CALL TD_Input (message$, buttons$, name$, 1, result)

SELECT CASE result

Interface Elements 191

CASE 1 I 0K
PRINT "You just entered: "; name$
PAUSE 1
CASE 2 I Cancel
PRINT "You just canceled"
PAUSE 1
CASE 3 I Quit
PRINT "You just quit"
PAUSE 1
EXIT DO
END SELECT
LOOP
END

Run the DEMINPUT.TRU program to see the box created by this code.

Multiple Input Box
CALL TD_InputM (title$, message$, button$, name$(), text$(), start, default, result)

TD_InputM displays a multiple-line set of text edit fields. The names of each line appear to the left of the editable
portion and are in the string array name$ (). The initial and final values of the text lines are in the string array
text$(). Start specifies the line in which the editing cursor initially appears. The arrays name$() and
text$ () should have the same size; if they do not, the shorter one will be padded with blanks. Note: on the Mac-
intosh, input boxes cannot have titles.

The program DEMINPTM.TRU in TBDEMOS illustrates a multiple-line input box.

Line Input Box
CALL TD_LineInputM (message$, text$)

TD_LineInput displays a single-line input box with the message provided. There is but a single button — “OK”.
The returned text$ may consist of the null string.

File Open Box

CALL TD_GetFile (type$, filename$, changedir)

TD_GetFile displays a typical file open dialog box. The list of file names displayed may be limited with the first
argument. Unfortunately, this argument is used differently on different platforms. On Windows and 0S/2, it spec-
ifies an extension (e.g., “tru”) that may be used to limit the file names displayed; if extension$ is the null
string, all file names are displayed. The extension may be specified in lower- or uppercase, but the period (.) must
not be included. On the Macintosh, the first argument specifies the Macintosh FILE TYPE for the file names to be
displayed. The types “TEXT” and “TEXTTRUE” will result in all True BASIC files being displayed. The selected
filenameisreturnedin filename$.If changedir =0, the useris not allowed to change directories in the course
of searching for the desired file name. If changedir =1, the user may change directories.

Save File Box
CALL TD_SaveFile (type $, filename$)

TD_SaveFile displays a typical file save dialog box, which is similar to a file open box with an additional line con-
taining the suggested file name. See the description of TD_GetFile, just above, for the user of the first argument
to limit the file names displayed. The suggested file name is supplied in f i Lename$, and the selected file name
isreturned in filename$. The user is allowed to change directories.

192 True BASIC Language System

Selection List Box
CALL TD_List (message$, button$, Llist$(), choice, default, result)

TD_List displays a scrollable list of choices, which are supplied in the array L ist$ (). The number of the user’s
selection is returned in choi ce. The box remains on the screen until the user clicks on one of the buttons or until
timeout occurs.

The DEMSLIST.TRU program in the TBDEMOS directory illustrates the selection list dialog box.

193

CHAPTER

15

Sound and Music

With True BASIC you can enhance your programs with a wide variety of sounds and music. The PLAY statement
lets you play music using codes close to Western musical notation. The SOUND statement lets you generate a
wider range of noises, with finer control over the output.

Using the PLAY Statement

You can play simple melodies on your computer with a statement such as:
PLAY melody$

where me Lody$ is a special music string. Here’s an example:
' Play "Amazing Grace"

LET a1$ = "t100 ml o4 d4 g2 b8 g8 b2"
LET a2$ = "a4 g2 e4 d&. r8"
LET a3$ = "d& g2 b8 g8 b2 a8 mn >d8 d2. ml r2"
LET b1$ = "<b& >d4. <b8 >d8 <b8 g2"
LET b2$% = "d4 e4. mn g8 g8 ml e8 d&. r8"
LET b3$ = "d& g2 b8 g8 b2 a4 g2. r2"
LET m$ = a1$ & a2% & a3%$ & b1$ & b2% & b3$
FOR times = 1 to 3
IF times = 3 then I Last time
LET Ln = Len(m$)
LET m$Lln-1:Lln] = "g2" ! Repeat last note
END IF
PLAY m$
NEXT times

END

Normally, True BASIC waits for the melody to end before moving to the next statement. However, you can also
play music “in the background” while computing continues if you use the MB option (which works on all versions
except for Windows 3.x) described below.

The music string may contain codes for:

* thenotes
* thelengths of notes
* thetempo

* whether to play in the foreground or the background

You may enter letters in either upper or lowercase, and you may insert spaces anywhere in the string to enhance
readability.

194 True BASIC Language System

The following table lists all the codes allowed in a music string for the PLAY statement:
Codes for PLAY Statement Music Strings

Notation Meaning
A through G Name of note
#or+ Sharp
- Flat
RorP Rest
On Octave number n
> Next octave up
< Next octave down
Ln Notes are length n
Tn Tempo n
ML Legato
MN Normal
MS Staccato
MF Play in foreground (default)
MB Play in background (except on Windows 3.x)

Thus, C# represents a C-sharp and B represents a B-flat.

