


True BASIC Language System

For the True BASIC Language System

All rights reserved. No part of this manual or companion portable document, may be duplicated or
reproduced by any means, electronic, mechanical, or photocopying, without the prior written
permission of True BASIC, Inc.  Address any request for using or reprinting portions of any
material contained in this documentation, listing the purpose of the reprint or citation, and the
expected edition size of the publication to True BASIC at the address listed below.

Trademarks and their owners:  True BASIC, WebBASIC: True BASIC, Inc.; IBM: International Business Machines;
Apple Macintosh, MacOS: Apple Computer;  MSDOS, Windows: Microsoft Corporation.

Published by:

MANUAL No: 7232/M

http://www.truebasic.com True BASIC website

support@truebasic.com Technical questions and support
sales@truebasic.com e-mail sales address

Printed in the United States of America.  01/00

True BASIC
Gaysville, VT 05746 USA

1-888-282-9873 Phone/Fax (24-hour service)

Copyright © 2001-2010 by True BASIC

Edited by Thomas E. Kurtz, John Arscott, Anne Taggart

ISBN 9-939553-42-2

Gold Edition Reference Guide



Contents

2. Constants, Variables, and Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3. Output Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4. Input Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5. Decision Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6. Loop Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

7. Data as Part of the Program. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

8. Built-in Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

9. Arrays and Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

10. User-defined Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

11. Libraries and Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

12. Files for Data Input and Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

13. Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

14. Interface Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

15. Sound and Music. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

16. Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

17. Constants, Variables, Expressions, and Program Units . . . . . . . . . . . . . . . . . . 205

Using the True BASIC Editor v.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

1. A Word on Style . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1



18. Statements and Built-in Functions and Subroutines . . . . . . . . . . . . . . . . . . . . 217

19. OBJECT Subroutine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

21. TBD Subroutine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345 

22. Interface Library Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351

D. PRINT USING Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 627

True BASIC Language System

E. DO Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541

F. Scope and Aliasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543

G. True BASIC Limits and Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547

J. Debugging and Correcting Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 599

Appendices

A. Character Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509

B. Error Numbers and Messages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511

C. Explanation of Error Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515

23. Additional Library Procedures. .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407 

H. Line Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549

I. Index of True BASIC Statements, Functions, and Subroutines. . . . . . . . . . . .  555

K. Features for Advanced Programmers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605

18. Statements and Built-in Functions and Subroutines . . . . . . . . . . . . . . . . . . . . 217

19. OBJECT Subroutine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

20. Sys_Event Subroutine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337

24. Calling C Routines in True BASIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . .  24-1  

25. Using SOCKET Routines in True BASIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 25-1  

26. True BASIC SQL Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26-1  

27. True BASIC PostScript™ Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27-1  



Even if you are familiar with word or text processors you are still advised to read these 
notes because the new True BASIC editor contains a number of unique features that 
are not available in previous TB editors or other text editors.

START UP
When you start True BASIC for the first time the screen will show an empty window 
labelled “Untitled 1” in the top left corner of the screen. In earlier versions at start up, 
True BASIC displayed a small file selector dialog box where you can click on the NEW 
button to start with an empty, untitled window. 

There are several ways of starting the editor:
(1) Double click on the editor desk top icon.
(2) Set up a file association between TRU files and the editor.
(3) Drag file icons onto the editor icon
(4) Chain to the editor from another application

File associations can be set up from Windows control panel:
Select Folder Options.
Click the File types tab.
Scroll down the list of extensions and click TRU
Click the CHANGE button.
Click the BROWSE button and then navigate to TBeditor.exe in the folder where you 
installed the editor.
 

DEFAULT SETTINGS (settings menu)
The following settings have been pre-set, but you can customize them at any time. Any 
change in settings will remain in force until you next change them.

Using the True BASIC 6.0 Editor                                      

i



Save on close
The default setting is OFF, meaning that source code will NOT be saved automatically 
when you close or exit  the editor. Setting this feature ON means that when you close 
the editor, then all currently open programs will be saved. 

Back-up on save

be automatically created whenever you save your program code. Setting this feature 
ON means that a back-up copy of your source program will be saved with the same 
program name, but with the extension BAK.
 
Confirm quit
The default setting is ON, meaning that whenever you attempt to close or exit the 
editor you will be asked if you are sure this is what you want to do. If this feature is 
switched OFF then you will not be asked if you are sure. The editor will shut down as 
requested.

Hotstart
The default setting is ON, meaning that when you start up the editor it will return to 
exactly the same conditions as it was when you last shut down. The programs you had 
open at the time will be re-opened and the last program you were using will be the 
focus. The position of the cursor will be the same as you left it. If this feature is 
switched OFF then the editor will start up with an empty ‘Untitled’ window.
This feature was incorporated in many earlier versions of the editor but never worked 
consistently.

Binder
The program that runs, compiles and binds source code is called TBsystem.exe. The 
default version is 5.5b19. This means that your executable programs do not need the 3 
DLL files that older versions needed. However, there are certain features of the old 
TBsystem file that you may prefer, in which case 531TBsystem.exe can be used. 

Aliases
Previous versions of the editor allowed programs to use short filenames instead of the 
full pathnames in LIBRARY statements. A list of alias pathnames was used by the 
editor in order to locate the short filename. This principle is incorporated in the new 
editor. The default list contains alias types {library}, {do} and {help}. A maximum of 9 
alias types can be specified by the user. Aliases can only be used with literal filenames, 
e.g. “{library}TrueCTRL.trc”

Function keys
The default setting is OFF. When the switch is on it means that the function keys F2 
to F9 work in a similar way to the DOS version function keys, e.g. F4 marks or 
highlights a block of text, F5 copies and pastes this block, and F6 cuts and pastes this 
block. If this feature is switched OFF then the editor will not respond to the function 
keys. This feature has been enabled in this version.

ii

The default setting is OFF, meaning that a back-up copy of your source code will NOT 



Short cuts
The default setting is ON, meaning that all menu items will be shown with their short 
cut keystrokes. If this option is turned OFF then the menu displays will only show the 
menu item and not the equivalent short cut keystroke.

RECENT PROGRAMS
When you close a program it gets deleted from the list of open programs but at the 
same time it gets added to the list of the 10 most recently used programs, which you 
can see under the WINDOW menu. If you click the mouse on any program in the 
recently used list, then this program will be opened and will become the focus.

iii

COMMAND LINE
The command line in earlier versions appeared in its own window, called the command 
window, but in every other respect the new command line works the same way, i.e. you 
can type instructions on this line and the computer will execute them immediately 
without the need to select RUN. For example, you can type the word FORMAT and 
True BASIC will format (indent) your code. Similarly, if you type RUN then True 
BASIC will run the current program. If you type VER (version) then your will see the 
version number and date. Note that not all of the original commands will work in this 
version, in particular the PRINT variablename 

SCRIPT FILES
When the editor first starts up it looks for a SCRIPT file called STARTUP.TRU. You can only use 
this script file to LOAD libraries and to specify ALIAS commands. All the other commands in a 
script file will be ignored. If STARTUP.TRU is not present in the same directory as the executable 
editor, the editor will carry on as normal. You can also use the SCRIPT command on the command 
line to specify a script file with another name, e.g. SCRIPT myscript.txt. Unlike the LIBRARY 
statement, there are no quote marks around the file names.

SINGLE WINDOW
Unlike earlier versions of the editor, this version only has one window, whereas 
previous versions had one window for each open program. However, in the single 
window you can open up to 10 programs simultaneously. The two green arrow buttons 
allow you to switch between any of the open programs, just like the forwards and 
backwards buttons on a browser. The window title bar shows the name of the current 
program. You can also switch to a specific program by clicking your mouse on the 
program name in the list under the WINDOW menu. Note that the current program is 
ticked in this list. You can close any individual program by clicking the mouse on 
the close program button at the right hand end of the toolbar (black cross on a 
gray background). If you wish to compare two programs side by side, start two instances
 of the program. The number of open windows is limited only by your computer's memory.

 which allowed the user to stop the 
program and inspect the values of variables. This important feature has now been 
added to the BREAKPOINT feature instead. The command line also allows the user to 
specify alias names, e.g. ALIAS {myfolder} c:\Tbsilver. Aliases specified at the command line 
are only valid for the current session. When you shut down the editor, these aliases will not be 
remembered. The command line can also be used to specify a SCRIPT file, e.g.
SCRIPT myscript.txt.



A feature of the new editor is that if you highlight a block of text by dragging your 
mouse across the text, then you can comment all the lines in the text by typing the 
exclamation mark just once. This is a toggle action feature in that you also un-
comment a block of lines by doing the same operation. The toggle action works on the 
basis that if any line does not have a comment mark then it will add one, whereas if 
the line already has a comment mark, it will be removed.

AUTO EXTENSIONS (TRU)
NEW or blank programs can be selected in the same way. By default the name of the 
blank program is shown on the window title bar as ‘UNTITLED’. You can define an 
appropriate name for the program when you save it. It is a feature of the new editor 
that program names automatically have the extension TRU added to the name if no 
other extension exists. This was a feature of the old DOS editor.

SWITCHING FILES
Existing programs can be opened by selecting OPEN from the FILE menu or by 
selecting the OPEN button on the toolbar. In either case the new program will become 
the focus in the window and the blue title bar will show the program name. Any 
existing program previously displayed in the window will still remain open in a queue 
behind the focus program. You can move easily between the queue of programs just by 
clicking the green arrow buttons on the toolbar, or by selecting the program by name 
from the list under the WINDOW menu.

iv

COMMENTS
An exclamation mark at the beginning of a line tells the computer to ignore the line 
because it is NOT a program instruction. These reminder notes are called “comments” 
and they can be used anywhere in your program. Indeed it is good practice to make 
comments after certain lines of code to remind yourself what that line of code is 
actually doing, because it is not always blindingly obvious. As an alternative to the 
exclamation mark (!) you may type the word REM, short for reminder. 

LOADING LIBRARIES
Loading libraries is an alternative to using the LIBRARY statement. You an use a script file to load
 one or more libraries into the editor, or you can specify the library on the command line, e.g.
LOAD mylib.tru, yourlib.tru. 
Unlike the LIBRARY statement, there are no quote marks around the file names. Loaded libraries 
work as if the library routines have been incorporated into the main True BASIC language system. 
Any routine in the loaded libraries is therefore available to your program, in fact the loaded 
libraries are available to all your programs in the current session. When you shut down the editor 
the loaded libraries are cleared from memory and forgotten. You can also clear all loaded libraries 
by using the FORGET command on the command line. 
CAUTION: if you are using line numbers in your program, remember to leave plenty of spaces 
between line numbers because the editor inserts extra code into your program to achieve the LOAD
feature. 

The editor keeps track of each program in the queue, so that when you switch from one 
to another, the cursor position is in the same place as it was when you last used the 

program. A maximum of ten programs can be open at the same time.



UNDO and REDO
UNDO can be applied to:
CUT
COPY
PASTE
FUNCTION F4 (select text block)
FUNCTION F5 (copy and paste)
FUNCTION F6 (cut and paste)
DELETE
TYPING
KEEP
INCLUDE
DO….
FORMAT
UPPER
LOWER
FORMS
TBILT
The UNDO menu item shows the current action, e.g. UNDO delete.

In the case of typing, UNDO will restore the original text before CONTINUOUS typing 
began. For example, suppose you type ABC anywhere on an existing line, then UNDO 
will remove ABC. You can still use the back-space key to remove individual letters. You 
might have typed say 20 lines of code, and when you press UNDO then all 20 lines will 
be removed. To limit the amount of text in a single “UNDO typing” group, you can break 
up the groups by highlighting a letter or word and then clear the highlight before carrying 
on with your typing. By selecting a highlight you are effectively creating a new activity, 
so the editor closes the current typing activity and opens a new activity called “Select” 
and waits for you to decide what you are going to do next. If you carry on typing, then 
the editor renames “Select” as “Typing”.

Each time you begin an activity such as typing, cut, copy, paste, DO FORMAT etc., the 
editor takes a “photocopy” of the current program and keeps it in an internal array so that 
you can return to this copy if you want to UNDO the activity. There are ten elements in 
the internal array so you can use UNDO to backtrack ten times. It is unlikely that any 
program will exceed 2MB so all 10 “photocopies” will only take up 20MB of memory. 
Obviously you will perform more than just ten activities, so on the eleventh activity, the 
first internal array is re-used. This first-in-first-out process continues indefinitely.

For example; suppose you have already done 9 different activities and you are now 
typing, i.e. the tenth item in the undo list is typing. You now want to do a cut and paste 
operation so your undo list will now have two more items – “cut” and “paste” as the 
eleventh and twelfth activities. The internal array is limited to 10 elements so the whole 
list moves up two places to allow cut and paste to occupy elements 9 and 10. Your 
previous typing activity now occupies element 8. The two old elements at the top of the 
list are discarded. You now decide to back track 5 places up the list with the UNDO 
feature. Now you realize this is too far so you move down the list with the REDO feature 
by two places, i.e. element 7. Ahead of you there are still typing, cut and paste, but you 
decide that element 7 is where you want to be, so you begin typing your program again. 
This typing operation will now OVER-WRITE element 8 and subsequent activities will 
over-write elements 9 and 10. However, all the elements prior to element 7 will still be 
preserved.



When you use the UNDO feature the internal arrays are restored in reverse order. 
Likewise, when you use REDO, the internal arrays are used in forward order. The penalty 
for having this extensive feature is a slight delay when switching from one program to 
another as the internal arrays are downloaded to the hard drive. There are no significant 
delays when editing individual programs.

When you change the current program, these internal arrays are downloaded onto your 
hard drive, so that if you go back to this program, the undo features are still operational 
by uploading these internal arrays. This applies to all ten possible open programs. All the 
hard drive files associated with open programs are deleted when you EXIT the editor. 
Only the relevant hard drive arrays are deleted when you CLOSE a program.

PRINTING HARDCOPY
The editor offers you two strategies for listing hardcopies of your programs. The first is a 
legacy method sometimes referred to LTPR or line printer. The second method treats the 
printer as a virtual window, which allows both PRINT and PLOT instructions. Some 
commercial printer (HP) drivers have difficulty responding to both these print methods. 
In version 6.007 an extra print method has been added, which uses a thirty party freeware 
program called “prfile32.exe” to execute hard copy printing. The editor automatically 
searches for this program. If it has been installed on your computer, then the editor will 
use it.

There is another third party freeware program called “hardcopy.exe” which installs an 
extra green printer icon in the top right corner of all windows. Clicking this button 
produces a hardcopy graphics picture of the current window. This can be used to 
hardcopy print the output window, for example, as well as visible portions of the current 
program in the editor window.   



TOOLBAR
In this version of the editor there is also a toolbar at the top that gives you quick 
access to a number of frequently used features. When the cursor is in the toolbar zone 
it changes shape to a pointer; tooltips also appear identifying the function of each 
button on mouseover.

Back              New                 Cut                   Run                Insert                Home                                    Exit 
editor
    Forwards        Open                Copy                 Format           Find                 End
                                Save                 Paste                 Undo            Replace            Help                     Close 
program

current line                  current character        Information box (and command line)

The central area (you can change this color later) is your working page. Below this 
page are two information boxes that tell you the current position of the cursor. The box 
on the left gives you the line number and the box on the right gives the character 
number counting from the left. On the right at the bottom of the window is an 
information box. This box is also the command line where you can type instructions 

v



UNWRAPPED TEXT
The most important difference between the True BASIC editor and other text editors is 
that when you type your instructions, the lines of text are NOT WRAPPED, i.e. when 
your typing reaches the right hand margin it just carries on and on. The text does not 
automatically drop to the next line down. The only way you can drop to the next line 
down is to press the RETURN key on your keyboard because this signifies the end of a 
line. The reason behind this method of operation is that True BASIC only allows ONE 
instruction per line, but that instruction may be too long to fit the width of the page, so 
the editor will always allow you enough space for your instruction regardless of how 
long it is. There is a scroll bar across the bottom of the editor page so that you can view 
anywhere along very long lines.
If long lines worry you, and you would prefer to see your all of your program without 
having to scroll across the page, then you can use the ampersand sign (&) to terminate 
a line as long as you begin the continuation line with an ampersand too.

WRAPPED TEXT
Under the EDIT menu there is an option that allows you to view wrapped text. For 
example you may wish to consult a text document during the course of writing a 
program. Please note that you cannot use COMPILE, RUN or BIND when you are in 
the WRAP mode. This feature has been enabled in this version.

OVER-TYPING
If you press the INSERT key the editor will change from inserting characters at the 
cursor point to over-typing at the cursor point. If you press the INSERT key again then 
insert typing will resume. Unlike all previous editors, this version indicates which of 
these two modes is operational, by illuminating the over-type icon on the toolbar.

FORMATTING TEXT
The editor is very tolerant of the way you type the program instructions. You can use 
upper case or lower case or both. You can also add spaces as often as you like if they 
make things clearer to read. Indeed there is a utility feature built into True BASIC 
that will “format” your code, i.e. it will indent certain keywords to make the program 
easier to read and easier to understand the way it is structured. In a way it is a bit like 
using paragraphs and bullet points in ordinary text. You will find the format feature 
one of the most useful items on the True BASIC menu. 

ERROR DETECTION
Whilst True BASIC is tolerant of the way you set your program out, like all other 
computer languages it is not so tolerant about the instruction code itself. When you 
type an instruction it has to be word perfect, and if there is any punctuation it has to 
be perfect too. It is not good enough to get it nearly right; it has to be perfect. 
Fortunately, True BASIC is wise enough to know that it is dealing with human beings 

vi

directly to the computer. If you click the mouse inside the information box it will turn 
blue, and you can begin typing your instructions. For example, if you type the word 
“version” in the blue box, the computer will immediately respond with the current 

version number of this edition. Note that after v6.006 there is an additional red STOP 
button on the toolbar, located between the PASTE and RUN icons. Clicking this icon 
opens the dialog box that allows you to stop a running program.



that have a habit of making mistakes, so it has an extensive error detection system 
built in. When you attempt to RUN your program, if you have made any mistakes then 
True BASIC will almost certainly find them. In this version of the editor your source 
code is subjected to the error detection process whether you compile, run or bind your 
code.

Let us suppose that you have loaded the program SIMPLETEST.TRU and that we 
have incorrectly spelled the word PAUSE and we have used the word PAWS instead. If 
we attempt to RUN the program then we would expect the compiler to detect this error 
and report it. This will give you an opportunity to see how the error detection system 
works. Select RUN from the RUN menu.

   
If the error detection process picks up an error or a series of errors, then these will be 
presented on screen in a separate error window in the form of a scrollable list. If you 
click your mouse on any line in the list then the corresponding error line in your code 
will be highlighted.

The information box shows that there was an error while running the program. The 
compiler detected the errors, and these are displayed in the error window in tabular 
form. If you click on any line in the table of errors, then the corresponding line in your 
program will be highlighted. The Preferences box allows the user to change the full 
line highlight to just the first character.

If you correct the error, the program will run successfully and prints the phrase ‘Just a 
test’ ten times in the output window. To exit from the program and return to the editor 
you must press any key or click the window with the mouse.

vii



You are free to use upper or lower case but my advice would be to use lower case for all 
your variables and upper case for keywords. The built-in DO FORMAT option will 
automatically convert keywords to upper case for you, so you can use lower case for 
everything. There is a strong body of evidence that suggests lower case is much easier 
to read.

BREAKPOINTS
Breakpoints mark your program at the line where the cursor is positioned. The 
BREAKPOINT option under the RUN menu is normally disabled (grayed out) and only 
becomes active when you select DEBUG MODE from the SETTINGS menu. The 
breakpoint will appear as the word <<<BREAKPOINT>>> surrounded by angle 
brackets. If you RUN your program with breakpoints marked, the program will stop at 
the first breakpoint. A dialog box will give you the opportunity to continue running 
your program. All breakpoints are cleared when you toggle DEBUG MODE again.
If you add a series of variable names after a breakpoint, e.g.
<<<<BREAKPOINT>>>> a,b, string$
then when the program stops you will see a list of these variables and their current 
value. This is a very useful feature for locating bugs. For example, the breakpoint can 
be inserted inside a FOR…..NEXT loop to check how the value of variables change 
with each increment of the loop. The variables list dialog box will give you the 
opportunity to continue running your program.

FUNCTION KEYS 
If the Function keys option under the SETTINGS menu is ticked then: 
F2 will make the command line active (blue)
F3 will display the FIND window.
F4 will mark (highlight) the first line in a block of text. A second press of F4 will mark 
the end of a block of text. 
F5 will copy and paste the text marked by F4 to the current cursor position.
F6 will cut and paste the text marked by F4 to the current cursor position.
F7 will undo the last operation.
F8 will toggle a breakpoint on the current line.
F9 will run the current program.
(NB. This feature has been enabled in this version.)

viii



EXIT THE EDITOR
If you wish to exit the editor you must select EXIT under the FILE menu or you can 
click on the ‘close window’ button (white cross on a red background). You will be asked 
if you are sure you want to QUIT. You can eliminate this reminder by un-ticking the 
‘Confirm quit’ option under the SETTINGS menu.

If you click on YES (or press the <RETURN> key then you will be asked if you wish to 
save your program if you have made any changes to the program since the last save 
operation. If you have not made any changes you will not be asked if you wish to save. 
Likewise if you have selected ‘Save on exit’ under the settings menu then your 
program will be automatically saved without displaying this dialog box.

The same process will be applied to all currently opened programs before True BASIC 
finally terminates.

ix



PREFERENCES
Under the SETTINGS menu, the user can select Preferences to set up the editor to suit 
the user.

To set the font or background color for the source program window, first click on the 
radio button labelled Program window, and then click on the button for font or 
background color.

If you want the whole line highlighted to indicate a compile error then click on the 
check box. Otherwise only the first character in the line where the error is located will 
be highlighted.

If you want the text cursor to change from a simple vertical black line to a bold red line 
that is easier to see, then click on the check box.

If you want to save a change that you have made then click the APPLY button. This 
will allow you to continue to make other changes. With each change you must click the 
APPLY button to save the change. When you have completed all your changes you 
must click the OK button to execute all your saved changes.

If you want the default settings to be restored then click on the appropriate button. If 
you click on either the APPLY button or the OK button, the defaults will be restored 
immediately.

If you click the CANCEL button at any time, then all saved changes will be ignored 
and the current settings will remain in force.

The printer settings allow you to change the number of print characters across the 
page and the number of lines down the page. The default is 80 characters and 60 lines.

x



RIGHT CLICK /SHORTCUT MENU
By clicking the right hand mouse button you can reveal the shortcut menu.

This menu works like the main menu. It will disappear as soon as you make a 
selection from the menu.

xi

SETTING ALIASES
SET ALIAS under the PREFERENCES menu allows you to create new aliases. There 
are three default alias types, {library}, {do} and {help}.
You may add or edit more in the fields provided.

Note: it is important to used curly brackets around the alias type, followed 
immediately by the directory pathname. Aliases added under SET ALIAS are 
permanent, i.e. the editor will remember the aliases when you shut down so that when you
restart the editor the aliases will still be in effect. Temporary aliases can be added at the 
command line or by means of a SCRIPT file. Temporary aliases are not remembered 
when the editor shuts down. 

Some previous versions of the TBeditor allowed users to ignore the alias group name in 
curly brackets. The editor looked into the three default folders to see if the file was 
located in these folders. This feature has been preserved for the benefit of legacy code. 
In other words, as long as the file is in any of the three default alias folders then you 
do not need to specify the alias group name in curly brackets.



                      

The reset button restores the three default alias types and clears the remaining fields.

This new feature will color certain words in your True BASIC source code. Currently 
these parts are:
Linenumbers (if any)
Comments
Keywords (i.e. statements)
Functions and definitions
CALLs and SUBs
Literal quotes and string variables
Aliases
Numeric variables and constants
Punctuation

Depending on the background color, a default set of 9 different colors is used to color 
these parts. The standard color numbers are: 

BLACK (or dark backgrounds)
7 (gray) for Linenumbers
10 (green) for Comments
9 (blue) for Keywords (i.e. statements)
13 (magenta) for Functions and definitions
12 (red) for CALLs and SUBs
11 (cyan) for Literal quotes and string variables
14 (yellow) for Aliases

xii

COLORTEXT



24 (orange) for Numeric variables and constants
-2 (white) for Punctuation

WHITE (or light backgrounds)
8 (dark gray) for Linenumbers
2 (green) for Comments
9 (blue) for Keywords (i.e. statements)
13 (magenta) for Functions and definitions
12 (red) for CALLs and SUBs
3 (dark cyan) for Literal quotes and string variables
6 (dark yellow) for Aliases
25 (brown) for Numeric variables and constants
-1 (black) for Punctuation

Users are also free to create their own custom list of 9 colors in a simple text file. 
However, these colors are applied regardless of the background color.

COLORTEXT can be activated from the SETTINGS menu or from the right click 
menu.

Defined functions will only be colored correctly if the function has previously been 
declared e.g. DECLARE DEF mydef.

Once COLORTEXT has been switched on, then all currently open source programs will 
be colored, except wrapped files.

As you type, the text color may change with each keystroke until you press the space 
bar or type a punctuation mark. At that point the text will take on a fixed color. 

To switch COLORTEXT on click the ON button. To switch off COLORTEXT then click 
the OFF button. If you leave the filename field blank then the default colors are used. 
If you enter a filename (full pathname) then your list of custom colors will be used.

                            

xiii



LINE NUMBERS
Legacy code often uses line numbers, and some users may prefer to continue working with line numbers, 
even though TrueBASIC does not require them. The TrueBASIC editor works with or without line 
numbers. There are several utility programs which allow users to number, renumber and un-number 
programs. It is important to note that programs are automatically re-numbered after CUT and PASTE 
operations or when lines are deleted. GOTO and GOSUB references are also updated during re-
numbering.

AUTO LINE NUMBERING
The editor has a built-in feature that allows automatic line numbering. To invoke this feature the user must 
insert the following line as the first line of their program:

100 !AUTOLINENUM

Note that the line must begin with a line number followed by a space, followed by a comment mark (!). 
The keyword AUTOLINENUM is not case sensitive. The line number signifies the number you wish to 
start at. All subsequent lines are numbered in increments of 10. By embedding the automatic line 
numbering switch inside the program, means that the editor can detect which programs require numbering 
and those that don’t. This leaves the user to move freely between programs without having to switch this 
feature on or off for each program.

If the keyword line is removed, then the program becomes just a regular manually numbered program. 
Likewise a manually numbered program can be made automatic by adding the keyword line at the 
beginning, regardless of whether the current program is already numbered or not.

DELETING TEXT
From the current cursor position, the DEL key will delete single characters ahead of the cursor. The BS 
(backspace) key will delete text behind the cursor. The DEL key will also delete any highlighted text. 
Similarly, the back space key will also delete highlighted text.

If a block of text is already highlighted when you PASTE any text from the clipboard then the highlighted 
text will be replaced by the pasted text.

Note that EDIT fields, i.e. input boxes such as those in the FIND box or the CHANGE box , will now 
allow pasted text as well as typed text.

STOPPING PROGRAMS
There may be times during the course of developing programs that you will attempt to run a program that 
has an error that hangs the computer, or in some other way doesn’t terminate properly. For example you 
may have a DO…..LOOP statement with no EXIT DO to escape the loop. On the toolbar there is a red 
STOP icon which produces an Emergency Stop dialog box containing a STOP button. When you click on 
this button, the running process will abort immediately and you will be returned to the editor.



                                  

Note: if you are running a program, then it may produce a window that obscures the editor and the STOP 
toolbar icon. To reveal the editor window, click on the editor label on the taskbar or slide the program 
window out of the way to show the editor underneath.

HIGHLIGHTING TEXT
There are two ways to highlight text:

(1) By manually dragging the mouse across the text.

(2) By using the arrow keys in conjunction with SHIFT.

In the first method the highlighted text NEVER includes the end-of-line characters at the end of the last 
line highlighted. As a result, when this text is pasted into your text there are no “returns” or extra lines 
generated.

In the second case the end-of-line characters are ALWAYS included. As a result, when this text is pasted 
into your text then a new line is generated immediately after the end of the pasted text.

If you highlight any text prior to a paste operation, then the pasted text will replace the highlighted text.

If you highlight any text prior to typing at the keyboard, then the typed text will replace the highlighted 
text.

PEN COLOR (for lines of text)
A new text coloring feature has now been added. If you are modifying a program, you may wish to print 
the modifications in a different color so you can easily recognize what changes you have made. This 
cannot be done by changing the pen color because this will change the color of the whole text. Individual 
lines or blocks of text can now be colored by adding a color signature to each line. This done by 
highlighting the block of modified text and pressing the keys (#) for blue or (%) for red. This is a toggle 
action, so you can remove the color signatures by highlighting the same block of text and pressing either 
(#) or (%). The signatures (!#) or (!%) can also be added manually. The colored text can be run, compiled 
or bound in the normal way.



Normally you would use the mouse to click on menu headings, and then to click on 
items under the heading. Alternatively you can press the ALT key on the keyboard to 
activate the menu bar. The side arrow keys can be used to drive the heading highlight 
backwards and forwards across the menu headings. The up and down arrow keys can 
then be used to highlight individual menu items. Pressing the <RETURN> key will 
select the current menu item.

 FILE MENU
• NEW - this option opens a new empty editing page in the main window with 

the default title “untitled” followed by a sequential number. A maximum of ten 
new and existing windows can be open at the same, and you can switch 
between them as often as you like.

• OPEN – will raise an open file dialog box where you can navigate through 
drives, folders and files to select the file of your choice. The list of files is 
limited to program files only, i.e. those files with the extension TRU or TRC. 
You can extend this by selecting ALL FILES in the file type box. When you 
select a file it will displayed with the file name as the window title. The 
information box will display the total number of lines in the program.

• CLOSE – will close the current program in the main window. This action is 
identical to clicking the mouse on the close button (black cross on a gray 
background). You will be asked if you wish to save the contents of the window. 
When a program is closed, the code is erased from the computer’s memory.

• SAVE – will save the contents of the current window using the window title as 
the file name. The file will be saved in the same folder as the original version 
when the file was opened. In other words the new version will over-write the 
existing version.
If the program is being saved for the first time, i.e. it is untitled, then you 
should make sure you give your program a meaningful name because there is 
every chance that in a matter of weeks you will forget what it is called, so you 
will have to hunt through your programs folder to see if you recognize the 
name. For example, if your program calculates the time of sunrise and sunset 
at any geographical location, then SUNSET.TRU would be an appropriate 
name. Calling your program MYPROG.TRU or ANYPROG.TRU is not very 
helpful and will certainly not jog your memory as you glance through your 
program folder. Clearly this advice becomes more important the greater the 
number of program files you have saved. It is not unusual for True BASIC 
programmers to have hundreds, if not thousands, of saved program files on 
their hard drives, purely because it is so easy to write programs in this 
language.

• SAVE AS – will raise a save file dialog box that will let you specify any name 
for the file and will allow you to save the file in a folder of your choice. The 
default file name is the same as the window title, and the default destination 
folder is the same as the original file when it was first opened.

xiv

The True BASIC Editor menus



• UNSAVE – is a drastic measure because it will completely delete any file that 
you specify. You will be asked if you are sure you want to delete the named file. 
Once you delete a file there is no way to recover it. This is NOT the same as 
dragging a file to the recycle bin.

• RENAME – changes the name of the current window. It does not send a copy of 
the current source text to a file. If the current source has already been saved to 
a file, then this existing file will remain unchanged. This corresponds to the 
RENAME command that executes exactly the same action.

• PAGE SETUP – this option presents you with a special dialog box that allows 
you to specify certain features of any printed output.

• PRINT – allows you to select all or a part of your program to be hard copy 
printed. You select the text by dragging the mouse to highlight the required 
text. You can also select text using the SHIFT KEY in combination with the 
DOWN-ARROW key. This procedure uses a high definition print method more 
suited to proportional fonts. At present this option only prints in COURIER 10 
point font.

• LISTING - allows you to select all or a part of your program to be hard copy 
printed. You select the text by dragging the mouse to highlight the required 
text. You can also select text using the SHIFT KEY in combination with the 
DOWN-ARROW key. This procedure uses a standard print quality with 80 
characters per line and 60 lines per page as default values. These default 
values can be changed under the SETTINGS menu. It is more suited to fixed 
pitch fonts such as COURIER and LUCIDA CONSOLE.

• CHAIN TO….- allows the user to select an executable file, i.e. with the 
extension .EXE, and to run this application directly from the editor. When the 
application is shut down, the editor is re-activated and continues where it left 
off.

• CHAIN WINDOWS APP – allows the user to select an application file, such as 
a WORD document file (with the extension .DOC) or an Excel spreadsheet file 
(with the extension .CSV). The editor will run the main application and will 
automatically load the selected file. Both the Windows application and the 
editor continue to be active. 

• EXIT – will close all windows and shut down the True BASIC editor. You will 
be asked if you wish to save the program as each window is closed if the SAVE 
ON CLOSE menu option has NOT been selected.

EDIT MENU

xv

• UNDO – this option will re-instate the original program text prior to a CUT or 
PASTE operation. In other words, if you perform a CUT or PASTE action 
and you decide that you have made a mistake and want to return to the 
original text before you made the mistake, then using UNDO will 
achieve this. There are now ten levels of UNDO available to the user - in other 
words, you can backtrack ten times. The menu is labeled with the operation that 
can be undone, e.g. UNDO paste. The menu item is labeled "can't UNDO" when 
you can no longer backtrack any further.

• REDO – this option allows you to effectively undo a previous undo operation. In 
other words you can reinstate the former text after you have done an UNDO 
operation. As with UNDO, you can REDO repeatedly.



your program with the PASTE option. CTRL-X can be used as an alternative 
way to execute CUT.

• COPY – will copy any highlighted text to the clipboard, but will not erase that 
portion of text from your program. CTRL-C  can be used as an alternative. 
Portions of text held on the clipboard can be inserted back into your program 
with the PASTE option.

• FIND AGAIN – is a quick alternative to the FIND dialog box. Once the FIND 
search has located the first instance of a match, then you may use FIND 
AGAIN to progressively locate all the other instances.

• CHANGE – is similar to FIND except that when a match is found you have the 
option to replace the match with a specified alternative. You can replace the 
first instance of a match or you can replace all instances.

• KEEP – will retain the highlighted portion of your program and discard the 
rest. It is a quick way to delete large parts of your program.

• INCLUDE – will allow you to specify the name of a program file. The contents 
of this file will then be inserted in your program at the current cursor position.

• SELECT ALL – is a quick way to highlight the whole of your program text 
rather than dragging the mouse across all the text, which may occupy many 
pages.

• MOVE TO – this is a quick and useful way to place the cursor at a specific line 
or a specific word in your program. Alternatively you can select the name of a 
sub-routine from a list of all the sub-routines in your program, and the cursor 
will move to the start of that routine.

• WRAP – this option converts the current window to wrapped text, i.e. long 
lines are truncated at the edge of the window and are continued on the next 
line. In the WRAP mode the editor can be used as a general-purpose text 
reader. CAUTION: None of the options under the RUN menu will work while 
the window is in WRAP mode. Click the WRAP option again to restore normal 
programming mode.