Octaves start with C and end with B, and they are numbered 0 through 7. Middle C is the beginning of octave 4. If
no octave if specified, the default is octave 5. You may specify a new octave either by O (the letter “oh”) followed by
the octave number, or by using > or < to move up or down an octave. In the example above, “Amazing Grace” is
played in 04 except for a few notes that are one octave higher in strings a3%$ and b1$.

A positive integer indicates the length of a note — 1 stands for a full note, 2 is a half note, 3 is a triplet, 4 a quarter
note, 8 an eighth, etc. You may use the L code to specify the length of notes; for example, L2 means that the fol-
lowing notes are half notes. Or you may attach the integer to the name of a note or rest, asin A2 or R4. You may
also use these two methods in combination. If you specify L &4, notes that follow are quarter notes unless they are
followed by an integer. You may also indicate a “dotted note,” as in A4 ., which multiplies the length by 3/2. If no
length is indicated, the default is a quarter note, or L 4.

You specify tempo with the letter T and an integer indicating the number of quarter notes to play in a minute. The
default is T120, the standard speed of a metronome. To play the melody faster, increase the integer; to play
slowly, decrease the integer. “Amazing Grace” uses the code T100 to play a bit slower than standard speed.

You can also modify the way notes are played with ML, MN, and MS for legato, normal, and staccato. With “legato”
mode, each note is played for the full length of time specified by the L code, which makes the melody sound slower
and more sweeping. In “normal” mode a note plays 7/8 the specified time with a little break after each note to give
crispness to the melody. In “staccato” mode notes are played to 3/4 of their length, making the melody quite brisk.
The “Amazing Grace” example plays primarily in legato, but switches to normal mode for a few notes (see the
stringsa3$ and b2$).

Finally, the MF code plays the melody in foreground (the default), while the MB code plays the melody in the back-
ground. When the melody is being played in the foreground, True BASIC executes no other statements until the
PLAY statement is done. When the melody is being played in the background, other statements are executed

Sound and Music 195

while the melody is playing; the one exception is the execution of another PLAY statement. If you want to cut off
the background melody at some point, include the statement:

SOUND O, O

Using the SOUND Statement
The SOUND statement is harder to use than PLAY, but gives you complete flexibility. For example, the state-
ment:

SOUND 440, 10

plays concert A, which has a frequency of 440 Hertz, for 10 seconds. The SOUND statement requires two numeric
values: the first specifies the frequency of the sound in Hertz, and the second gives the duration in seconds.

Very short sounds repeated rapidly may not be reproduced properly.

196 True BASIC Language System

197

CHAPTER

16

Error Handling

If when compiling or running your program True BASIC encounters a problem it cannot handle, it stops the com-
pilation or run and prints an error message identifying the type of error and where it occurred.

Errors that True BASIC detects during compilation before it begins to execute the code are called compile-time
errors. These are often caused by typing errors or statements that do not follow the rules described in previous
chapters. The True BASIC Editor reports such errors in the debug window; the Language System prints compile-
time errors in an output window. In both cases, True BASIC indicates the problem and line containing the error.
“The True BASIC Environment” chapter in the introductory section describes how these errors are reported, and
Appendix C includes explanations for these messages; refer to the appropriate sections in the manual for help on
correcting the errors.

Errors that occur when a program is running are called run-time errors or exceptions. When an exception
occurs, True BASIC assigns it an error number and an error message. Some errors, such as division by zero, are
fatal and will stop the program. True BASIC is able to continue the program after other, non-fatal errors, such
as incorrect user input.

You can add error handlers to your programs to prevent fatal errors from stopping your programs or to handle
non-fatal errors your own way. The WHEN structure and built-in error functions let you intercept errors and error
messages.

A program may also create its own specialized error, if, for example, it requires very specific input formats or if cer-
tain values must remain within a designated range. The CAUSE statement generates an error and assigns it an
error number and an error message.

This chapter discusses True BASIC’s built-in errors, the CAUSE statement for defining additional errors, and the
built-in functions and WHEN structure that let you prevent errors from stopping your program or handle non-
fatal errors your own way.

About Errors

Whenever a run-time error or exception occurs, True BASIC assigns it an error number and an error message. It
also notes where the error occurred. Error handlers and error functions, described in the sections below, let you

use this information in your programs. Appendices B and C list all the error numbers and messages generated by
True BASIC.

If an error is fatal, True BASIC stops the program and prints the error message in the Error Window. If the error
occurs in a procedure outside the main program unit, True BASIC identifies both the offending line in the proce-
dure and the line in the main program that invoked the procedure that caused the error. Examples of fatal errors
include attempts to divide by zero, to calculate a number larger than the computer can handle, or to open a file that
doesn’t exist or is the wrong type You can use an error handler to intercept such errors and handle them in your
own way as shown in the next section.