RUN MENU
• RUN – this option will run the current program, i.e. the program in the front 

xvi• CUT – will copy any highlighted text to the clipboard, and will then erase that 
portion of text. Portions of text held on the clipboard can be inserted back into 

• FIND – will raise the find dialog box that allows you to specify and locate any 
word, part word or phrase in your program text. The search can be an exact 
match including upper and lower case, or the search can be independent of 
case. Normally the search begins at the current cursor position and proceeds to 
the end of your program. Alternatively you can “wrap” the search to include 
the whole of your program. The first instance of any text that matches your 
specification will be highlighted. After a FIND operation the FIND window 
stays on top, ready to be used again.

• PASTE – will transfer text from the clipboard to the point immediately after the 
current cursor position in your program. CTRL-V can be used as an alternative. 
You can position the cursor anywhere in your program by clicking the mouse at  
that point. The cursor location boxes at the bottom of the editor window indicate 
the current line and character position. If any text is highlighted, PASTE will 
replace the highlighted text with textfrom the clipboard.

page of the editor window. When the program has finished running the title 
bar will tell you to click the mouse or press any key. Either action will return 
you to the editor. If True BASIC encounters any errors, these will be shown as 



xvii
a list. You may select any of the listed errors and the cursor will immediately go 
to the line and character position where the error occurred. Prior to running your 
program, the editor adds a few extra lines of code to a copy of your source 
program (this preserves the original) and it is this copy that is run. These extra 
lines include adding any loaded libraries and aliases. In the case of MODULES 
and EXTERNAL program units, no extra code is added and no loaded libraries 
are added. Remember that the default directory is where the bound program is 
launched from. CAUTION: if you are using line numbers, make sure to leave 
plenty of space between your line numbers to allow the editor room for the extra 
code between your lines. Intervals of 10 are normally sufficient. 

• BREAKPOINT – will mark your program at the line where the cursor is 
positioned. BREAKPOINT is normally disabled (grayed out) and only becomes 
active when you select DEBUG MODE from the SETTINGS menu. The 
breakpoint will appear as the word <<<BREAKPOINT>>> surrounded angle 
brackets. This is a toggle action feature, i.e. if the line already has a breakpoint 
then it will be switched off, but if there is no breakpoint then one will be added. 
If you RUN your program with breakpoints marked, the program will stop at 
the first breakpoint. A dialog box will give you the opportunity to continue 
running your program. All breakpoints are cleared when you toggle DEBUG 
MODE again. If you insert a series of variable names immediately after the 
breakpoint, e.g. <<<BREAKPOINT>>>a,n,string$,xyz,b
then when your program halts at the breakpoint a list of all these variables and their
 current values will be displayed. In this way you can track the changing values of 
any variable while the program is running. This is a valuable aid to debugging. 
CAUTION: if you are using line numbers, make sure to leave plenty of space 
between your line numbers (10 lines is usually sufficient) to allow the editor to 
insert extra code between your lines to achieve this breakpoint feature.

• BIND – is a special linking process that combines your program with any 
library modules and other resources to produce a stand-alone executable 
application. The default name of this application is the same as your original 
source code except the extension is changed to EXE instead of TRU. A dialog 
box allows you to change this name and to specify the folder where the 
executable file will be saved. NOTE: this feature is NOT available in the 
Bronze edition so the menu item is grayed out and disabled. Prior to the 
binding process, the editor adds a few extra lines of code to a copy of your 
source program (preserving the original) and it is this copy which is bound. 
These extra lines include adding any loaded libraries and aliases, but DO NOT 
include the code that retains the output window. In other words, when your 
program reaches the END statement, the proram will stop and the screen will 
clear. If you need to retain the output window, you must add the code yourself. 
For example, immediately before the END statement add the following line:
CALL TBexitroutine
This will preserve your last screen until the user presses any key or clicks the 
mouse.

• COMPILE – will cause your program to be converted into a coded format that 
the computer understands. Unlike earlier editors, your program will be 
preserved. The compiled version will be automatically saved with the same file 
name and in the same folder as your source program, but the extension will be 
changed to TRC instead of TRU. Prior to the compiling process, the editor adds a 
few extra lines of code to a copy of your source program (preserving the original) 
and it is this copy which is compiled. These extra lines include adding any loaded 
libraries and aliases. In other words, a compiled program will run exactly like a 
source program. The exceptions to this rule are MODULES and EXTERNAL 
program units. In these two cases, no extra code or loaded libraries are added. 
Remember that the default directory is where the TRC program is launched from. 
CAUTION: if you are using line numbers, make sure to leave plenty (10 is usually 
sufficient) of space between your line numbers to allow the editor room for the 
extra code between your lines. 



WINDOW MENU
• RECENT FILES – this option displays a rolling list of the ten most recently 

closed files. As you close more files, older files will drop off the bottom of the 
list.

NOTE: At the bottom of the WINDOW menu there will be a list of all the program files 
that are currently OPEN. The list shows the full path name of each file. The current 
program file will be ticked. You may click the mouse on any of these file names to force 
the file to become the focus of the editor. When you close a program file it is removed 
from this list.

SETTINGS MENU
• SAVE ON CLOSE – this option sets an internal toggle action switch that 

automatically saves your program when you close the window. When the 
internal switch is active a tick will appear against this item. Click on this item 
again to cancel the internal switch and the tick will be erased. The default 
condition is OFF. The True BASIC editor will try to help you avoid 
catastrophic mistakes by presenting you with a dialog box that asks if you wish 
to save your program every time you click on the close window button.

• BACKUP ON SAVE – this option allows you to set an internal switch that will 
automatically produce a back-up copy of any program at the time you save the 
program. The back-up copy has the same name as the original file except the 
extension is BAK instead of TRU. When the internal switch is active a tick will 
appear against this item. Click on this item again to cancel the internal switch 
and the tick will be erased. This is known as a toggle action switch; click once 
for ON and click again for OFF. The default condition is ON.

• DEBUG MODE – is a toggle action switch that enables the BREAKPOINTS 
and TRACE options under the RUN menu. When DEBUG MODE is switched 
ON the item is ticked. When the switch is OFF the tick is erased and your 
program will run as normal. All breakpoints are removed when DEBUG 
MODE is switched OFF. The default condition is OFF.

xviii

• DO UPPER – is a built-in routine that will convert the text of any True BASIC 
program to all upper case (capital letters).

• DO LOWER – is a built-in routine that will convert the text of any True BASIC 
program to all lower case (small letters).

• TRACE – is another feature that helps you locate errors in your program by 
stepping through your program line by line. Essentially TRACE puts a 
breakpoint on every line. TRACE is normally disabled (grayed out) and only 
becomes active when you select DEBUG MODE from the SETTINGS menu. All 
breakpoints are cleared when you toggle DEBUG MODE again.

• DO FORMAT – is a built-in routine that indents your program text depending 
on certain keywords in order to make the text more readable. It also helps you 
to locate errors because it aligns corresponding statements such as FOR…
NEXT and DO….LOOP. If these statements are not perfectly aligned then 
there must be an error in the code between these statements. You will find 
that this menu option is one of the most frequently used features in the editor.

      Remember that the default directory is where the bound program is launched 
from. CAUTION: if  you are using line numbers,  make sure to leave plenty 
(10  is  usually  sufficient)  of  space  between  your  line  numbers  to  allow  the 
editor room for the extra code between your lines. 

• DO – is a general-purpose command in which you specify and run an 
EXTERNAL program unit. A file selector dialog box will assist you in locating 
the DO program of your choice.  Note: the program RUNDO.TRU is NOT a DO 
program and will generate errors if you attempt to run it. Do not move or delete 
this file because you will no longer be able to run any DO programs. 



font for all editor windows is ASI MONO, 10 point PLAIN (regular) or 
COURIER, 10 point PLAIN, and the standard default font color is BLACK. As 
an alternative LUCIDA CONSOLE 10 point PLAIN can be used as a fixed 
pitch font. The preferences dialog box also allows you to set the number of 
characters that will be printed across the hard copy page and the number of 
lines that will be printed per page. The default settings are 80 and 60 
respectively. Code lines longer than 80 characters will be wrapped in the hard 
copy print. 

• BINDER – allows you to select which binder you wish to use, i.e. the older 
version binder that requires DLL files in order for executable programs to run, 
or the new binder (5.5b19) which does not require DLL files to run executable 
programs. Note that the new binder has a number of residual bugs that 
prevent some TrueCtrl objects from working correctly.

• ALIASES – this menu option allows you to add or edit the list of alias 
pathnames used by the editor to locate filenames used in LIBRARY 
statements. Note that when the file is located in a sub-folder of the directory 
where the new editor is located, e.g. Tblibs, then only the sub-folder name is 
used in the alias list. If the file is located in a different directory altogether, 

• FUNCTION KEYS – is a toggle action switch that enables or disables the 
function keys. This feature is now enabled in this version.

• SHORT CUTS – is a toggle action switch that shows or hides short cut 
keystrokes against each menu item. The default condition is ON, i.e. short cuts 
are shown.

xix

then the full path to that directory must be given, e.g. c:\my documents\my 

• CONFIRM QUIT – is a toggle action switch that causes a dialog box to appear 
whenever you attempt to shut down True BASIC. The dialog box requires that 
you confirm your intention to shut down. This option will avoid shutting down 
when you did not mean to do this. When the confirm switch is active a tick will 
appear against this item. Click on this item again to cancel the internal switch 
and the tick will be erased. The default condition is ON.

• HOTSTART – is a toggle action switch that causes all the open files that you 
were using in the previous session with True BASIC to be loaded automatically 
when you start up True BASIC in the current session. When the hotstart 
switch is active a tick will appear against this item. Click on this item again to 
cancel the internal switch and the tick will be erased. The default condition is 
ON.

• PREFERENCES – raises a special dialog box where you can set the color of the 
editor window, and the name and color of the font used to print the text in the 
window. The default page color for the editor window is SAND. The default 

pictures. Do not use a trailing backslash.
Aliases can also be used with the OPEN file statement provided the file 
already exists, i.e. CREATE OLD is specified. The filename must also be a 
string literal within quote marks and not a string variable.
Legacy programs that used curly brackets and an alias group name, e.g. 
{mygroup} will be handled by the new alias system, even though the group 
name is ignored. Aliases that are added under the ALIAS menu are 
permanent, i.e. the editor will remember them so that when you shut down and
restart, the aliases will still be in effect. Note that temporary aliases can be 
added on the command line or by means of a SCRIPT file. Temporary aliases 
are not remembered when the editor shuts down.



• HELP – this option shows a small text window with a drop down index and an 
edit box that allows you to search the help file. You can resize this window to 
suit your purpose and it will remain at this size for the remainder of the 
session while you are working with True BASIC. The help files contain details 
of all the functions and statements in True BASIC and how to use these 
features. There are a number of other useful items of information in the help 
files including extracts from this book. You can select which help file you want 
to use from the CONTENTS menu. This help file will remain current until you 
change to another help file. 

      The full alphabetical index will be shown when you click on the down arrow 
button to the right of the topics title. When you select a topic from the index, 
the text related to the topic will be shown in the main text box. 

      If you are uncertain what you are looking for, you can type an associated word 
or concept in the search box then click on the green GO button. The program 
will then search the whole text in the current HELP file for a match and will 
display the results in the text box.  

      A unique feature of the HELP option is that you can edit, change or add items 
to the help file using the EDIT or INSERT options under the HELP WINDOW 
menu. COPY and PASTE options also allow you to copy code fragments 
contained in the help text box and transfer these fragments direct to your 
program

• FORMS – this option is grayed out (disabled) in all versions. It is a new option 
to True BASIC but must be purchased separately. The application 
automatically enables this menu option to make it fully integrated with the 
editor. FORMS is not available in any earlier versions. This program allows 
the user to design window layouts using a simple graphical drag-and-drop 
interface. Most importantly, FORMS generates the program code to reproduce 
your design, and includes this code in your own program. You can use FORMS 
repeatedly to create or modify as many windows as you like. Each window may 
contain as many controls and objects as you need. The code generated by 
FORMS is a complete skeleton application that can be run immediately 
without further intervention by the user. Included in the code are comments to 
guide you to the point where you need to insert your own program code to 
respond to user input. 

• TBILT – this option is grayed out (disabled) in all versions except Gold. It is a 
regular option to True BASIC but must be purchased separately. The 
application automatically enables this menu option. This is a free standing 
program that allows the user to design window layouts using a simple 
graphical drag-and-drop interface. The editor automatically chains to TBILT. 
Most importantly, TBILT generates the program code to reproduce your 
design, and leaves this code on the clipboard for you to paste into your own 
program.

• ABOUT True BASIC – will show you the version number, edition and release 
date of the version of True BASIC currently running.

xx

• COLORTEXT – this feature uses different colors for line numbers (if any), key 
words, calls and sub-routines, definitions and functions, punctuation, aliases, 
strings and numeric variables. Two default color schemes are available 
depending on the background page color (light or dark). The user can also 
define a custom color scheme. This option allows the user to switch colortext on 
or off. Note that when colortext is ON then all current open source files will use 
color text except files that are wrapped. Colortext can be RUN, COMPILED 
and BOUND in the normal way. 

HELP FOR True BASIC



• MANUALS – will display a selection list containing details of all the manuals 
available in the DOCS folder. When you select a manual from this list the 
program will automatically start up an Adobe PDF file containing the selected 
manual. When you close the Adobe Reader window, control is passed back to 
the True BASIC editor. You can also add your own manuals to the DOCS 
folder, provided the manual file itself is in PDF document format, and this 
manual will be automatically added to the list in the editor.

HELP WINDOW MENU
FILE

• PRINT – the current help file topic that appears in the text box will be copied 
to the hard copy printer.

• RUN DEMOS – first select a demo file by highlighting the name (drag the 
mouse across the name), then select RUN DEMOS. The file will be 
automatically loaded into editor window ready for you to run. 

• CLOSE – this option closes the HELP window and returns the user to the 
main True BASIC editor.

EDIT
• CUT – this option is normally disabled (grayed out). It only becomes active 

when the MODIFY or INSERT options are selected. When active you can copy 
any highlighted text to the clipboard, and that portion of text will then be 
erased. Portions of text held on the clipboard can be inserted back into the help 
file with the PASTE option.

• COPY – will copy any highlighted text to the clipboard, but will not erase that 
portion of text from the help file. Portions of text held on the clipboard can be 
inserted into your program with the PASTE option on the editor menu.

• PASTE – this option is normally disabled (grayed out). It only becomes active 
when the MODIFY or INSET options are selected. When active you can 
transfer text from the clipboard to the point immediately after the current 
cursor position in the help file. You can position the cursor anywhere in the 
text box by clicking the mouse at that point.

• MODIFY – this is a toggle action option that allows you to edit the existing 
help file text. For example, you may include additional explanatory notes or 
more examples to the existing topic, or you may correct mistakes if you find 
any. The options CUT and PASTE also become active. First select the topic you 
wish to modify from the drop-down topics list, then click the MODIFY option. 
When you have completed your changes select the MODIFY option again. This 
will erase the active tick mark and will disable CUT and PASTE. At this point 
you will be given the option to SAVE your modified topic or DISCARD it. You 
must exit the HELP window for your modified topic to appear in the drop down 
list.

• ADD NEW – this is a toggle action option that allows you to add extra topics to 
the help file. First select the ADDNEW option to clear the text window ready 
for you to type in your  topic. You must begin your topic with a title inside 

xxi



angle brackets, e.g. <TITLE> and this will ensure that your topic will then 
appear in the alphabetical drop down list. Your topic can be of any length. 
When you have finished, click the ADD NEW option again. At this point you 
will be given the option to SAVE your new topic or DISCARD it. The ADD 
NEW toggle option will then be turned OFF and CUT and PASTE will be 
disabled. You must exit the HELP window for your new topic to appear in the 
drop down list.

• IMPORT – is an alternative to ADD NEW. It allows you to import additional 
help information that has been saved in an external file. In this instance 
multiple help topics can be inserted in one operation. Each imported topic must 
begin with a title in angle brackets. The import file can contain any number of 
topics. A dialog box will request the name of the file and its entire contents will 
be appended to the current help file. This is a very simple way to update your 
help file using files generated by others, e.g. True BASIC Forum Members or 
by True BASIC Inc. You must exit the HELP window for your imported topics 
to appear in the drop down list. 

CONTENTS
Selecting any one of the following items determines which help file the editor will use. 
There are currently eight different help files that cover various aspects and library 
modules included with True BASIC.  In turn this determines the list of topics that you 
can select from the drop-down list.

• USING THE EDITOR – is a series of topics related to using the editor and the 
help feature. The topics are arranged alphabetically. This item is common to 
all editions of True BASIC.

• FUNCTIONS – this section lists and explains all the built-in functions within 
True BASIC and again it is common to all editions. Most topics contain code 
that can be copied to your programs.

• STATEMENTS – this section lists and explains all the statements in True 
BASIC. Most topics contain code that can be copied to your programs. This 
section is common to all editions of True BASIC.

• TRUECTRL – this section details all the sub-routines in the library module 
and explains the syntax and how to use each routine with code examples that 
can be copied directly to your programs. This option is not available to users of 
the Bronze edition. Instead, BronzeTC is included. 

• TRUEDIAL – this section details all the sub-routines in the dialog box library 
module and explains the syntax and how to use each routine with code 
examples that can be copied directly to your programs. This option is not 
available to users of the Bronze edition. 

• TRUECTX – this  section details all the sub-routines in the extended color and 
text library module and explains the syntax and how to use each routine with 
code examples that can be copied directly to your programs. This option is not 
available to users of the Bronze edition.

• TRUETDX – this section details all the sub-routines in the extended dialog box 
library module and explains the syntax and how to use each routine with code 

xxii



examples that can be copied directly to your programs. This option is not 
available to users of the Bronze edition.

• FORMS – this section describes how to use the FORMS program to create 
windows and objects and automatically generate code. This option is not 
available to users of the Bronze edition.

Note: The editor automatically reads all TXT files that reside in the TBhelp folder and 
creates the CONTENTS list from these files. To add another help file to this list, all 
you have to do is drop the file into the TBhelp folder and the editor will do the rest.

If you wish to add more help files you may use Notepad or the TB Editor to create 
additional menu items.

xxiii



CHAPTER

1
A Word on Style

Before you begin to program, you need to know something about the programming style of the language you plan
to use. A language’s style determines how you may arrange a program’s source code. 

The style of a programming language is largely determined by rules. True BASIC, like most programming lan-
guages, supports two types of style: required style — rules you must obey— and conventional style — optional
standards that help make programs easier to read, understand, and adapt or expand. Take a look at the following
program that implements a simple guessing-game.  This program shows the “flavor” of True BASIC style and
illustrates both required and conventional elements of the language:

! Set up the program and get initial number
CLEAR
RANDOMIZE
LET answer = Int(Rnd*10) + 1

! Display the title and instructions
PRINT “A guessing game.”
PRINT “Enter your guess as number between 1 and 10.”
PRINT “Enter 0 to quit.”

! Allow the user to play an unlimited number of games
DO

INPUT PROMPT “Your guess: “: guess
LET guess = Int(guess) ! Use next lowest integer
IF guess < 1 then ! User has quit

EXIT DO
ELSEIF guess > 10 then ! Guess out of range

PRINT “Your guess must be between 1 and 10!”
ELSEIF guess = answer then ! Correct guess

PRINT “Correct! What a guess!”
PRINT “I’m thinking of another number.”
PAUSE 3 ! Act like we’re thinking
PRINT ! Blank line to start series
LET answer = Int(Rnd*10) + 1 ! Get new answer

ELSE ! Incorrect guess
PRINT “Wrong! Try again!”

END IF
LOOP
! All done
PRINT “Thanks for playing.”
END

Required Style
There are certain rules you must obey if you want your True BASIC programs to run. Fortunately, True BASIC is
designed so that you do not need to know all the required style rules before you begin to program. You should, how-
ever, know the required style rules that apply to a particular structure before you attempt to use it in a program.

1



Most of this manual describes the required style rules for each of True BASIC’s statements and structures. This
section introduces a few fundamental requirements that apply to all programs and all structures.  

Look again at the simple guessing-game program at the beginning of this chapter. It illustrates several require-
ments of the True BASIC language.
——————————————————————–––—————————————————
[ ! ] Note:  Every True BASIC program must have one, and only one, END statement.
———————————————————————–––————————————————

While it doesn’t really “do” anything, the END statement is vital to the operation of a True BASIC program. The
END statement indicates the end of the main program; it tells True BASIC where to stop executing code.

As you’ll see later (Chapter 10, “User-Defined Functions and Subroutines”) the END statement is not necessarily
the last statement in the document containing your program. You may have external structures stored in the same
document after the END statement, but the END statement must end the main program unit. 

If you attempt to run a program with no END statement, the program halts with the message “Missing end state-
ment.” If you run a program containing more than one END statement, the program halts with the message
“Statement outside of program.” 
———————————————————————–––————————————————
[ ! ] Note:  Each True BASIC statement must begin with a keyword. If additional information

follows, there must be a space after the keyword.
———————————————————–––————————————————————

Look at the sample program again. Some lines are blank or contain only comments (beginning with a !), but each “exe-
cutable statement” begins with a keyword. Some keywords stand by themselves, such as the CLEAR, RANDOMIZE,
and END statements. Others usually or always include additional information, such as the LET and PRINT state-
ments. A space must always follow a keyword used with additional information. The use of spaces in the rest of the
statement is generally optional. Throughout this manual we represent keywords in all uppercase letters so that they
are clearly distinguishable, but you are not required to do so.  

Let’s look a bit more closely at the LET and PRINT statements — perhaps the two most commonly used state-
ments in True BASIC. Each statement has certain required style rules that it must follow. 

The LET statement assigns a value to a variable. Each begins with the keyword LET followed by the name of the
variable to which the value is to be assigned. The variable name is followed by an equal sign (=) and the value to
be assigned to the specified variable. The value being assigned may be an expression containing mathematical or
string operators:

LET guess = Int(guess)
LET answer = Int(Rnd*10) + 1

Complete details about the rules for the LET statement and for constants, variables, and expressions are dis-
cussed in Chapter 2, “Constants, Variables, and Expressions.” (See also the OPTION NOLET statement later in
this section.)

The PRINT statement obeys required style rules of its own. The PRINT keyword is usually followed by one or
more items to be printed, and multiple items can be separated by commas or semicolons. The PRINT statements
in the sample program each print one string constant, as in:

PRINT “Thanks for playing.”

Notice that the sample program also uses a blank PRINT statement, which produces a blank line.  The complete
required style rules for PRINT statements are discussed in Chapter 3, “Output Statements.”

2 True BASIC Language System



———————————————————–––————————————————————
[ ! ] Note:  Names representing entities such as variables, arrays, and routines may be of any

length and contain letters, digits, and underscore characters. All names must start with a let-
ter and contain no spaces; all names representing string items must end with a dollar sign ($).

——————————————————–––—————————————————————
True BASIC makes no distinction between uppercase and lowercase. Here are some legal variable names:

guess name$
answer first_name$
V25 CityStateCode$

For complete information on variable names see Chapter 2, “Constants, Variables, and Expressions.”
———————————–––————————————————————————————
[ ! ] Note: True BASIC allows only one statement per line. Thus, the end of a line indicates the

end of a True BASIC statement.
—————————–––——————————————————————————————

The rules for some statements do allow multiple parts or serve dual purposes, but you can still put only one such
statement on a line. For example, the INPUT PROMPT statement combines the functionality of the PRINT and
INPUT statements by letting you specify a message to be printed when the program asks for input, but it is itself
a single statement:

INPUT PROMPT “Your guess: “: guess

The IF structure often occupies several lines as it does in the sample program where it uses two ELSEIF state-
ments and one ELSE statement. However, there is also a one-line IF statement for simpler decisions.  For exam-
ple in the sample program, the single line:

PRINT “Wrong! Try Again!”

could be replaced by the single-line IF structure:
IF guess < answer then PRINT “Too low!” else PRINT “Too high!”

These are the fundamental elements of True BASIC’s required style: All programs must have one, and only one,
END statement. Each executable statement must begin with a keyword.  Each keyword must be followed with a
space or end-of-line character, and there may be only one statement per line.  

The one exception to the above is the OPTION NOLET statement that lets you omit the LET keyword from assign-
ment statements. We do not recommend you use the OPTION NOLET statement, as it “violates” the keyword rule
and can lead to confusing error messages.

There is one more element of required style that applies only when you elect to use line numbers. As you can see,
True BASIC does not require line numbers. Though we don’t recommend them (see the end of this chapter), you
may use them. But if you do so, be aware of this additional rule: If you use line numbers, every line in your pro-
gram — including blank and comment lines — must have a line number.

Conventional Style
As long as your programs obey both the general required style rules mentioned above and the specific rules asso-
ciated with the statements used, they will run. True BASIC does not pay any attention to the conventional style of
your programs. Conventional style, however, helps you create and maintain your programs with a minimum of
frustration. 
There are many elements of conventional style, and there are also many philosophies of how best to apply them.
This section introduces you to some of the most common conventional style elements and philosophies. Be aware,
however, that this is primarily intended to introduce you to the options and give you some ideas. As you read it,
think about what makes the most sense to you. You should develop your own conventional style philosophy to
enhance the readability of your programs. If you implement your style philosophy from the outset, you can

3A Word on Style



enhance your enjoyment and the productivity of your programming.

Let’s look again at the program from the beginning of the chapter, repeated here for your convenience:
! Set up the program and get initial number
CLEAR
RANDOMIZE
LET answer = Int(Rnd*10) + 1
! Display the title and instructions
PRINT “A guessing game.”
PRINT “Enter your guess as number between 1 and 10.”
PRINT “Enter 0 to quit.”
! Allow the user to play an unlimited number of games
DO

INPUT PROMPT “Your guess: “: guess
LET guess = Int(guess) ! Use next lowest integer
IF guess < 1 then ! User has quit

EXIT DO
ELSEIF guess > 10 then ! Guess out of range

PRINT “Your guess must be between 1 and 10!”
ELSEIF guess = answer then ! Correct guess

PRINT “Correct! What a guess!”
PRINT “I’m thinking of another number.”
PAUSE 3 ! Act like we’re thinking
PRINT ! Blank line to start series
LET answer = Int(Rnd*10) + 1 ! Get new answer

ELSE ! Incorrect guess
PRINT “Wrong! Try again!”

END IF
LOOP
! All done
PRINT “Thanks for playing.”
END

Some things you might notice are the use of space, indenting, and comments to make the structure and function
of the program easier to follow.

True BASIC lets you add or omit spaces as you see fit, within certain required style rules. You may add spaces any-
where but in the middle of a keyword, name, or two-character symbol (such as >=). You may also omit spaces where
it causes no confusion, but you must be sure to have a space after each keyword. 

You may also insert blank lines in the program. Often, blank lines are used to separate logical blocks in a program.
True BASIC simple ignores these additional lines when it runs the program.

True BASIC also allows any number of spaces to appear at the beginning of a line. (In line numbered programs,
the number must come first followed by any number of spaces.) True BASIC was designed this way to allow for a
variety of indentation styles. Typically, you will find that your programs are much easier to understand if you
indent the bodies of structures such as loops, decisions, and procedures. The “True BASIC Environment” chapter
in the Introduction section shows how the True BASIC editor can indent programs for you.

Comments are another powerful tool for making your programs easy to read. Comments are notes to yourself (and
anyone else who needs to understand your code) about how a program works. True BASIC ignores comments when
it runs your program.

True BASIC comments begin with an exclamation mark (!). You can place them on a separate line or at the end of
any line. True BASIC ignores anything to the right of an exclamation point (that is not part of a string constant).
Thus, inserting an explanation point at the beginning of a line is also an easy way to temporarily disable a state-

4 True BASIC Language System



ment. You may also use the REM statement to insert comments into your code, but the REM statement must
occupy a line of its own:

REM  This is a guessing game program.

As mentioned in the above section, True BASIC lets you use names, or identifiers, of any length. Therefore, you
may use names that describe the purpose of your variables, subroutines, and functions. You will find that this
makes your programs much easier to understand and debug.

True BASIC ignores the case of letters, except as they appear in string constants. Thus, the keywords LET, Let,
and let are identical to True BASIC. Likewise, the variable names answer, Answer, and ANSWER are seen as
the same name.

In the sample code throughout this documentation, we use capital letters for keywords, begin the names of func-
tions and subroutines with a capital letter (and capitalize the beginning of each subsequent “word”), and start
variable names with a lowercase letter. We feel that this creates clear, readable programs, but you should feel free
to develop your own stylistic philosophy.
————————————————–––———————————————————————
[ ! ] Note: Unlike some other forms of the BASIC language, True BASIC does not penalize you

with a slower execution speed when you add spaces, comments, or blank lines or when you
use meaningful variable names. There is no advantage in squeezing as much as possible on
a single line. Feel free to write readable programs. Making a program understandable will
not make it slower.

——————————————————–––—————————————————————

Many of True BASIC’s structures themselves contribute to the readability of programs. The IF and DO structures
used in the sample program are two examples. Other structures such as FOR structures, SELECT CASE struc-
tures, subroutines, functions, and modules also help you organize your program into clearly understandable com-
partments. These structured programming features also make it easier to write programs, letting you divide the
task into smaller blocks that you can often test independently. Generous use of spaces and indenting make these
structures even easier to understand.

These structures also free True BASIC from the need for line numbers. Line numbers are required by older ver-
sions of the BASIC language, but they are optional in True BASIC. None of True BASIC’s structures or statements
(described in the main parts of this manual) require line numbers, but you may number your programs and use
statements such as the GOTO or GOSUB statements from older forms of BASIC. While this makes it relatively
easy to run older programs, we don’t recommend line numbers as a desirable conventional style. Programs writ-
ten without line numbers are generally much easier to understand and maintain. Remember, however, that if you
do use line numbers, you must number all the lines in the source file. Appendix E describes how the older line-
number control statements work.

As a final illustration of conventional style, here is a program that is functionally identical to the sample program
earlier in this chapter, but it violates most of the conventional rules we’ve been discussing. It does obey all the
required rules, however, and True BASIC will run it without complaint:

1000 CLEAR
1010 RANDOMIZE
1020 LET ANSWER=INT(RND*10)+1
1030 PRINT “A GUESSING GAME.”
1040 PRINT “ENTER YOUR GUESS AS A NUMBER BETWEEN 1 AND 10.”
1050 PRINT “ENTER 0 TO QUIT.”
1060 INPUT PROMPT “YOUR GUESS: “:GUESS
1070 LET GUESS=INT(GUESS)
1080 IF GUESS<1 THEN GOTO 1210
1090 IF GUESS>10 THEN GOTO 1130
1100 IF GUESS=ANSWER THEN GOTO 1150

5A Word on Style



1110 PRINT “WRONG! TRY AGAIN!”
1120 GOTO 1060
1130 PRINT “YOUR GUESS MUST BE BETWEEN 1 AND 10!”
1140 GOTO 1060
1150 PRINT “CORRECT! WHAT A GUESS!”
1160 PRINT “I’M THINKING OF ANOTHER NUMBER.”
1170 PAUSE 3
1180 PRINT
1190 LET ANSWER=INT(RND*10)+1
1200 GOTO 1060
1210 PRINT “THANKS FOR PLAYING.”
1220 END

We hope you’ll agree that the earlier program is much easier to understand. This is because the earlier program
uses a well defined conventional style philosophy. It uses comments to clarify the code; it uses case, blank lines,
and extra spaces to make the code easier to read; and it uses structured programming and consistent indentation
to make its logic easier to analyze.  

The line-numbered program was not made deliberately complex. It merely uses structures that rely on line-num-
bers and ignores most of the conventions introduced in this chapter (though it does use multi-character variable
names).

In summary, the look and feel of a programming language is determined by both its required style and the conven-
tional style it allows. Exactly what you adopt as your own conventional style philosophy is not so important as the
fact that you develop a style that makes your programs easier to write, understand, and expand, and that you use
it consistently.

6 True BASIC Language System



CHAPTER

2
Constants, Variables, and Expressions

The fundamental purpose of virtually all programs is to manipulate data — both numbers and letters. This data
is most often represented within the program in the form of constants and variables — and expressions that cal-
culate new values from constants and variables. Here’s a simple program that illustrates these three representa-
tions of data:

INPUT PROMPT “Number of items? “: n
LET cost, price = 0
FOR i = 1 to n

INPUT PROMPT “Price of item? “: price
LET cost = cost + (price * 1.04) ! Include 4% sales tax

NEXT i
PRINT “Your cost with the sales tax is “;
PRINT USING “$$$$#.##”: cost
PRINT “Press any key to end program.”
GET KEY k ! Hold output until a key is pressed
END

Constants are data values you put directly into the source code. Since their values cannot change unless you change
the source code, constants remain unchanged during the running of the program. In the program above, the sales tax
is the constant 1.04 representing a 4% sales tax. To change this, you must change the program itself.

Variables are named representations of data. They associate a name with some data value. True BASIC provides
many ways for you to assign and change the values of a variable during a program run. This is why the names used to
represent the data are called variables. In the program above, the variable n retains the same value throughout the run,
but the values of price and cost change each time through the FOR loop (explained in Chapter 6 “Loop Structures”).

Constants and variables may be combined with operators and functions to create expressions. Expressions are
similar to formulas; they represent data values that are calculated during the program run based upon the values
of their elements at the time of calculation. In the program above, an expression computes a new value for cost
each time through the FOR loop. The program uses the previous value of cost on the right side of the equal sign;
the new value of cost equals the old value plus the new price plus the sales tax. 

Many programming languages have several different data types. True BASIC, however, simplifies the program-
ming process by distinguishing between only two types of data: numbers and strings.

Thus, True BASIC uses numeric constants, numeric variables, and numeric expressions as well as string con-
stants, string variables, and string expressions. This chapter introduces you to each of these data representations.
You will find more formal definitions of these concepts in Chapter 17.

Numeric Values
As far as the programmer is concerned, True BASIC treats all numeric values equally. It does not force you to dis-
tinguish between integer and real values or limit the size of particular values.

If you are familiar with one of the many programming languages that forces these distinctions and limits, then you
can treat each numeric value in True BASIC as the equivalent of a double-precision floating value. If that value

7



may be more appropriately interpreted as an integer value, True BASIC will convert it internally. For calculating
memory requirements, however, you should assume that each numeric value will occupy eight bytes (which is a
standard IEEE format for representing numbers).

Constants
Numeric constants must contain at least one digit. They may contain a decimal point, and they may start with a
plus or minus sign. Examples are:

12 3456543
3.1416 -123 -.0003

You may not use commas or spaces within numeric constants. Thus, 1,234,567 or 12 345 are not legal numeric con-
stants. 
You may also use exponential notation (sometimes called scientific notation) to represent numeric constants. In
exponential notation, an ordinary numeric constant is followed by the letter e and an integer. The integer desig-
nates the power of 10 that multiplies the number. Here are some examples of this, along with the same number in
ordinary notation:

1e3 1000
12.3e10 123000000000
1e-3 .001
1.234e-5 .00001234

Variables
A numeric variable represents a numeric value, as do the letters “x” or “y” in algebra. The name of the numeric vari-
able may be as long as necessary. Numeric variable names must start with a letter and may contain digits and the
underscore character (_). Since spaces and hyphens are not allowed in variable names, the underscore character is
often used to create hyphenated or multi-word names. Some examples of valid numeric variable names are:

i
last
x3
FirstNumber
next_in_line

The same rules apply for names of numeric arrays, numeric functions, and subroutines, but you may not use the
same name to represent two different things. In other words, if you have a numeric variable called score, you may
not also have a numeric array or function with the same name. Remember that True BASIC treats capital and low-
ercase letters identically, so that  last and Last are the same variable.