If the error is non-fatal, the True BASIC corrects the error (or asks the user to correct the error) and continues.
Most non-fatal errors are input mistakes. For those, True BASIC prints an error message and requires the user to
re-enter the information. For other non-fatal errors, True BASIC makes an adjustment or uses a previous value

198 True BASIC Language System

and continues the program. (Both Appendixes B and C identify the non-fatal errors; the error-message explana-
tions in Appendix C describe what happens after non-fatal errors.) As with fatal errors, you can intercept non-fatal
errors with an error handler and handle them in your own way.

True BASIC’s error numbers all have absolute values of 1000 or higher (some error numbers are negative). The
numbers with absolute values of 1 through 999 are therefore available for you to use when generating specialized
errors. Many of the True BASIC libraries also use the lower numbers. These numbers are helpful when you use an
error handler to protect against errors. As you'll see in the sections below, you can use the error number to iden-
tify the type of error that occurred.

You might want to create errors specific to your program’s function. For example, if your program plays a game in
which certain moves are prohibited at certain times, the program could generate an error when the player
attempts an illegal move:

INPUT nextmove
IF level < 4 and nextmove > 10 then

CAUSE ERROR 100, "Moves greater than 10 prohibited below level 4"
END IF

With the CAUSE statement you must define an error number, and you may also define an error message. These
errors are always fatal. In the simple example above, if the CAUSE statement is executed the program will stop
at that line and display the defined error message. This ability to create errors is most helpful when you also use
an error handler to cope with the error. The final section of this chapter illustrates the use of the CAUSE state-
ment within WHEN structures to handle some very specific input requirements.

Using the WHEN Structure

The WHEN structure protects a block of code from errors and lets you specify what the program should do if an
error occurs within that block. This process is called “handling an error,” and for this reason the WHEN structure
is often referred to as an error handler.

Here’s an example that shows a common use of an error handler. This subroutine opens a file. It asks the user for
the name of a file and attempts to open it with the type and access specified by the calling program:

SUB FileOpen(org$, acc$, #9) ! Protected file opener
DO
CLOSE #9 ! In case file still open
PRINT "File name";
INPUT fname$
WHEN ERROR IN
OPEN #9: name fname$, org org$, access acc$

EXIT SUB ' Success
USE
PRINT "Cannot open that file."
END WHEN
LOOP
END SUB

The error handler starts with the line WHEN ERROR IN (or WHEN EXCEPTION IN), followed by the pro-
tected code. The USE statement separates the block of protected code from the block of handler code, in which
you specify what to do in case of an error. The error handler must end with an END WHEN statement, which also
serves to mark the end of the handler code. Normally, only the protected code is executed, but if an error occurs
during the execution of the protected code, the program jumps to the line immediately following the USE state-
ment and executes the handler code.

In this example, the WHEN structure protects the OPEN statement. If an error occurs, it is most likely because
the file does not exist or is of the wrong type. Control then goes to the handler code, which prints a message. The

Error Handling 199

program returns to the beginning of the loop and gives the user another chance. If the OPEN is successful, EXIT
SUB is executed, exiting both the enclosing DO and WHEN structures.

The WHEN structure can help you identify non-fatal errors that True BASIC would normally handle itself. For
example, if the argument to the TAB function is less than one:

PRINT TAB(-2); "Hello, out there."

True BASIC assumes the argument to the TAB function is 1, and the program continues. This could be the result
of a programming error, however — especially if the argument to the TAB function is a variable calculated else-
where. You can intercept such non-fatal errors by placing the potentially offending line in the protected part of a
WHEN structure:
WHEN ERROR IN
PRINT Tab(tabstart); "Value"
USE

PRINT "Tab is set to"; tabstart
END WHEN

This will reveal when the value of tabstart is less than one.

Any statement, except for procedure definitions, may occur in the protected code. There can be calls to procedures,
in which case any error occurring in the invoked procedure is also intercepted. However, if the called procedure
has its own error handler, it can handle its own errors or it can “pass them up.” Passing up errors is discussed
below.

The handler code may also consist of any block of code except for procedure definitions. This gives you great flexi-
bility in handling errors. The next section describes two additional statements that are permitted only in the han-
dler code of an error handler.

Using RETRY and CONTINUE

The handler code of an error handler may contain two special statements: the RETRY statement, which transfers
control back to the statement that caused the error, and the CONTINUE statement, which transfers control to
the statement that “logically follows” the statement that caused the error. These statements are not allowed out-
side an error handler.