When you run a program, True BASIC sets the initial value of all numeric variables to 0.  You may of course use the
LET statement or other assignment statements to “initialize” variables to any value you wish.  In fact, it is a good
habit to initialize all variables near the beginning of the program, even if you set them equal to 0.

Expressions
You may use constants and variables to build numerical expressions. The following arithmetic operators are available:

Arithmetic Operators

Operator Meaning
+ addition
- subtraction
* multiplication
/ division
^ exponentiation
(  ) parentheses

8 True BASIC Language System



True BASIC follows the usual algebraic conventions. And, as in algebra, you may use the plus and minus signs as
in +5 or –(x+y). 

The following are examples of numeric expressions:
last - first + 1
numerator / denominator
-(z+2.35) + abc*def^2
(x^2-3) / (a+5)

The order of evaluation is the order in which operations within an expression are carried out. In True BASIC,
the order of evaluation follows a common mathematical convention. Exponentiations are carried out first, from left
to right. Multiplications and divisions are computed next, from left to right. Additions and subtractions, from left
to right, are carried out last. You may use parentheses to achieve a different order (or simply to clarify the con-
ventional computation). The following examples illustrate these rules:

Order of Evaluation

Expression Computed As Result
5–4*3 5–(4*3) –7
2^3^2 (2^3)^2 64
–3^2 –(3^2) –9
6/2*3 (6/2)*3 9

6/(2*3) 6/(2*3) 1
6+4/2+3 (6+(4/2))+3 11

(6+4)/(2+3) (6+4)/(2+3) 2

Compare the last two examples in particular. Omission of parentheses in the denominator is a common error. 

The precision with which True BASIC evaluates numeric expressions may vary from machine to machine, but gen-
erally adheres to the IEEE eigh-byte standard, which yields about 15 significant digits. The range of numeric val-
ues that can be handled also may vary, but at least is in the range 1e-300 to 1e300.

When a computed value is too large to be represented by True BASIC, an overflow error occurs. If the value com-
puted is too close to 0, True BASIC substitutes 0, and no error occurs. 

The program at the beginning of this chapter used numeric constants, variable, and expressions.  Here is another
simple program illustrating various representations of numeric data:

LET cord = 4 * 4 * 8 ! Cubic feet
LET width = 7.25 ! Feet
LET height = 5.5 ! Feet
LET log_length = 16 ! Inches
LET depth = (log_length/12) * 3
PRINT “Your woodpile contains”; 
PRINT (depth * height * width) / cord ; “cords of wood.”
GET KEY k ! Press any key to end program
END

When run, this program produces the output:
Your woodpile contains 1.24609 cords of wood.

String Values
String values are composed of characters. A character is a single letter, digit, punctuation mark, or other mark
as allowed by your computer. You may use any character available on your computer as part of a string, although
you may not be able to type all the available characters from your keyboard. For a listing of the set of characters
available on your computer, see Appendix A.

9Constants, Variables, and Expressions



Each character occupies one byte of memory, and the size of a string in bytes is equal to the number of characters
it contains. True BASIC allows strings to be as long as necessary, limited only by the available memory.  On most
operating systems the upper limit is more than four gigabytes; on Windows 3.1 it is about sixteen million charac-
ters.

Constants
A string constant is any sequence of characters enclosed in quotation marks. The PRINT and INPUT PROMPT
statements in the two sample programs earlier in this chapter contain string constants. Other examples are “x”,
“first”, “2001”, “This is a sentence.” and “X#*q30m”. Within string constants, True BASIC does distinguish
between capital and lowercase letters. Thus, “last” and “Last” are different string values.

A null string (or empty string) is a string that contains no characters. You represent a null string as a pair of quo-
tation marks with no space between them: “”. A space between the quotation marks represents a string contain-
ing a single space character, not the null string.

To include a quotation mark within a string constant, you must enter the quotation mark twice. Thus, “x””y” is a
three-character string, with a quotation mark as the middle character. A more interesting example is:

“He said “”I don’t believe it!”” and smiled.”

Variables
The names of string variables differ from numeric variable names simply in that they end with a dollar sign ($).
Otherwise, the rules for naming them are the same. Examples are:

name$
first_name$
week31$
Who_knows_what$

You use the same rules for names of string arrays and string-valued functions, but you may use a particular name
for only one kind of object. In other words, if you have a string variable called name$, you may not also have an
array with that name.

When you run a program, True BASIC sets the initial value of all string variables to the null string (“”). As with
numeric variables, it is a good habit to initialize all your string variables at the beginning of a program, even if you
set them to the null string.

Expressions
Two operations let you build more complex string expressions out of constants and variables: concatenation and
substrings. 

Concatenation is the process of adding one string to the end of another, or gluing strings together. You use the
ampersand sign (&) for concatenating two string values. Thus the string expression:

“Mo” & “men” & “tum”

produces the string “Momentum”.

You may also use a substring expression to specify a portion of a string. A substring expression consists of a
string constant, variable, or expression followed by [a:b], where a indicates the starting character of the substring
and b the ending character. Thus, 

“Momentum”[3:5] 

represents the string “men”. You may use parentheses instead of square brackets, as in:
“Momentum”(3:5)

In the expression [a:b], if b is larger than the number of characters in the string, then True BASIC uses the length

10 True BASIC Language System



of the string in place of b. If a is less than 1, then True BASIC substitutes a value of 1. If a is larger than the length
of the string, or a is greater than b, the result is an empty string. Thus, any values of a and b are legal. For exam-
ple, the program:

PRINT “House”[3:100]
PRINT “House”[-5:20]
PRINT “House”[4:4]
PRINT “House”[5:3]
PRINT “Done”
END

produces the following output:
use
House
s

Done

Note that the substring expression in the fourth line returns the null string because a is larger than b, and thus a
blank line is printed.

You may use parentheses to control the order of evaluation when combining substring expressions with other
string expressions. If you don’t use parentheses, substring extraction occurs before concatenation. Thus, 

“Abcde” & “fghijklm”[3:7] 

equals “ Abcdehijkl” , while 
(“Abcde” & “fghijklm”)[3:7] 

equals “ cdefg” . 

Here’s a simple program that uses string constants, variables, and expressions:

LET first_name$ = “Abraham”
LET last_name$ = “Lincoln”
PRINT first_name$ & “ “ & last_name$ & “, 16th President of the US”
PRINT “Subscription Code:  “ & last_name$[1:4] & first_name$[1:1]
END

It produces the following output:

Abraham Lincoln, 16th President of the US
Subscription Code:  LincA

Assignment Statements
The LET statement is the primary means of assigning values to variables. In assigning values you must assign
numeric values to numeric variables and string values to string variables. (True BASIC does not perform auto-
matic type conversions.) Examples of numeric assignments are:

LET e = 2.718282828
LET answer = Sin(pi/2) * Exp(-x^2)
LET length = last - first + 1
LET k = k + 1
LET i, j = 2

In an assignment statement, the expression to the right of the equal sign (=) is evaluated first, and the resulting
value is assigned to the variable to the left of the equal sign. This means that you can use the variable appearing
on the left in the expression on the right, and its old value will be used in the expression. In the next to the last
example above, the present value of k increases by one and becomes the new value of k. 

11Constants, Variables, and Expressions



Note that a simple variable may only contain a single value. Thus, assigning a value to a variable will completely
overwrite that variable’s previous value. (See Chapter 9 on “Arrays and Matrices” for information on variable
structures that contain multiple values.)

You may specify more than one variable name to the left of the equal sign, as long as you separate names by com-
mas. In this case, the resulting value of the expression on the right will be assigned to each variable listed on the
left. In the last example above, both i and j are set equal to 2.

Similarly, values of string expressions may be assigned to string variables:
LET name$ = “George Washington”
LET b$ = a$[3:7]
LET answer$ = answer$ & def$
LET a$, b$ = “”

You may also use the LET statement to change a portion of a string. To do so, you simply put a substring expres-
sion to the left of the equal sign. For example, the code fragment:

LET a$ = “bookkeeper”
LET a$[2:4] = “ee”

creates the string “beekeeper”. The string “ee” replaces the second through fourth characters “ook”.

If, in an assignment to x$[a:b], the value of b is less than the value of a, then True BASIC makes an insertion before
character number a. For example, the code fragment: 

LET x$ = “hose”
LET x$[3:2] = “u”
LET x$[1:0] = “The “

will result in the string x$ with the value “The house”. Note that when you make assignments to substrings, the
length of the string may change.

If you start your program with an OPTION NOLET statement, you can omit the LET keyword in assignment
statements.

————————————————————–––———————————————————
[ ! ] Note:  We urge caution in the use of the OPTION NOLET statement, since error messages

may be less clear when it is in effect. The OPTION NOLET statement also destroys the simple
structure of True BASIC, in which each statement starts with a keyword.

——————————————————————–––—————————————————
Although the LET statement is the most straightforward and commonly used method of assigning values to vari-
ables, True BASIC provides several additional ways to assign values to variables. There are several forms of the
INPUT statement, which allow the person running the program to specify values for variables. The READ state-
ment lets the program read data that exists elsewhere in the source code. And the MAT statement assigns values
to entire arrays. In addition, the INPUT and READ statements may be used to assign values to variables based
upon the contents of data files. These statements are described in greater detail in later chapters.

12 True BASIC Language System



CHAPTER

3
Output Statements

Generally, a program produces some form of output to let the user know what the “answer” is. In True BASIC the
primary mechanism for generating output is the PRINT statement.

The PRINT statement displays textual output on the computer screen. This textual (as opposed to graphical) out-
put may be string constants; the values of variables, arrays, functions, or expressions; or any combination you
specify. You may also use the PRINT statement to send output to a printer or a file. 

The PRINT USING statement lets you format your output in a more careful, sophisticated way. For instance, it
lets you specify the number of digits to use for printing numeric values or the exact alignment for printing string
values.  

This chapter introduces some simple options for sending textual output to the computer screen, a printer, or a file
using the PRINT and PRINT USING statements. Other methods of producing output are described in Chapter 12
“Files for Data Input and Output,” Chapter 13 “Graphics,” and Chapter 14 “Interface Elements.” 

Basic Printing
To understand how the PRINT statement works, you must first understand the concept of the text cursor. The
text cursor is the point on the screen at which the next text to be printed will appear. When True BASIC first
opens a window, the text cursor is in the upper left-hand corner of that window. Thus, if your program prints to
that window, the text starts in the upper left-hand corner. 
—————————————————————–––——————————————————
[ ! ] Note: True BASIC automatically opens an output window for simple programs; Chapters

13 “Graphics” and 14 “Interface Elements” describe how you can create and open additional
windows. The text cursor itself is normally not visible although you can control its location.
The text cursor appears on the screen only when an input statement expects a response
from the user; the next chapter describes input statements.

—————————————————————–––——————————————————
The PRINT statement displays the value of expressions at the current text cursor. For example, the code frag-
ment:

LET name$ = “Rumplestiltskin”
LET abcd = 1999
LET x = 48
LET y = 24
PRINT name$
PRINT abcd
PRINT (x+y)/2

will print a string and two numbers:
Rumplestiltskin
1999 
36 

13



Each of these items, the string and the two numbers, appears on a separate line. This is because each PRINT
statement normally prints an end-of-line character after printing the specified value. This end-of-line character
moves the text cursor to the beginning of the next line.

Controlling Line Breaks
You may also use semicolons or commas to combine several items in one PRINT statement and to prevent the
automatic end-of-line character after a PRINT statement. The use of the semicolon to print items consecutively is
described below; the use of the comma to print in columns is described in the next section.

At the end of the PRINT statement, the semicolon suppresses the end-of-line character. For example, the code
segment:

PRINT “The numbers are “;
PRINT (x-y)/2;
PRINT “and “;
PRINT (x+y)/2

would print the following output if x equals 3 and y equals 7:
The numbers are -2 and  5

You may also use semicolons to combine expressions to be printed consecutively by one PRINT statement. When
several numeric and/or string expressions are listed in a single PRINT statement, they are often referred to as that
statement’s print items. The punctuation mark used to separate the print items (in this case the semicolon) is
called a print separator. For example, the following statement, which contains four print items and three print
separators, is equivalent to the four PRINT statements in the preceding example:

PRINT “The numbers are “; (x-y)/2; “and “; (x+y)/2

Since there is no punctuation at the end of the last PRINT statement in the first example or the at the end of the
PRINT statement in the second example, True BASIC will move the text cursor to the beginning of the next line
after it carries out those statements. Therefore, the output of the next PRINT statement would start on the next
line.

PRINT statements are often used inside a loop to print a series of values. (Loops are discussed in detail in Chap-
ter 6 “Loop Structures.”) Here is a simple example:

FOR n = 1 to 100 step 2
PRINT n;

NEXT n
PRINT
PRINT “Done”
END

The semicolon used at the end of the first PRINT statement tells True BASIC to leave the text cursor at the end
of each number printed, causing the odd numbers to appear, one after the other, on the same line. (True BASIC
puts spaces around numbers as described below.) If the next number would go beyond the current margin, True
BASIC prints it on a new line. 

The second PRINT statement, which has nothing after it, simply prints the end-of-line character, moving the text
cursor to a new line. Without it, future output would continue at the end of the list of odd numbers, which may be
in the middle of a line. Because of this blank, or vacuous, PRINT statement, the word “Done” appears on a new
line. 

The output of this program would look something like this:
1  3  5  7  9  11  13  15  17  19  21  23  25  27  29  31  33  35  37  39 
41  43  45  47  49  51  53  55  57  59  61  63  65  67  69  71  73  75  77 
79  81  83  85  87  89  91  93  95  97  99 
Done

14 True BASIC Language System



Printing Blank Lines
You can also use vacuous PRINT statements to insert blank lines into your output.  Because each PRINT state-
ment with no ending punctuation moves the text cursor to the beginning of the next line, such statements are
equivalent to adding extra “line-feed” characters.  In the following version of the loop that prints odd numbers,
there would be a blank line before the string “Done”:

FOR n = 1 to 100 step 2
PRINT n;

NEXT n
PRINT             ! “Turns off” semicolon
PRINT             ! Prints blank line
PRINT “Done”
END

Conventions for Printing Numbers and Strings
True BASIC follows certain conventions to print numbers in a convenient format. Positive numbers and zero start
with a space, while negative numbers start with a minus sign. All numbers end with a space, so that they do not
run together when you use semicolons to separate output. 

If a number can be represented as an integer of no more than twelve digits, the number is printed as an integer. If
a number that is not an integer can be represented by eight digits and a decimal point, that form is used, but trail-
ing zeroes after the decimal point are not printed. If none of the above apply, then the number is printed in expo-
nential (scientific) notation, as explained in Chapter 2 “Constants, Variable, and Expressions.” Values repre-
sented in decimal format that contain many decimal places are rounded to eight significant digits before printing.
The following examples  show how all these cases would be printed:

Printing of Numeric Values
————————————————————————————————————

Value PRINT output
123456789012 123456789012
1234567890123 1.2345679e+12

0.12345678 .12345678
0.123456789 .12345679

12345.6789123 12345.679
————————————————————————————————————

Occasionally, you may see a numeric value printed as an integer followed solely by a decimal point; this indicates
that the value is not a “true” integer, but is rather a real value that is extremely close to the displayed integer
value. You should interpret such values as approximations.

If you need numeric values printed with greater accuracy or in a different format, use the PRINT USING state-
ment, discussed later in this chapter.
—————————————————–––——————————————————————
[ ! ] Note:  These formatting rules simply govern the printed accuracy of numeric values; they do

not affect the accuracy of the values’ internal representations. True BASIC always maintains
the highest possible degree of accuracy for its internal representations of numeric values.

—————————————————–––——————————————————————
In contrast to numbers, strings are always printed “as is.” For example, the following program fragment:

DIM day$(7)
MAT READ day$
DATA Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday
FOR i = 1 to 7

PRINT day$(i);
NEXT i
PRINT

15Output Statements



prints the names of the days of the week all run together:
SundayMondayTuesdayWednesdayThursdayFridaySaturday

If you want spaces, you should include them in the string, or you may print a string made up of one or more spaces,
as in the example below. This version of the program fragment inserts spaces to make sure that the days do not
run together:

DIM day$(7)
MAT READ day$
DATA Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday
FOR i = 1 to 7

PRINT day$(i); “   “;
NEXT i
PRINT

It would produce the following output:
Sunday   Monday   Tuesday   Wednesday   Thursday   Friday   Saturday

Erasing Output
If printed output reaches the bottom of the output window, lines are automatically scrolled off the top of the win-
dow to make room for more text at the bottom. You can erase the output window at any time with a CLEAR state-
ment:

CLEAR

The CLEAR statement erases all existing output and moves the text cursor back to the upper-left corner of the
output window. If a new background color has been set (see Chapter 13, “Graphics”), CLEAR also fills the win-
dow with that new color. 

Printing in Columns
Along with the semicolon, True BASIC allows the comma as a print separator. The comma instructs True BASIC
to move the text cursor to the beginning of the next print zone before printing the next print item. Thus, you can
use commas to generate columns of textual output.

Print zones are logical divisions of the current window that divide the area between the left edge of the current
window and the margin into equal sized “columns.” The margin of a window is the maximum length of a line of
text in that window. Both margins and print zones are specified as a number of fixed-width characters. (True
BASIC normally prints output using fixed-width fonts rather than the variable-spaced fonts used with many word
processors.) 

Unless a program specifies otherwise, True BASIC examines the output window, establishes a default margin at
its right edge, and sets up print zones with a width of sixteen characters each. If the margin is not evenly divisible
by sixteen, then the right-most print zone will be less than sixteen characters wide.

Print zones are very convenient for tabular output. For instance, if you replace the semicolon with a comma in the
earlier example that prints odd numbers, the numbers are printed in columns. Another example program is:

PRINT “Number”, “Square”, “Cube”
FOR n = 1 to 15

PRINT n, n^2, n^3
NEXT n
END

The output of this program would be displayed in three columns, with the header labels lined up with the corre-
sponding numbers (remember that True BASIC prints a space before each positive number):

Number          Square          Cube
1               1               1
2               4               8

16 True BASIC Language System



3               9               27
4               16              64
...

If you attempt to print past the margin on a given line, True BASIC prints as much as possible on the line, then
moves to the next line.

The SET MARGIN and SET ZONEWIDTH statements let you customize the default settings. For example,
SET MARGIN 70
SET ZONEWIDTH 10

will limit a line to 70 characters and provide seven zones of 10 characters each. You may specify the margin by as
large a positive integer as you wish. The zonewidth cannot be greater than the margin.

The margin may exceed the limits of the current window. In such a case, True BASIC will continue printing on a
line as required until it reaches the margin, but you will not be able to see any text that lies beyond the right edge
of the window. 

You may use the ASK MARGIN and ASK ZONEWIDTH statements to find out the current settings, as in:
ASK MARGIN m
ASK ZONEWIDTH z

If you had issued the two SET statements above, these two ASK statements would set m equal to 70 and z equal
to 10. 

Printing at Specific Screen Locations
As you have seen, True BASIC prints text at the text cursor location, and semicolons and commas in the PRINT
statement control the placement of the text cursor after an item is printed. These PRINT conventions are quite
useful for controlling the cursor when you want the next text to follow the current text.

Often, however, you may want to print text at particular positions on the screen that may not relate sequentially to
other text items. The SET CURSOR statement and the TAB function let you move the text cursor location to con-
trol where the next PRINT statement output will appear; these are described in this section. Other methods of
printing text at specific screen locations are provided by the PLOT AT statement described in Chapter 13 “Graph-
ics” and the True Controls routines described in Chapter 14 “Interface Elements.”

The SET CURSOR statement lets you put the text cursor anywhere you wish.  With the SET CURSOR state-
ment, you specify the row and column (or character) position of the text cursor within the current window. For
example, the statement:

SET CURSOR 10, 43

will move the text cursor to row 10 and column 43 (or the 43rd character position in the 10th row) of the current
window. The statement:

SET CURSOR 1, 1 

moves the cursor to the upper left-hand corner of the current window. Rows are counted from the top and columns
from the left. Each row is as high as necessary to accommodate the highest character in the character set, and each
column is wide enough to accommodate the widest character, if you are using a variable-spaced font.

You can find the current cursor location with the following form of the ASK CURSOR statement:
ASK CURSOR row, col

Here row and col are assigned the current row and column position of the text cursor.

Remember that the text cursor itself — normally a flashing line or box — is visible only when the program expects
the user to provide some input. Chapter 4 on “Input Statements” explains how you can use the SET CURSOR
statement to turn the cursor on or off; Chapter 14 on “Interface Elements” describes library routines that let you
change the shape of the cursor. 

17Output Statements



If you specify a row or column number that is outside the current window, an error results. If you need to know how
many rows and columns exist in the current window, the ASK MAX CURSOR statement will tell you:

ASK MAX CURSOR maxrow, maxcol

This statement will set maxrow to the largest row number and maxcol to the largest column number possible for
the current window. Because window size can vary depending on the computer running the program, and can
sometimes be altered by the user, this statement lets you avoid “Cursor out of bound” errors. 

Here is an example program that specifically positions the text cursor. It fills the window with birthday greetings,
with each line indented more than the line above.

ASK MAX CURSOR maxrow, maxcol ! Number rows, columns
LET text$ = “Happy Birthday!”
LET slack = maxcol - Len(text$) ! Extra spaces on line
LET ind = Int(slack / maxrow) ! Indentation

FOR row = 1 to maxrow ! Use every row
SET CURSOR row, row*ind ! Each line indented
PRINT text$;

NEXT row
END

Notice the semicolon that ends the PRINT statement. This is necessary to allow the final birthday greeting to
appear in the last row of the window. Without it, True BASIC moves the text cursor to the beginning of the fol-
lowing line after printing the last greeting, forcing the window’s contents to scroll. Try running the program with
and without this semicolon to see the difference.

Sometimes you wish to position the text cursor in the midst of a PRINT statement. You can use the TAB function
to do this, as in the following example:

PRINT name$; Tab(4, 20); x

This statement will print the value of name$, then set the cursor to row 4 and column 20 and print the value of x
there. The semicolon after the TAB function indicates that the cursor should stay at the desired position.

The TAB function with a single value moves the cursor to the specified column on the present line. If it is already
past this column, the cursor moves to that column on the next line. This version of TAB is useful for creating vari-
able-width zones. (Remember that print zones are of equal width.) For example, the following code segment:

PRINT “Name”; tab(25); “Age”; tab(30); “Phone number”
PRINT
FOR i = 1 to n

PRINT name$(i); tab(25); age(i); tab(30); phone$(i)
NEXT i

creates output in three columns. The first column may contain up to 24 characters, the second up to 5 characters,
and the third column may extend to the current margin. Some possible output follows:

Name Age Phone number

Sallie Smythe 12 907-333-4352
Olaf Larsen 56 703-256-2626
Juan Martinez 43 802-778-9991 extension 445
Pierre La Fontaine 27 602-664-1221

Formatted Printing
True BASIC also provides the PRINT USING statement as a sophisticated and flexible way of formatting output.
The PRINT USING statement works differently from the PRINT statement in that it ignores print zones and fol-
lows only the format string you specify with it. A format string is a string expression that determines the format
of the output exactly, using  fields (composed of place holders) and, possibly, constants (composed of characters).

18 True BASIC Language System



This section illustrates some of the more common uses of the PRINT USING statement.  Appendix D contains a
more formal discussion of the details.

Numeric Format Fields
First consider a simple example of formatting numeric values:

PRINT USING “-###.###”: -Pi, 9^3

The format string “-###.###” causes the PRINT USING statement to print a numeric value with exactly three
decimal places, adding zeroes or rounding if necessary. It allows up to three places before the decimal point and
reserves a space for the sign if the value is negative. Leading zeroes will not be printed. Thus, the output for the
above statement would appear as:

-  3.142 729.000

You may define the format string within the PRINT USING statement, or you may define a string variable for
use with PRINT USING. The following two statements produce the same output as the example above:

LET format$ = “-###.###”
PRINT USING format$: -Pi, 9^3

In these examples, the format string contains only one field. A field is the format specification for a single print
item. Since there is only one field but two print items, the field is used twice — once for each print item. Notice that
each item uses eight spaces with no extra spaces separating the two print items. True BASIC follows the format
string precisely and adds no additional spaces regardless of data type or punctuation between print items. If you
want spaces to precede or follow each number you must include those spaces within the format string:

LET format$ = “  -###.###  “
PRINT USING format$: -Pi, 9^3

The field length is the number of character positions that the value will occupy when printed. In the format string
“-###.###”, the field length is eight spaces, which includes the spaces reserved for the sign and the decimal point.
Numeric values are aligned with the decimal within a field (that is, they are printed decimal justified). This means
that if several numbers are printed with the same format string, one under the other, any decimal points (or com-
mas) will line up. If no decimal point is present in the field, numeric values are aligned with the right edge of the
field (right justified).

In the format string “-###.###”, the first position in the field is reserved for a negative sign; it may not be occupied
by a digit. Here are some examples; notice the last one in particular.

Examples of Output Formatted with the String:  “-###.###”
——————————————————————————————————————

Number Output
17 17.000
17.1234 17.123
-123.4687 -123.469
-17.2 - 17.200
12345 ********

——————————————————————————————————————
If a number cannot be printed in the specified format, asterisks are printed instead, as in the last example. The
field’s length determines the number of asterisks printed.

Format fields are composed of place holders. Place holders are characters that reserve space within the field for a
specific character or range of characters that may appear in the printed value. The format string “-###.###” contains
three different place holders: the minus sign (–), the pound sign (#), and the decimal point (.).

There are other place holders that you may use to compose fields in format strings. The following table summa-
rizes all the place-holder characters valid for numeric values:

19Output Statements



PRINT USING Place Holders
——————————————————————————————————————

Place Holder Reserves Space For
Leading Characters

- minus sign if required, blank for positive numbers; repeat for “floating” minus sign
+ plus or minus sign always printed; repeat for “floating” sign
$ dollar sign; repeat for “floating” dollar sign

Digit Characters
# digit or leading space (or negative sign if no leading sign in format string)
% digit or leading zero
* digit or leading asterisk (*)

Other Characters
. decimal point; digits to the right of the decimal point are always printed, rounded if necessary
, comma or blank if there are no digits to the left
^ exponent part of scientific notation; must use from three to five carets (^)

——————————————————————————————————————
Here are some examples showing how place holders would print the variable answer with the value 1234.5:

Examples of PRINT USING Place Holders 
——————————————————————————————————————

PRINT USING Statement Output
PRINT USING “#,###,###” : answer 1,235
PRINT USING “-#####.##” : answer 1234.50
PRINT USING “+#####.##” : answer + 1234.50
PRINT USING “+#####.##” : -answer - 1234.50
PRINT USING “$##,###.##” : answer $ 1,234.50
PRINT USING “$-#,###.##” : -answer $-1,234.50
PRINT USING “%%%,%%%.%%” : answer 001,234.50
PRINT USING “******” : answer **1235
PRINT USING “#.#^^^” : answer 1.2e+3

——————————————————————————————————————
Like the minus (-) sign, the plus (+) and dollar ($) signs reserve spaces for leading characters. When you use the
plus sign, the appropriate sign — positive or negative — is always printed. You may use the dollar sign along with
the plus or minus sign. 

Like the number (or pound) sign (#), the percent (%) and asterisk (*) characters reserve spaces for digits and a lead-
ing minus sign if required.  But they also tell True BASIC to always print something in that space: the percent
character prints leading zeroes and the asterisk prints leading asterisks if necessary. You may not mix different
digit characters within one format item.  Thus, “####” and “%%%%” describe four-character fields, the first with
leading spaces and the second with leading zeroes, but “%%##” is not allowed.

The comma reserves a place for a comma if appropriate; it is printed only when there are digits to the left of the
comma. The caret (^) reserves spaces for scientific notation. You must reserve from three to five spaces — for the
“e”, the plus or minus sign, and one to three digits.  Notice that True BASIC rounds the numeric value when nec-
essary to fit the format 

On occasion, you may want a leading sign to appear immediately to the left of the left-most digit, rather than in a
fixed position as in the examples above. You can easily do this using a floating place holder. To indicate a float-
ing place holder, you use a place holder that normally reserves a particular space for a single character, such as the
plus or dollar sign, but you repeat it over a range of spaces. The position of the specified character “floats” within
this range as needed so that it always appears as far right in the range as possible.

Consider these examples where the value of answer is 2.34:

20 True BASIC Language System



Examples of Floating Place Holders
——————————————————————————————————————

PRINT USING Statement Output
PRINT USING “-###.##”: -answer -  2.34
PRINT USING “---#.##”: -answer -2.34
PRINT USING “$###.##”: answer $  2.34
PRINT USING “$$$$.##”: answer $2.34

——————————————————————————————————————

Constants and Multiple Fields in Format Strings
Any character that is not a valid place holder (including a space) that appears in a format string is interpreted lit-
erally (with the exception of the string place holders < and > discussed below). Thus, you can include text as a con-
stant in a format string, as in:

PRINT USING “The answer is #,###.###”: answer

Here the constant text is printed as it appears, and the value of the numeric variable answer is printed according
to the format field. For example:

The answer is 5,439.780

You can also include more than one field in a format string. The print items will be inserted into the fields in rela-
tive order from left to right. For example, the following formats print a table of sines and cosines: 

LET format$ = “-#.###   -#.######   -#.######”
FOR x = 0 to 9 step 2

PRINT USING format$: x, sin(x), cos(x)
NEXT x

The spaces between the format fields provide equal spacing between the columns of output:
.000     .000000    1.000000
2.000     .909297   - .416147
4.000   - .756802   - .653644
6.000   - .279415     .960170
8.000     .989358   - .145500

If there are more print items than there are fields, then the fields will be reused from left to right until all of the
print items have been printed. If there are more fields than there are print items, then the format string will end
at the beginning of the unused field. For example:

LET tot4 = 796
LET tot5 = 1113
PRINT USING “Fiscal Yr ####: $$#,###K    “ : 1994, tot4, 1995, tot5, 1996

produces the following output:
Fiscal Yr 1994:  $  796K    Fiscal Yr 1995:  $1,113K    Fiscal Yr 1996: 

Here are some more examples of PRINT USING formats that use multiple fields:

Examples of Multiple PRINT USING Fields
——————————————————————————————————————

Statement Output
PRINT USING “+#.# on $#,###.##”; i, d +9.5 on $3,527.30

PRINT USING “## and “: 12.3, 12.7, 14 12 and 13 and 14 and

PRINT USING %% plus %%”: 3 03 plus

——————————————————————————————————————
Do take care in designing your format strings and the PRINT USING statements that use them. Consider the fol-
lowing nonsense program:

PRINT USING “Answer #1 is ##.#. Good job!”: 2.6
END

21Output Statements



When run, this program produces the unexpected output:
Answer 31 is 

The reason for this output is quite simple: the pound sign before the digit 1 (intended to represent the number sign)
is interpreted as the first numeric field. Therefore, True BASIC rounds the value of 2.6 to 3 and prints it in this
field. Other characters, including the 1, are printed as constants. Since no second print item is available for the
second field (which we intended to be the only field), the format string is printed only to the first character in that
field.
Now consider the following potential solution:

PRINT “Answer #1 is “;
PRINT USING “##.#. Good job!”: 2.6
END

Since the problematic pound sign is no longer part of the PRINT USING statement, this form of the program
solves that part of the problem, but it also brings up another problem. When you try to run this program, you get
an error message claiming that you have a “Badly formed USING string.” This means there is now something ille-
gal in the format string.

This problem is a little trickier to find, but it makes sense. The second period (intended to end the first sentence)
is directly adjacent to the format field. Since it is a valid place holder, True BASIC considers it part of the field.
However, this results in a field with two decimal points which is not possible, so True BASIC generates the error.
(This error didn’t occur in the first example because True BASIC stopped using the string before it reached that
point.)

To fix this problem, modify the program as follows:
PRINT “Answer #1 is “;
PRINT USING “##.#”: 2.6;
PRINT “. Good job!”
END

When you run this version of the program it produces the output originally intended:
Answer #1 is  2.6. Good job!

Notice that a semicolon at the end of a PRINT USING statement has the same effect as at the end of a PRINT
statement.

String Format Fields
True BASIC also lets you format string values with the PRINT USING statement, but the options are more lim-
ited. The PRINT USING statement with string values is most useful if you wish to define fixed length fields and
control the justification (alignment) of the string values within those fields.

You may print strings with any numeric format item. Unless you specify otherwise, True BASIC centers the string
within the field, adding spaces if needed.  (If necessary, there will be one more space to the right than to the left.)
If the string is too long to fit the format field, asterisks are printed instead, just as with numbers. 

You may also tell True BASIC to align a string to the left or right within the format field using two special string
place holders, “<” and “>”:

String PRINT USING Place Holders
——————————————————————————————————————

Place Holder Reserves Space For
# character or space
< character or space; left justifies string value in field
> character or space; right justifies string value in field

——————————————————————————————————————

In case of more than one “<” and/or “>”, the left most one decides. 

22 True BASIC Language System



Here are some examples:
LET name$ = “zebra”
PRINT USING “##########”: “ABCDEFGHIJKLMNOPQRSTUVWXYZ”
PRINT USING “##########”: name$         ! Center string
PRINT USING “>#########”: name$         ! Align to right
PRINT USING “<#########”: name$         ! Align to left

These statements produce the following output

**********
zebra   

zebra
zebra     

The ability to format strings with any valid numeric format field gives you added flexibility.  The following code
fragment shows how you can print titles over columns:

LET form$ = “<###################   ###   $###,###”
PRINT USING form$: “Name”, “Age”, “Salary”
FOR i = 1 to n

PRINT USING form$: name$(i), age(i), salary(i)
NEXT i

This would produce output like the following:
Name Age Salary 
Frank Williams 56 $ 57,999
Vicki Mantle 49 $113,400
Rudy Garland 32 $ 85,000

Whenever possible, True BASIC will try to fit the print items to the format fields. However, you must remember
that print items are associated with fields from left to right. True BASIC will not match string values with string
fields and numeric values with numeric fields. It is up to you to ensure that print items appear in the appropriate
order for the format fields.

The PRINT USING statement can be tremendously useful. Although this section introduces most common uses,
you may wish to review the formal specifications in Appendix D at some point.

Printing to a Printer
At times, it is necessary or convenient for your programs to print to a printer rather than a window on the screen.
Just as you can use the PRINT or PRINT USING statement to display the values of numeric and string expres-
sions on the screen, you can instruct True BASIC to send that information to the printer instead. Before you do so,
however, you must first open a channel to the printer.

A channel is a connection between your program and an input or output device, such as a printer or a file. Within
your program, you can open channels to several such devices. The program distinguishes between the channels by
channel numbers. A channel number is any integer value between 0 and 999, preceded by a pound sign (#); it indi-
cates a specific channel to a device. Note that channel #0 is reserved for the default logical window (where True
BASIC automatically sends output unless you specify otherwise) as discussed in Chapters 13 “Graphics” and 14
“Interface Elements.” Each open channel must have a unique channel number.

To use a channel, you must first open it with the OPEN statement. The following program opens a channel to the
printer and prints to it:

OPEN #1: PRINTER
PRINT #1: “Beginning of list:”
FOR i = 1 to 20

PRINT #1: i

23Output Statements



NEXT i
PRINT #1: “End of list”
CLOSE #1
END

When you run this program, it sends all of its output to the printer; nothing appears on the screen. If you wanted
the same information to appear on the screen as well, you would need to modify the program as follows:

OPEN #1: PRINTER
PRINT #1: “Beginning of list:”             ! Print to printer
PRINT “Beginning of list:”                 ! Print to screen
FOR i = 1 to 20

PRINT #1: i                            ! .. to printer
PRINT i                                ! .. to screen

NEXT i
PRINT #1: “End of list”
CLOSE #1
PRINT “End of list”
END

In this program, the PRINT statements without a channel number send their output to the screen, while those
that specify channel #1 send their output to the printer (because the OPEN statement associated channel #1 with
the printer).