As an example, suppose you don’t like True BASIC’s messages for faulty responses to a form of the INPUT state-
ment (all of which are non-fatal errors). You can substitute your own message, as follows:

WHEN EXCEPTION IN
INPUT age, ht, wt

USE
PRINT "Enter your age, height, and weight,"
PRINT "on the same line, separated by commas,"
PRINT "as in '? 27,71.5,185"'"
RETRY

END WHEN

As another example, consider the SET TEXT JUSTIFY statement. If the program specifies an improper value for
the SET TEXT JUSTIFY statement (see Chapter 13 “Graphics”), True BASIC normally ignores the improper
value and uses the previous one. If you want the program to continue but not necessarily use the previous value,
you could use the following:

WHEN ERROR IN
SET TEXT JUSTIFY horiz$, vert$
CALL Instructions
USE
PRINT "Improper TEXT JUSTIFY values. I'Ll center the text for you."
PAUSE 2
CLEAR

200 True BASIC Language System

SET TEXT JUSTIFY "center", "half"
CONTINUE
END WHEN

Using Error Functions

There are four functions that provide information about an error. These error functions let you work with the error
number, error message, and information about the location of the error. They always refer to the most recent error.
Since fatal errors stop the program unless intercepted by an error handler and non-fatal errors are ignored unless
intercepted by an error handler, these error functions are generally used only in the handler code of an error handler.

The EXTYPE function returns the error number of the most recent error. It is 0 if no error has occurred. Knowing
that the numbers of True BASIC’s built-in errors have absolute values 1000 or higher and that errors in True
BASIC libraries (and perhaps those you created) have error numbers with absolute values of 1 through 999, you
may use the EXTYPE number to separate types of errors.

The EXTEXTS$ function returns the string that True BASIC would have printed as an error message. You might
wish to have an error handler print this, showing the user what error occurred, even though the program will con-
tinue. If no error has yet occurred, the null string is returned.

The following example uses the EXTYPE and EXTEXTS$ functions to respond appropriately to either a True
BASIC error or one defined by the program:

DO
WHEN ERROR IN
INPUT PROMPT "Enter your next move: ": nextmove
IF Llevel < 4 and nextmove > 10 then
CAUSE ERROR 100, "Moves greater than 10 prohibited below level &"
END IF
EXIT DO ' Success; exit the handler
USE
IF Abs(Extype) < 1000 then ! Program-defined error
PRINT Extext$
PRINT "To review the rules, press I,"
PRINT "To re-enter your next move, press any other key."
GET KEY k
IF k = 0rd("i") or k = Ord("I") then CALL Instructions
ELSE ' True BASIC error
PRINT Extext$
END IF
END WHEN
LOOP

If the absolute value of the EXTYPE function indicates a program-defined error, the user gets the option of
reviewing the rules for entering moves. No matter what the type of error, the program uses EXTEXTS$ to print the
error message and then loops back to the INPUT statement.

The EXLINE function returns the line number where the error occurred. This number is either the sequential
position of the line in the file containing the program unit, or, if the program uses line numbers, it is the line num-
ber of the offending line.

The EXLINES$ function returns a detailed description of the location of the most recent error. The result of the
EXLINES$ function is a string that describes the “path” from the location of the intercepted error to the error han-
dler that intercepted it. This path begins with the number of the line and the name of the procedure where the
error occurred, followed by the name and line number of the procedure that invoked the procedure containing the
error, and so on. Thus, by tracing the line numbers and subroutine names in this “lineage” you can trace the
sequence of procedure calls that resulted in the error. If the total number of procedures involved in the lineage is
greater than ten, only the first five and the last five will be listed.

Error Handling 201

Passing Errors

You can use several layers of nested error handlers to protect a given block of code. For example, the main program
may protect some code that calls a subroutine. The subroutine may have its own error handler and may invoke a
function that has its own error handler. If an error cannot be handled conveniently at a given level, it can be
“passed up” to the calling procedure.

Any error that occurs in a procedure and is not handled there (i.e., is not contained in the protected part of a
WHEN structure) is automatically passed back to the calling procedure. The error is then deemed to have
occurred at the CALL statement that invoked the offending procedure. Thus, in the following example:
CALL Test
SUB Test
LET x = 1/0
END SUB

error 3001 (division by zero) occurs at the LET statement but is not handled there. Therefore, the error is “passed
back” to the CALL statement. If the CALL statement is contained within a WHEN structure, the error is handled
there. If there is no WHEN structure and the CALL statement is itself within a procedure, the error is passed back
to that calling procedure, and so on. If there is no higher error handler, an error results and the error message is
printed.

You can also explicitly “pass up” an error with an EXIT HANDLER statement or with a CAUSE ERROR state-
ment. The simplest method is to use the EXIT HANDLER statement within the handler code of an error handler.

For example, suppose you wish to intercept a potential overflow (calculation of a number larger than the computer
can handle), but let the calling procedure handle any other errors:
SUB Calculate (a, b, ¢, result)

WHEN ERROR IN
LET result = a*b/c

USE
IF Extype = 1002 then ' Overflow
LET result = Maxnum ' Make it very large
ELSE
EXIT HANDLER ! Let someone else handle
END IF
END WHEN
END SUB

In place of the EXIT HANDLER statement, you could use a CAUSE statement to specify a number and message
of your own to be passed up to the calling procedure:
SUB Calculate (a, b, ¢, result)
WHEN ERROR IN
LET result = a*b/c

USE
IF Extype = 1002 then ! Overflow
LET result = Maxnum ! Make it very Llarge
ELSE
CAUSE ERROR 888, "This calculation is not possible"
END IF
END WHEN
END SUB

Used inside the handler code, the CAUSE statement generates an error that is not intercepted by the error han-
dler containing it. Instead, the error number specified in the CAUSE statement is assigned to the EXTYPE func-
tion, the error message specified in the CAUSE statement (if present) is assigned to EXTEXTS$, and that infor-
mation is passed back to the calling procedure. It is therefore up to the calling procedure to handle the error, or the

202 True BASIC Language System

error will be passed up to the next higher routine. This process continues until the error has been passed up as far
as it can go (which is the main program), and if the error has still not been handled, it stops the program run.