Some operating systems limit the number of channels that may be open simultaneously. Therefore it is good prac-
tice to use the CLOSE statement as shown above to close channels when you no longer need them. Once you close
a channel, you may reuse that channel number for a different channel.

You may also use the PRINT USING statement to send formatted output to a printer. Consider the following pro-
gram that prints a table of natural logarithms for the numbers 1 to 100 on a printer:

OPEN #1: PRINTER
LET form$ = “   ###    ##.###”
PRINT #1, USING form$: “Num”, “Log”
FOR i = 1 to 100

PRINT #1, USING form$: i, Log(i)
NEXT i
PRINT #1: “End of table”
END

You cannot use the SET CURSOR statement to position the printer’s print head, nor does the CLEAR statement
have any effect on printer output. You may, however, adjust the margin and zone width, and you may use print
separators and the single-argument TAB function to position your output when sending it to the printer. The fol-
lowing lines demonstrate the proper formats:

PRINT #1: name$; Tab(25); age; Tab(30); phone$

PRINT #1: name$, age, phone$

SET #1: MARGIN 60

SET #1: ZONEWIDTH 6

24 True BASIC Language System



Printing to a File
You may also use the PRINT statement to send textual output to a file. This is very similar to using the PRINT
statement with a printer (as described in the previous section); the only major difference is the form of the OPEN
statement used.

Consider the following variation on the example from the previous section:
OPEN #1: NAME “MyFile”, CREATE NEWOLD
ERASE #1
PRINT #1: “Beginning of list:”
FOR i = 1 to 20

PRINT #1: i
NEXT i
PRINT #1: “End of list”
CLOSE #1
END

This program opens a channel to the file named MyFile in the current directory (normally the directory in which
the program is saved). If a file with this name already exists in the current directory, then it will be used; other-
wise, a file with the name MyFile will be created. The CREATE NEWOLD clause in the OPEN statement speci-
fies this behavior.

Since the program may have opened an existing file, you can be sure you are working with a “blank slate” by using
the ERASE statement to erase the file’s current contents before continuing.

As with printing to a printer, you cannot use SET CURSOR to arbitrarily position the cursor within a file — and
you must use an ERASE statement rather than CLEAR to remove the contents of a file. You may use the single-
argument TAB function and the SET MARGIN and SET ZONEWIDTH statements to control spacing across
each line of printing to a file. You may also use the PRINT USING statement to further control printing to files. 

You will find much more information on using files in Chapter 12, “Files for Data Input and Output.”

25Output Statements



26 True BASIC Language System



CHAPTER

4
Input Statements

Most useful programs have some flexibility built into them; that is, they can produce different results when pro-
vided with different data. Commonly, the user of the program provides this data and thus has some control over
the program’s behavior.

In True BASIC, the simplest way to obtain data from the user is the INPUT statement. The data provided by the
user may consist of numeric or string values, and it may come from the keyboard or a file.

This chapter introduces the fundamentals of user input. It discusses the INPUT statement, the LINE INPUT
statement, and the GET KEY statement for getting single keystrokes. For information on graphical input from
the GET MOUSE and GET POINT statements, see Chapter 13 “Graphics.” For input from menus, buttons, check
boxes, special edit fields, and dialog boxes, see Chapter 14 “Interface Elements.”

Basic Input
Chapter 2 on “Constants, Variables, and Expressions” illustrates the use of the LET statement to assign data values
to variables. Although it is extremely useful, the LET statement is limited in that you must know the value you wish
to assign when you are writing the program. To change the value, you must change the program.

Since it is impractical and undesirable for the user to change the source code before each run, True BASIC provides
the INPUT statement to let the user assign values to variables during the run. The INPUT statement complements
the PRINT statement. While the PRINT statement lets your program give information (the “answer”) to the user,
the INPUT statement lets the user give information (the “question”) to your program.

The INPUT statement pauses the program, prints a question mark (?) at the current text cursor position, and then
displays the text cursor (if it is turned on). A visible text cursor indicates that the user must enter data before the
program will continue. 

The number and type of variables specified as input items determine the number and type of values the user must
supply. The program may include as many input items as necessary in an INPUT statement, separating them
with commas. Consider the following example lines:

INPUT a
INPUT x, y
INPUT name$, age, phone$

The first line expects the user to enter a single number, the second line expects two numbers, and the third expects
three pieces of information — a string, a number, and another string (in that order).

The user must enter the proper number of items, of the proper types, in the proper order, and then press the Enter
(or Return) key to tell the program to continue. Before continuing, the program matches the values entered with
the list of input items from left to right. If the number and types of items do not match exactly, then True BASIC
prints a message and asks the user to re-enter the data. If they do match, True BASIC assigns each entered value
to the corresponding input item. Thus, if a user responds to the third example line above by typing:

? Chris Jones, 32, 555-4321

then the program will assign the string value “Chris Jones” to name$, the numeric value 32 to age, and the string
value “555-4321” to phone$. Notice that the user must separate multiple items by commas.

27



Prompting the User
Although the user must enter the data correctly, the INPUT statement does not tell the user how many items to
enter or what type they must be. You can help the user of your program by printing a prompt or description of the
data expected before the INPUT statement. Here’s an example:  

FOR i = 1 to 10
PRINT “Numerator, denominator”;
INPUT n, d
PRINT n/d

NEXT i

The first PRINT statement prints the prompt, indicating that two numeric values are expected and that they
should be separated by a comma. The prompt also tells the user that the first value will be used as the numerator,
and the second as the denominator. The semicolon at the end of this PRINT statement ensures that the question
mark printed by INPUT immediately follows the prompt. Thus, the program prints:

Numerator, denominator? 

The pairing of PRINT and INPUT statements is so common that True BASIC provides a single statement that
accomplishes both:

INPUT PROMPT “Numerator, denominator? “: n, d

The INPUT PROMPT statement prints the specified prompt in place of a question mark. The space after the
question mark at the end of the prompt string helps to make the input easier to read on the screen.

Supplying Input
As noted above, the user must enter the correct number and type of responses, separating multiple items with a
comma and ending with the Return or Enter key. In response to the following statement:

INPUT PROMPT “Item, number purchased, cost? “: item$, num, price

the user must enter three items — one string and two numbers:
Item, number purchased, cost? apples, 6, .49

True BASIC can handle common incorrect responses to INPUT statements. If the user enters too few or too many
items or enters something other than a number for a numeric item, True BASIC prints a message stating the prob-
lem and asking the user to retype the entire input. For example, here are some incorrect replies to the above exam-
ple:

Input Error Messages for: INPUT item$, num, price
———————————————–––——————–—————————————————

User Response Error Message
apples, 6 Too few input items. Please reenter input line. 
apples, 6, $.49 String given instead of number. Please reenter input line.
apples, 6, 4, .20 Too many input items. Please reenter input line.

———————————————–––—————–——————————————————
Notice that the error messages are fairly general. You as programmer should use prompts to make input requests
as clear as possible.

If so many input items are requested that the input does not fit on a single line, the user may end the line with a
comma. True BASIC will display a question mark at the beginning of the next line so the user can continue typing
input.

You can also write the program so that the user can anticipate future input requests. If an INPUT statement ends
with a comma, True BASIC does not complain about excess input; it saves any extra input, and uses it to fulfill future
input requests. In the following example, the user may respond to the first prompt by typing ten numbers (separated
by commas) and the program will work five division problems without any further prompt:

FOR example = 1 to 5

28 True BASIC Language System



INPUT PROMPT “Numerator, denominator? “: n, d,
PRINT n; “/”; d; “=”; n/d

NEXT example

True BASIC strips off leading and trailing spaces from input items. If you wish to furnish a string that has either
leading or trailing spaces, you must enclose the string value in quotes:

? “   February   “

A similar situation exists with a string that contains a comma. Since commas separate input items, you must use
quotes around a string that contains commas. For example:

? “Washington, George”

If you omit the quotes, True BASIC would treat this as two separate input items.

The INPUT statement also requires repeated quotes if you wish to use quotes within a string enclosed in quotes.
For example:

? “Eisenhower, Dwight David “”Ike”””

The LINE INPUT statement described below can alleviate some of the problems of entering complex strings.
Whatever form of input statement you use, you must keep in mind the rules that govern the input of data and
ensure that the user of your program is aware of these rules. Printed documentation is helpful, but PRINT state-
ments and clearly worded input prompts are usually the best methods for assisting users unfamiliar with pro-
gramming or True BASIC.

Programming for Errors
We’ve mentioned True BASIC’s ability to recognize errors that violate the rules for supplying input and the program-
mer’s responsibility for supplying adequate input prompts to prevent such errors. Allowing the user to assign values
to variables during a run increases your responsibilities as a programmer in other ways as well. 

When your program is “closed” to user input (such as a program that relies exclusively on LET statements), you
have complete control. If errors are going to occur, it is quite likely that you will find them during the testing phase.
When your program is open to user input, however, you have no control over the user’s actions. Therefore, your
program must be prepared for any eventuality; it should make every reasonable attempt to protect its users from
their own folly.

As an illustration, consider the division program discussed above. This program works fine, until the user enters
a value of 0 as the denominator. Since division by zero is mathematically undefined, True BASIC generates an
error if your program attempts such an operation. Thus, if the user enters 0 for the denominator in this example,
the program will stop and display the message “Division by zero.”

This program could, and probably should, be rewritten to check for a denominator value of zero. If the program
encounters such a value, it can simply print a message indicating that division by zero is undefined and skip that
particular division problem:

FOR i = 1 to 10
PRINT “Numerator, denominator”;
INPUT n, d
IF d = 0 then

PRINT “Denominator cannot be zero; please re-enter.”
ELSE

PRINT n/d
END IF

NEXT i

This process is known as “handling” the error, and it is discussed in detail in Chapter 16 “Error Handling.”

29Input Statements



Inputting Complete Lines
The previous sections show how you must use quotes to enter complex string values for the INPUT statement. How-
ever, those rules can be unnecessarily burdensome to the user of a program. When properly used, the LINE INPUT
statement can simplify the process of entering strings with commas, quotes, or leading and trailing spaces.

The LINE INPUT statement can get input for string variables only. It expects the user to enter one line for each
input item, signaling the end of a line with the Return (or Enter) key. The LINE INPUT statement assigns the
entire contents of each line, including spaces and punctuation marks, to the corresponding string variable in the
input list. For example, the statement:

LINE INPUT name$, street$, city_state_zip$

prints three question marks for the three lines of input it expects. The user need not be concerned with spaces,
commas, or quotes within the lines:

? Joshua “Skip” Silverstein
? 1154 Wise Avenue, No. 16B
? Fairview, MA  01077

The LINE INPUT PROMPT statement is a variation that lets you specify a prompt string to be printed in place
of the default question mark, as in the following example:

LINE INPUT PROMPT “Type a sentence: “: sent$

LINE INPUT statements also let the user input nothing by simply pressing the Return (or Enter) key. In the
above request for name and address for example, the user could press just Return (or Enter) to enter a null (empty)
string for street$ if they have no street address:

? Joshua “Skip” Silverstein
?
? Fairview, MA  01077

Because it can accept empty input, you can use the LINE INPUT statement to make the program pause until the
user is ready:

LINE INPUT PROMPT “Press Return to continue.”: s$

Here, it doesn’t matter what the user enters; once they press the Return (or Enter) key, the program will continue.

Inputting Keys
With both the INPUT and the LINE INPUT statements, the user must press the Return (or Enter) key at the end
of the input. Often, however, you want the user to press a single key as input, perhaps to determine what the pro-
gram does next. The GET KEY statement lets your program obtain a single keystroke from the user.

The statement:
GET KEY z

waits until the user presses a key, then translates that key into a corresponding number and assigns that number
to the variable z.  The GET KEY statement does not display anything on the screen – it does not display a prompt,
nor does it echo the value of the key pressed. However, if the cursor is currently on, it will be displayed while the
GET KEY statement waits for a keystroke. 

If the key pressed directly corresponds to an element of the current character set, the numeric code for that char-
acter is assigned to the specified variable. Special keys that do not correspond to elements of the standard charac-
ter set, such as function and cursor keys, are assigned a number above 255.

Since all the operating systems under which True BASIC runs support the ASCII character set, you can assume
that the standard character and punctuation keys on the “main” keyboard will return the same values regardless
of the operating systems. Appendix A lists the ASCII character set with numeric code values. For example, if the
user presses a lowercase “q”, the number 113 is assigned to the GET KEY variable. (Note that lowercase and
uppercase letters have different codes.)

30 True BASIC Language System



Special keys such as function and cursor keys, however, may vary among types of computers. Also some operating
environments use key combinations for accented or other special characters. For example, for some accented char-
acters you would hold down the appropriate modifier key and press an associated key. You may then need to press
a third key without holding the modifier key. The accented letter or special character will then appear. See the doc-
umentation supplied with your operating environment for a complete list of the characters you can type in this
way.  All such characters are represented by a unique character code and count as a single keystroke for the GET
KEY statement.

You can use the following program to identify code numbers for special keys or key combinations under any oper-
ating system: 

DO
GET KEY k
PRINT k

LOOP UNTIL k = 27        ! Escape key stops program
END

Run this program and press any key or modifier and key combination. The number corresponding to that key will
appear on your screen. Remember that the Shift, Option, Alt, Control, and Command (C) keys can be used as mod-
ifier keys. Hold down the modifier key while you press another key to get the modified values. If you press a key
before the GET KEY statement is executed, True BASIC will save it for later use — provided, of course, there is
room in the key buffer as explained below.

You cannot read keystrokes that are shortcuts for active menu items; True BASIC executes the menu item
instead. (Menus are described in Chapter 14 on “Interface Elements.”)

Useful Built-in Functions
The CHR$ and ORD functions are often used with the GET KEY statement. The CHR$ function returns the
string character that corresponds to the numeric code provided as its argument. Thus, you can “translate” GET
KEY input back to the character typed:

DO
GET KEY k
IF 32 < k and k < 127 then

PRINT Chr$(k); “ is”; k
ELSE

PRINT “Key is not a printable character”
END IF

LOOP UNTIL k = 32    ! Space bar stops program
END

The ORD function returns the numeric character code of the single-character string provided as its argument. The
resulting value matches the value returned by the GET KEY statement for printable characters. For example, if
you want to stop the program when the user presses a “Q” or “q” you could use the ORD function to test the user
input:

PRINT “Press Q if you wish to quit; any other key to continue.”;
GET KEY quit
IF quit = Ord(“Q”) or quit = Ord(“q”) then STOP

For more about built-in functions, see Chapter 8 “Built-in Functions.”

An Example
Because the GET KEY statement pauses the program until the user responds, you can use it to force a program
to pause until the user is ready to continue.  Although you have already seen how to use the LINE INPUT state-
ment for the same purpose, the GET KEY statement is particularly well suited to this task because the user may
press any single key without a following Return (or Enter) key, and the input is not displayed on the screen. 

31Input Statements



If you want the program’s future action to be based on which key the user presses, use a GET KEY statement in
conjunction with a SELECT CASE structure as described in Chapter 5 on “Decision Structures.” For example:

PRINT “Self-study menu. Press the appropriate letter”
PRINT “   (A)ddition         (S)ubtraction”
PRINT “   (M)ultiplication   (D)ivision”
SET CURSOR “off”                       ! Don’t show text cursor for input
GET KEY choice
LET test$ = Lcase$ ( Chr$(choice) )    ! Translate to lowercase character

SELECT CASE test$
CASE “a”

CALL Add                          ! User-defined subroutine
CASE “s”

CALL Subtract                     ! User-defined subroutine
CASE “m”

CALL Multiply                     ! User-defined subroutine
CASE “d”

CALL Div                          ! User-defined subroutine
CASE ELSE

STOP
END SELECT

Testing for Key Input
If the user response is optional, you want to test whether the user has pressed a key without stopping the program.
You can do this by testing the special logical expression, KEY INPUT. KEY INPUT is true if there is a character
waiting in the key buffer, and false otherwise. Characters go into the key buffer when the user presses a key before
being prompted to do so (see below).

The following example lets the user end a long tabular output by pressing the escape key. Note that the escape key
corresponds to ASCII number 27.

FOR x = 0 to 10 step .1
PRINT x, Sin(x)
IF KEY INPUT then

GET KEY z
IF z = 27 then STOP        ! Escape key pressed

END IF
NEXT x

Once the user presses a key, KEY INPUT will be true until a GET KEY or some form of the INPUT statement is
executed (since those are the only statements that remove keys from the key buffer). 

The Key Buffer
The GET KEY statement actually gets the value of the key pressed from the key buffer, not directly from the key-
board. The key buffer is a reserved portion of memory that stores keystrokes as the user enters them. Because
keystrokes go into the key buffer the instant they occur, you generally need not worry about a fast typist getting
ahead of your program. Thus, the GET KEY statement waits for a keystroke only when the buffer is empty; if
there is a keystroke in the buffer, GET KEY uses that keystroke. Each time it is executed, the GET KEY state-
ment removes the “oldest” keystroke from the buffer.