Note that although the CAUSE statement may occur anywhere, the EXIT HANDLER statement may be used
only in handler code blocks. Also, the EXIT HANDLER statement does not change the values of EXTYPE and
EXTEXTS.

In either case, the error is passed up to the next higher error handler. For example, an error in a procedure might
be passed up to the program unit that called the procedure. If there is no higher error handler, an error results and
the current error message is printed.

Using Detached Handlers

WHEN structures normally have two parts. The part between the WHEN line and the USE statement is called
the protected code; and the part between the USE statement and the END WHEN statement is called the han-
dler code.

The handler code, however, may also be defined in a separate structure and given a name, like a subroutine. Such
a structure is called a detached handler, and it is defined using the HANDLER structure. With detached han-
dlers, two or more protected parts may use the same handler code. Note, however, that the detached handler must
be in the same program unit as the protected part that will use it. In this regard it is like an internal subroutine.

Consider these two WHEN structures:

WHEN ERROR IN

OPEN #1: name infile$
USE

PRINT "Can't open the file."
END WHEN

WHEN ERROR IN
OPEN #2: name outfile$

USE
PRINT "Can't open the file."
END WHEN
They could be changed to:

HANDLER CantOpen
PRINT "Can't open the file."
END HANDLER

WHEN ERROR USE CantOpen
OPEN #1: name infile$
END WHEN

WHEN ERROR USE CantOpen
OPEN #2: name outfile$
END WHEN

You must be careful that the detached handler will properly handle all the errors that might be referred to it. For
instance, in the above example the detached handler cannot print the name of the file that could not be opened,
since the value of the offending file name is contained in two different variables.

Examples of Error Handlers

This section builds a library of utility routines, each useful in itself but also used by later routines. Each illustrates
a strategy for error handling, and the last shows how to sort out various types of errors.

Error Handling 203

The first procedure converts a string into a number:
SUB Convert(n$,n) ! Protected number converter
WHEN ERROR IN
LET n = Val(n$)
USE
CAUSE ERROR 100, "Not a number"
END WHEN
END SUB

If n$ does not represent a number, then the VAL function causes an error. The True BASIC error message about
a “VAL string” would confuse the user who does not know that the program used the VAL function. Hence the sub-
routine intercepts it and issues a simple error message.

The next subroutine calls the Conver t routine defined above and makes sure the number is an integer.

SUB Integer(n$,n) ! Must be an integer

CALL Convert(n$,n)

IF n <> Int(n) then CAUSE ERROR 200, "Not an integer"
END SUB

Either error 100 (from Convert)or 200 could occur, and each error message is appropriate.

Finally these two subroutines could be used by an input routine that asks the user to type a fraction, such as
“17/64”, and returns the numerator and denominator. This routine intercepts any error, sends a relevant message,
and gives the user another chance:
SUB Get_fraction(prompt$,n,d) ! numerator, denominator
DO
WHEN ERROR IN

PRINT prompt$; ' Prompt user
LINE INPUT x$
LET p = Pos(x$,"/") ' Find /
IF p = 0 then CAUSE ERROR 300
CALL Integer(x$L1:p=-11,n) ! Numerator
CALL Integer(x$Lp+1:10001,d) ! Denominator
IF d = 0 then CAUSE ERROR 400
EXIT SUB ' ALL ok

USE

IF Extype = 400 then
PRINT "Denominator cannot be 0"

ELSE
PRINT "Type: integer / integer"
END IF
END WHEN
LOOP
END SUB

The loop gives the user repeated chances if needed. A WHEN structure protects the body of the code. First, the
LINE INPUT accepts any input. Next the routine looks for “/” and causes an error if there is no “/”; this error in
turn causes the program to jump to the handler code, and the rest of the protected code is skipped. If “/” is found,
the routine calls Integer twice, which in turn calls Conver t. Either of these may cause an error and jump
into the handler code. Finally, the routine causes an error if the denominator is zero.

The EXIT SUB statement is reached only if everything is correct. Since this is the only way out of the loop, the rou-
tine repeats until the user enters a legal fraction.

If an error is intercepted the handler code decides what error message to issue. Errors 100, 200, 300 all have to do
with incorrect format, so they can use same message. Error 400, however, needs a different error message. Note
that the first error detected throws the program into the handler code; only one error message can result.

204 True BASIC Language System

205

CHAPTER

17

Constants, Variables,
Expressions, and Program Units

This chapter defines concepts used in the rest of this manual. It uses a special notation to describe the correct
grammatical use, or syntax, of these terms. Higher-level concepts are defined in terms of lower-level concepts,
which are defined in terms of still lower-level concepts, and so on. The lowest-level concepts are defined directly in
keywords, letters, digits, or in English sentences. The names of the concepts appear in italics and may contain
hyphens. (This approach to specifying the correct syntax is widely used in computing, and is sometimes called
BNF; the names of the concepts are sometimes called metanames.)

Here is an example of how to read the notation, using the definition for signed-integer.

signed-integer:: integer
+integer
—integer

integer:: digit ...digit

This may be read as: “A signed-integer consists of either an integer, or a plus sign (+) followed by an integer, or a
minus sign (-) followed by an integer. The concept integer, used to define the concept signed-integer, is now defined
as consisting of one or more digits.” (A digit is one of the ten characters “0”,“1”, ... “9”.)

Symbols Used in the Snytax

The Symbol Is Read As
: “consists of”
“followed by zero or more”

If the definition of a concept contains a list (as, for example, the list integer, +integer, —integer in the definition
above), it means that the concept can be any one of the items in the list.

[!] Note: Do not confuse a double colon () that is part of the special notation, with a single colon (:) that
appears in certain True BASIC statements. Also, do not confuse the ellipsis (...) with a decimal point (.),
which can appear in numeric constants.

Constants

Constants are sequences of characters. They can be used to represent numbers, or they can merely represent
themselves. That is, 123 may represent the number one hundred twenty three, in which case it is a numeric con-
stant, or it may represent the character " 1" followed by the character 2" followed by the character 3", in
which case it is a string constant. Usage determines which of the two cases is meant.

Constants can be used in expressions, in DATA statements, as responses to INPUT statements, and in True
BASIC commands. In program statements, numeric-constants are unquoted-strings while string-constants must

206 True BASIC Language System

be quoted-strings. In DATA statements and INPUT responses, string-constants may be either quoted- or
unquoted-strings, while numeric-constants must be unquoted-strings.

Numeric Constants
Numeric-constants are sequences of characters that represent numbers. The rules for forming numeric-constants
are:

numeric-constant:: unsigned-constant
+unsigned-constant
-unsigned-constant

unsigned-constant:: decimal-constant
decimal-constant exponent-part

decimal-constant:: integer
integer.
integer.integer
.integer
exponent-part: E signed-integer
e signed-integer
signed-integer:: integer
+integer
-integer
integer:: digit ...digit

Spaces or commas are not allowed in numeric-constants. The E in exponent-part, which can be either upper case
(E) or lower case (e), stands for “times ten to the power”; thus, 123.45e6, 1234.5e5, and 123450000 represent the
same number: 123,450,000.

The above rules allow such constants as 1.e3 and . 4e5, but donot allow . e3, 1e, or 1. (The last will be con-
strued to be a variable name if it appears unquoted in a program statement.) In other words, if there is a decimal
point, there must be at least one digit either before or after the decimal point. If there is no decimal point, there
must be at least one digit before the e. The exponent-part cannot contain a decimal point, and must contain at least
one digit.

Unsigned-constants are used in numeric expressions, signed-integers are used in OPTION BASE and DIM state-
ments, and numeric-constants are used in DATA statements and as responses to INPUT statements.

String Constants
String-constants are simply strings of characters. Like numeric-constants, they can be quoted-strings or unquoted-
strings. The rules for forming quoted- and unquoted-strings are given below in English rather than BNF.

A quoted-string consists of zero or more characters surrounded by quote marks (““). The quote marks surrounding
the string are not part of the string, but all the characters inside the quote marks are part of the string. If there
are no characters inside the quote marks, the quoted-string represents the null string, i.e., a string containing no
characters, not even a space.

Any printable characters from the ASCII character set (see Appendix A), except for a quote mark, can be placed inside
the quote marks. To represent a quote mark in a quoted-string, it must be doubled. For example, in:

"He said, ""Hello."""

the first and last quote marks merely surround the string. The second and third quote marks stand for a single
quote mark. The fourth and fifth quote marks also stand for a single quote. If this string-constant were printed, the
result would be

He said, "Hello."

Constants, Variables, Expressions, and Program Units 207

€999

Similarly, the quoted-string “” stands for a single quote mark.

Quoted-strings can include the printable characters in the ASCII character set and can also include certain other
characters and control characters as long as they do not have a special system meaning.

Unquoted-strings, which are used in DATA statements and as INPUT responses, can contain any of the printable
characters in the ASCII character set except the comma (,) or quote mark (“). In addition, an unquoted-string used
in DATA statements cannot contain an exclamation mark (!). Finally, neither the first nor the last character of an
unquoted-string can be a blank space, although interior spaces can be included. Thus, unquoted-strings can’t be
null - you have to use the quoted-string (”).

If you wish to use a string-constant that contains one of the prohibited characters, or includes leading or trailing
spaces, make it a quoted-string. For example, the unquoted-string:

ab ¢
consists of four characters: the letter a, the letter b, one space, and the letter c; leading and trailing spaces are
omitted. On the other hand, the quoted-string:

" ab ¢

consists of nine characters: three spaces, the letter a, the letter b, one space, the letter ¢, and two spaces.

Quoted-strings can appear in string expressions, as well as in DATA statements and INPUT statement
responses. Unquoted-strings cannot appear in string expressions but can appear in numeric expressions if they
represent unsigned-constants.

Quoted-strings and unquoted-strings can be used in DATA statements and in INPUT responses as strings. If the
matching READ or INPUT variable is a string variable, then the quoted-string or unquoted-string is assigned to
it. Quoted-strings that represent numeric-constants can be received by a numeric-variable in an INPUT state-
ment, but not in a READ statement.

|dentifiers
Identifiers are names that refer to items such as variables, arrays, and subroutines. They are defined as follows:
identifier:: letter ...ident-char
ident-char:: letter
digit
underline

Thus, an identifier consists of a letter followed by any number of letters, digits, and underlines. Letter stands for an
uppercase or lowercase letter, digit stands for one of the ten digits, and underline stands for the underline char-
acter ().

String-identifiers are identifiers to which a final dollar sign ($) is attached. The formal definition is:
string-identifier:: identifier$

Identifiers name numeric variables and arrays, numeric defined functions, subroutines, pictures, modules, and
programs. String-identifiers name string variables and arrays, and string defined functions.

Certain identifiers may not be used for certain purposes. Such identifiers are called reserved words. The names
of the no-argument numeric functions and array constants CON, DATE, EXLINE, EXTYPE, IDN, MAXNUM, PI,
RND, RUNTIME, TIME, and ZER may not be used to name a simple numeric variable, a numeric array, or a
numeric function. The names of the no-argument string functions and array constant DATE$, EXLINES,
EXTEXT$, TIMES$ and NUL$, may not be used to name a simple string variable, a string array, or a string func-
tion. The keywords ELSE, NOT, PRINT, and REM may not be used to name a numeric variable, function, sub-
routine, or picture. Finally, if you use:

OPTION NOLET

DATA = 3

the DATA = 3 statement will be treated as a DATA statement, not an assignment statement.

208 True BASIC Language System

Expressions

There are three types of expressions: numeric expressions, string expressions, and logical expressions.

Numeric Expressions
Numeric expressions are formulas created from numeric variables, array elements, unsigned numeric constants,
or numeric function values, together with the arithmetic operators +, —, *,/, A, and parentheses.

The notation numex stands for numeric expression.

numex:: term ...addop term
addop term ...addop term
addop:: +

In other words, a numeric expression numex consists of one or more terms joined by + or — signs, and possibly
starting with a + or — sign. As usual, + stands for addition while — stands for subtraction. For example, 1-2+3 is
anumex.

term:: factor ...multop factor
multop:: *
/

Thus, a term consists of one or more factors joined by * or / signs. Here, * stands for multiplication while / stands
for division. For example, 2%3/5 is a term. Term refers to factor, which we now define.

factor:: primary ... primary

A factor consists of one or more primaries joined with ” signs. The sign () stands for “raised to the power.” For
example, 1042 is a factor.

primary:: unsigned-constant
numvar
numeric-function
numeric-function (arg ..., arg)
(numex)
arg: numex
strex
numarr
strarr

Therefore, a primary is either an unsigned numeric constant, a numeric variable, a numeric function value (the
numeric function may or may not require arguments), or a numex contained within parentheses. Numeric func-
tions may be either supplied by True BASIC or provided by the programmer through defined-functions. The names
and argument types for the supplied functions are given in Chapters 8 and 18. The programmer may choose any
identifier as the name of a defined-function as long as there is no conflicting use of that name.

numuar:: simple-numuvar
numarr (rnumex ..., rnumex)
rnumex:: a numex that is rounded before use

In other words, a numuvar is either a simple numeric variable or a numeric array element. A rnumex is a numeric
expression that is rounded to the nearest integer before use. For example, if a isan array, a (1. 7) is the same as
a(2)anda(3.3) isthesameasa(3).

Finally, note that both simple-numuvars and numarrs are denoted by identifiers .

Constants, Variables, Expressions, and Program Units 209

The order of evaluation implied by the above rules is as follows:

* expressions inside parentheses are evaluated first,

* then exponentiations ("),

* then multiplications (*) and divisions (/),

* and finally additions (+) and subtractions (-).
Operators of the same level are evaluated from left to right. For example, (7-4-2) means ((7-4)-2) = 1 and
not (7-(4-2)) = 5. Similarly, (42342) means ((4*3)42) = 4,096 andnot (4*(342)) = 262,144,

As another example:
3+ (672 /411 3)* (4 /3*~2+*3/3)

is evaluated in the order:

612 to yield 36

36/4 to yield 9

9/3 to yield 3

-3 to yield -3 (saved)

312 to yield 9

913 to yield 729

4/729 to yield 5.48695e-3

5.48695e-3/3 to yield 1.82899e-3

-3%1.82899e-3 to yield -5.48695e-3
3+ (-5.48695e-3) to yield 2.99451

The evaluation of numeric expressions can lead to the following runtime errors:

Exceptions: 1001 Overflow in numeric constant.
1002 Overflow.
2001 Subscript out of bounds.
3001 Division by zero.
3002 Negative number to non-integral power.
3003 Zero to a negative power.

[!] Note: Runtime errors, also called exceptions, can occur only while a program is running and may
depend on the data provided to the program. Syntax errors are caused by one or more lines disobeying the
established grammar rules of True BASIC. A program containing syntax errors will not compile or run.

Other errors can arise from misuse of numeric functions. (See Chapter 18 and Appendix C.)

String Expressions

A string expression is a formula created from string variables, string array elements, quoted string constants, or
string function values, together with the ampersand (&), substring extraction, and parentheses. (The ampersand
stands for concatenation, which involves joining two strings to create one longer string.)

strex:: str-factor ... & str-factor
A string expression strex consists of one or more string factors joined by concatenation signs (&). When two strings

are concatenated, the first character of the second string comes immediately after the last character in the first
string.

str-factor:: str-primary
str-primary substrex
substrex:: [rnumex : rnumex/

A string factor str-factor consists of either a string primary, or a string primary followed by a substring expression
substrex. You can use parentheses instead of square brackets in a substrex.

The string expressions s $ [a : b] has a value consisting of the a-th through the b-th characters of the string s $.

210 True BASIC Language System

For example:

LET a$ = "abcdefghijk"
' Then a$L3:7]1 = "cdefg"

If a or b falls outside the string, then these substitution rules apply:

I For s$[a:bl
LET Lls = LEN(s$) ! Length of the string

IF a <1 then LET a =1

IF a > ls then LET a = Ls + 1
IF b <1 then LET b =20

IF b > Lls then LET b = Ls

Finally,if b < a, the null string results.

A string primary is defined as:
str-primar:: quoted-string
strvar
string-function
string-function (arg ...,arg)
(strex)

In other words, a str-primary consists of a quoted string constant, or a string variable, or a string function value,
or a string expression contained within parentheses. String functions may be either supplied by True BASIC or
provided by the programmer through defined-functions. The names and argument types for True BASIC’s sup-
plied functions are given in Chapters 8 and 18. The programmer may choose any string-identifier as the name of
a string defined-function as long as there is no conflicting use of that name.

A strvar is either a simple string variable or a string array element:
stroar:: simple-strvar
strarr (rnumex ..., rnumex)
Finally, note that both simple-strvars and strarrs are denoted by string-identifiers.

The order of evaluation implied by the above rules is as follows:

* string expressions inside parentheses are evaluated first
* then substring expressions, and
* finally concatenations (&).
For example, if s$ = "abcdefghij",thens$ & ("xyz" & s$)[5:101 isevaluated in the order:

“xyz" & s$ to yield “"xyzabcdefghij"
"xyzabcdefghij"[5:102} to yield "bcdefg"
s$ & "bcdefg" to yield "abcdefghijbcdefg"

String variables and arrays may be given a maximum length in a DECLARE statement. An attempt to assign a
string longer than that maximum will result in an exception. For example, after:

DECLARE STRING str$*10, str_array(10)*5
the following will cause exceptions:

LET strvar$ = "0123456789x"

LET str_array$(3) = "ABCDEF"
while:

LET strvar$ = "ABCDEF"

will not. Note that it is the maximum length that is fixed, not the actual length. In the last example, the length of
strvar$is6; not10.

You can find out the maximum string length of a particular string variable or array with the MAXLEN function.
(See the MAXLEN function and the DECLARE STRING statement in Chapter 18.)

Constants, Variables, Expressions, and Program Units 211

The evaluation of string expressions can lead to the following runtime errors:

Exceptions: 1051 String too long.
1106 String too long in assignment.

Exception 1051 can occur only on computers whose operating systems limit the length of strings. Exception 1106
will occur if you attempt to assign a string that is too long for the string variable or array element that has been
given a maximum length.

Other exceptions may arise from misuse of string functions. (See Chapter 18 and Appendix C.)

Logical Expressions

A logical expression, denoted logex, consists of a combination of relational expressions and special logical clauses,
together with the logical operators AND, OR, NOT, and parentheses. A logical expression is one that takes on the
value “true” or “false.” (Logical constants and variables do not exist in True BASIC.)

The formal definition of logex is:
logex:: log-term ... OR log-term

In other words, a logical expression consists of one or more log-terms joined by OR. The log-terms are examined
from left to right. As soon as a “true” log-term is found, no further log-term is evaluated and the logex as a whole is
“true”; otherwise (if none of the log-terms is true), the logex as a whole is “false.” A logex with one or more ORs is
sometimes called a disjunction.

A