Occasionally, you may want your program to clear out, or “flush,” the keyboard buffer. This is useful if you are wor-
ried that the user may press more than one key, or if you want to eliminate the possibility of a stray keystroke being
accepted as valid input. Whenever you need to flush the key buffer, you may use code similar to the following:

DO WHILE KEY INPUT
GET KEY k

LOOP

32 True BASIC Language System



Turning the Text Cursor On and Off
Along with a question mark and any prompt the program may print, True BASIC normally displays the text cur-
sor as a flashing line or box when it expects input. The text cursor is displayed at its current position, which you
can control with the SET CURSOR statement (see Chapter 3 “Output Statements”). If you use an INPUT
PROMPT or LINE INPUT PROMPT statement, the prompt is printed at the text cursor, and the text cursor is
moved to the right of the prompt string. 

You can use a form of the SET CURSOR statement to control whether the cursor is displayed when input is
required. The statement:

SET CURSOR “OFF” 

makes the cursor invisible during input, while the statement:
SET CURSOR "ON"

makes it visible again when user input is expected.

The ASK CURSOR statement:
ASK CURSOR c$

lets you find the current state of the cursor. True BASIC assigns to the variable c$ the value “ON” or “OFF”. See
Chapter 14 “Interface Elements” for a routine that lets you change the shape of the text cursor.

Inputting from a File
As with the PRINT statement, you can use the INPUT and LINE INPUT statements to obtain input from files.
To do so, you need simply open a channel to a text file and specify that channel number with the INPUT state-
ments that should take their input from the file rather than the keyboard. (See Chapter 3 for an introduction to
opening a channel to a file; Chapter 13 “Files for Data Input and Output” describes the use of files in greater
detail.)

As an illustration, consider the following program that displays the contents of a text file on the screen:
INPUT PROMPT “Name of file to display: “: fname$
OPEN #1: NAME fname$
DO WHILE MORE #1

LINE INPUT #1: line$
PRINT line$

LOOP
END

This program obtains a file name from the user (at the keyboard) and uses that value in the OPEN statement to open
a channel to that file. Once the channel is open, the DO loop will repeat as long as there is more information on that
channel. Each pass through the loop reads a line from the file with the LINE INPUT statement (note the channel
number), and prints it to the current window with the PRINT statement (note the lack of a channel number).

You will find much more information on using files in Chapter 13 “Files for Data Input and Output.”

Other Forms of Input 
You may find that typed text input is inappropriate for certain applications. For instance, you may want to allow
the user to specify a particular spot on the screen, or you may want to track the current position of the mouse.
Chapter 13 “Graphics” describes the GET MOUSE statement and the GET POINT statement that provide
graphical coordinate input.

You can also create elements such as menus, radio buttons, check boxes, push button, edit fields, and dialog
boxes to enhance the appearance and ease-of-use of your programs. Chapter 14 “Interface Elements” explains
how to create such elements and how to process input from them.

33Input Statements



34 True BASIC Language System



CHAPTER

5
Decision Structures

True BASIC carries out most statements in the order in which they appear in the source code. This means that
most simple programs proceed from “top” to “bottom” when run. With this sort of “linear execution,” each state-
ment is used once and only once.

However, many problems require more flexibility than strict linear execution allows. The best solutions may
require that certain statements execute more than once or perhaps not at all under some circumstances.

True BASIC uses structures to achieve this flexibility. A structure is a specialized construct that allows the program
to control which statements get executed and when. This chapter introduces decision structures — a structure that
lets your program decide which statements to execute and which statements to ignore. Later chapters introduce other
structures, including loops, defined functions, subroutines, pictures, and error handlers.

True BASIC has two different decision structures: the IF structure and the SELECT CASE structure. Both struc-
tures let you “branch” to a specific set of statements and ignore others. Thus, you can write programs that proceed
in different ways depending upon the value of logical expressions.

Logical Expressions
True BASIC allows you to compare the values of numeric and string expressions using logical expressions. A log-
ical expression (sometimes called a Boolean expression) is an expression that can be evaluated as having either
a true or false value. You form a logical expression by using a relational operator to compare two numerical expres-
sions or two string expressions. The relational operators are:

Relational Operators
——————————————————————————————————————

Operator Meaning
= equal to
< less than
<= less than or equal to
> greater than
>= greater than or equal to
<> not equal to

——————————————————————————————————————
When you compare two expressions with a relational operator, the resulting logical expression is either true or
false — either the relation holds or it doesn’t. For instance, two numeric values are either equal or not; there is no
“maybe.”
When comparing numeric values, True BASIC uses standard mathematical conventions. When comparing string
values, True BASIC uses the order of characters specified by the character set. (Since most operating systems use
the ASCII character set, this manual assumes that set for all examples. For an ordered listing of the ASCII char-
acter set, see Appendix A.)
The ASCII character set ranks all letters alphabetically, but all uppercase letters come before lowercase letters,
so that “Z” is earlier in the alphabet than “a”. Most other characters, such as punctuation marks and digits, come
before letters in the ASCII character set. (Exceptions include { | } ~ and the delete character.)  A few examples
should clarify these concepts:

35



Examples of Comparisons
——————————————————————————————————————

Expression Value
4 - 2 = 1 + 1 true
3.5 > 2^2 false

2.35 <= 2.35 true
“Apple” < “Pear” true
“apple” < “Pear” false

“tree”[3:4] < “grass” true
“123” > “abc” false

——————————————————————————————————————
More complex logical expressions, called compound conditions, may be built using the logical operators NOT,
AND, and OR. 

Logical Operators
————————————————–––——————————————————————
NOT reverses the value of the logical expression given as its operand. For instance, if the NOT operator

is applied to an expression with a true value, the value of the resulting compound condition will
be false. Therefore,

(3+2 = 5) is true and
not (3+2 = 5 ) is false.

AND evaluates the logical expression on its left and the one on its right and returns a value of true only
if both logical expressions are true.

OR evaluates the logical expression on its left and the one on its right and returns a value of false
only if both logical expressions are false.

—————————————————–––—————————————————————
——————————————————–––—————————————————————
[ ! ] Note: True BASIC evaluates a compound condition from left to right but only as far as is necessary to

determine whether it is true. This process is known as short circuiting and is very useful in avoiding
errors. For example, the complex condition 

b <> 0 and a/b > 10 
is safe. That is, no error will result if b is 0 because a/b will not be evaluated: if the first expression in
an AND condition is false then the entire expression must be false, so True BASIC stops evaluating
the compound condition. Similarly, if the first expression in an OR condition is true then the entire
expression must be true so True BASIC evaluates no further.

——————————————————–––—————————————————————
To illustrate the behavior of the logical operators consider how True BASIC would evaluate the following complex
condition:

x < y or not(x-2 = z) and (a$ = “Yes” or b$ = “No”)

First, the complex condition would be broken down into the operands of the first OR operator as follows:
x < y 
not(x-2 = z) and (a$ = “Yes” or b$ = “No”)

The expression x < y, as the left operand, would be evaluated first. If its value is true, then the value of the
entire expression is true, and True BASIC stops evaluating. In such a case, the right operand is not even
considered.

However, if the value of x < y is false, then the value of the complex condition 
not(x-2 = z) and (a$ = “Yes” or b$ = “No”) 

must be evaluated. To do so, this complex condition is broken down into the operands of the AND operator as follows:

36 True BASIC Language System



not(x-2 = z)
(a$ = “Yes” or b$ = “No”)

Again the left operand is evaluated first. The left operand is the complex condition not(x-2 = z). This complex
condition has only one operand, (x-2 = z), and the NOT operator serves to reverse the value of this expression.
Thus, if the value of the expression (x-2 = z) is true, then the value of the complex condition not(x-2 = z)
is false. If the first operand is false, then the AND condition must be false and the second operand is ignored.

However, if the first operand of the AND operator is true, then the second operand must be evaluated to determine
the value of the AND condition. This operand consists of another complex condition which may be broken down as
operands of the OR operator:

a$ = “Yes”
b$ = “No”

If the expression a$ = “Yes” is true, then the entire OR condition is true and the right operand is ignored. However,
if the left operand is false, then the right operand must be evaluated to determine the value of the OR condition.

The value of the OR condition within the parentheses is then used to resolve the value of the AND condition. In
turn, the value of the AND condition is used to resolve the value of the initial OR condition. This then provides the
value of the original complex condition.

The IF Structure
Logical expressions are commonly used in the IF structure, which lets your program make decisions. Simple IF struc-
tures choose between only two options, while more complex IF structures can select from several choices.

Single-branch IF Structures
The simplest form of the IF structure simply determines whether a particular block of statements will be exe-
cuted. For example:

IF age >= 100 then
PRINT “Congratulations!”

END IF

In this code segment, the “Congratulations!” message will be printed only when the value of age is greater than or
equal to 100. The IF structure begins with an IF statement containing a logical expression and the keyword
THEN. An END IF statement marks the end of the structure.

Because of its simplicity, this IF structure could also be written as the following single-line IF statement:
IF age >= 100 then PRINT “Congratulations!”

Single-line IF statements may have only one statement following THEN, and they have no END IF statement. 

The IF structure is usually more flexible, however, since you can specify any number of statements to be executed
if the logical expression is true. For example:

IF age >= 100 then
PRINT “Congratulations!”
LET bonus = 10

END IF

Everything between the IF and END IF statements will be executed if the condition is true.

Two-branch IF Structures
A slightly more complicated form of the IF structure allows you to specify two different blocks of statements; one
to be executed if the logical expression is true, and another to be executed if it is false. 

For example, suppose you are playing a guessing game. The computer has picked a number and stored it in the
variable n. Your guess is stored in the variable guess. You could then use the following IF structure to determine
whether the guess is correct:

37Decision Structures



IF guess = n then
PRINT “Right”

ELSE
PRINT “Wrong”
PRINT “It was “; n

END IF

This structure, like the earlier example, starts with an IF statement and ends with an END IF statement. Notice
that the position of the ELSE statement defines two distinct blocks of statements; one for a correct answer, and
another for an incorrect answer. If you guessed correctly, the logical expression is true so the program uses the
first block to print the “Right” message and ignores the second block. If you were wrong, the logical expression is
false and the program ignores the first block and uses the second to print “Wrong” and give you the correct answer.
Thus, the program follows one of two different courses of action, depending on the values of the variables guess and
n. The indentation used here, which helps to display the structure, is based on the style conventions discussed in
Chapter 1 “A Word on Style.”

You may use the single-line form of the IF statement with a two-way decision as long as the THEN and ELSE key-
words each have just one statement:

IF guess = n then PRINT “Right” else PRINT “Wrong”

Notice that again there is no END IF statement with a single-line IF statement. Single-line IF statements may
have only one statement after the THEN keyword and one statement after the optional ELSE keyword. True
BASIC interprets any IF statement with a statement following the THEN keyword on the same line as a single-
line IF statement. 

Multiple-branch IF Structures
You may use the ELSEIF statement to create more intricate branches. To illustrate a three-way branch, here is
a short program for quadratic equations:

PRINT “Enter the three coefficients: “
INPUT a, b, c ! The coefficients
LET discr = b^2 - 4*a*c ! The discriminant
IF discr = 0 then ! One root

PRINT “The root is:”
PRINT -b/(2*a)

ELSEIF discr > 0 then ! Two roots
LET s = Sqr(discr) ! Take square root
PRINT “The roots are:”
PRINT (-b+s)/(2*a)
PRINT (-b-s)/(2*a)

ELSE  ! Complex roots
PRINT “No real roots”

END IF
END

In this example, the IF structure defines three distinct blocks of statements. It is important to remember that,
regardless of the number of blocks it contains, a single IF structure will execute one, and only one, of these blocks.
Once a condition is satisfied, its associated block of statements is executed and the program continues with the line
following the END IF statement; all other blocks in the IF structure are ignored.

You may use as many ELSEIF statements as necessary within an IF structure, but you may include only one
ELSE statement (which should appear as the last option). Each ELSEIF statement must specify its own logical
expression followed by the keyword THEN. As you have seen, each IF structure must begin with an IF statement
(ending with the keyword THEN) and end with an END IF statement.

There is no form of the single-line IF statement that lets you include more than two possible actions. You must use
a multi-line IF structure for three or more possible branches.

38 True BASIC Language System



Nested IF Structures
The flexibility of the IF structure may be further enhanced by nesting — the process of defining one structure
within another. The inner structure is said to be “nested” within the outer structure. The nested structure must
be completed before the containing structure can be completed.
Here is an example of nesting. First, note that the above three-way branch for quadratic equations did not check
whether a is 0. You could solve that problem by expanding the original IF structure to a four-way branch beginning
with a test for a = 0 and nesting another IF structure in that new first branch as shown below:

PRINT “Enter the three coefficients: “
INPUT a, b, c ! The coefficients
LET discr = b^2 - 4*a*c ! The discriminant

IF a = 0 then ! New test with nested structure
IF b = 0 and c = 0 then ! Begin nested structure

PRINT “Any number is a solution.”
ELSEIF b = 0 then

PRINT “There is no solution.”
ELSE

PRINT “The root is:”
PRINT -c/b

END IF ! End nested structure

ELSEIF discr = 0 then ! (continue as above)
PRINT “The root is:” ! One root
PRINT -b/(2*a)

ELSEIF discr > 0 then ! Two roots
LET s = Sqr(discr) ! Take square root
PRINT “The roots are:”
PRINT (-b+s)/(2*a)
PRINT (-b-s)/(2*a)

ELSE ! Complex roots
PRINT “No real roots”

END IF

END

The SELECT CASE Structure
If all the choices in the decision structure are based on the value of a single numeric or string expression, it is often
more convenient to use a SELECT CASE structure. 

The formation of a SELECT CASE structure is similar to that of an IF structure. The SELECT CASE statement,
which indicates the beginning of the structure, contains the expression to be evaluated. An END SELECT state-
ment indicates the end of the structure. Within the structure, you may use as many CASE statements as neces-
sary to define blocks of statements that will be executed for specific values of the specified expression. True BASIC
evaluates the expression and then executes the block of statements indicated by the first appropriate CASE state-
ment; any remaining blocks are ignored. For example:

SELECT CASE n
CASE 2 ! If the number is 2

PRINT “Even prime”
CASE 3, 5, 7 ! If the number is 3, 5, or 7

PRINT “Odd prime”
CASE 1, 4, 9 ! If the number is 1, 4, or 9

PRINT “Perfect square”
CASE else ! If anything else

39Decision Structures



PRINT “Composite, not a square:”
END SELECT

When executing this segment of code, True BASIC determines the value of n and looks for the first CASE state-
ment that specifies a matching value. When it encounters an appropriate CASE statement, it executes the block
of statements immediately following that statement (up to the next CASE statement) and continues with the line
following the END SELECT statement. If there is no CASE statement that specifically matches the value of n,
then the block of statements following the CASE ELSE statement is executed. If there is no CASE ELSE state-
ment, then an error occurs and the program stops.
The CASE ELSE statement is optional, but if used it must be the last case in the structure. Since a CASE state-
ment is not required to have a block of statements associated with it, a program can “ignore” a particular case sim-
ply by having no statements between that CASE and the next. Thus, you may wish to include an empty CASE
ELSE block to avoid errors.
The CASE statements may specify only constant values; variables and expressions may be used only in the
SELECT CASE statement. While the above example demonstrates the use of discrete constants in the CASE
statements, you can build much more powerful SELECT CASE structures using ranges and relations on the
CASE statements.
A range specifies a range of values for which the CASE statement holds true. To specify a range, use the keyword
TO with constants specifying the low and high ends of the range, as in:

CASE 10 TO 20

Ranges are inclusive. For instance, the above example would hold true for values of 10, 20, or any value greater
than 10 and less than 20.

A relation specifies a relationship between the value of the expression specified in the SELECT CASE statement
and a constant value for which the CASE statement holds true. To specify a relation, use the keyword IS followed
by one of the relational operators and a constant value, as in:

CASE IS < 0

This CASE statement holds true for any SELECT CASE expression whose value is less than 0.

Consider the following example that demonstrates the use of ranges and relations with a string expression. This
program counts characters of various types. It uses the facts that space is the first regular character and that con-
trol characters (carriage returns, line feeds, etc.) come before regular characters in the ASCII character order. 

LINE INPUT PROMPT “Enter a line of text: “: line$
FOR c = 1 to Len(line$)

SELECT CASE line$[c:c] ! Current character
CASE “0” to “9”    ! If it is a digit

LET number = number + 1
CASE “A” to “Z” ! If it is uppercase

LET uc = uc + 1
CASE “a” to “z” ! If it is lowercase

LET lc = lc + 1
CASE is < “ “ ! If a control character

LET control = control + 1
CASE else

LET other = other + 1
END SELECT

NEXT c
PRINT “The line contained:”; number; “numbers and”; uc + lc;
PRINT “characters.”
PRINT “There were”; other + control; “other characters in the line.”
END

40 True BASIC Language System



CHAPTER

6
Loop Structures

Often, you will find that you want to repeat a block of statements many times. True BASIC provides two loop
structures that let your programs execute the same statements several times. FOR structures, often called FOR
loops, repeat a block of statements a specified number of times. DO structures, or DO loops, repeat a block of
statements until a certain condition is satisfied.

This chapter introduces FOR and DO loops, as well as the EXIT statements that allow you to escape from the
body of a loop.

FOR Loops
A FOR structure, or FOR loop, executes a block of statements a predetermined number of times. You form a FOR
structure using a FOR statement and a NEXT statement.

The FOR statement controls the number of times the loop will be repeated by defining the index variable, its ini-
tial value, its ending or limit value, and its increment. The structure uses the index variable to monitor the
number of passes through the loop. After each time through the loop, True BASIC increases the index variable by
the value of the increment. As soon as the index variable becomes greater than its limit value, the program goes to
the statement following the NEXT statement.

Here is a simple example using the PLOT statement, which is explained in more detail in Chapter 13 “Graphics.”
! Plot the square root function
SET WINDOW 0, 10, 0, 4
FOR x = 0 to 10 step .1

PLOT x, Sqr(x);
NEXT x
END

Here the index variable x starts with value 0 and increases in steps of 0.1 until its value reaches 10. The NEXT
statement that indicates the end of the loop’s body must specify the same index variable as the FOR statement
that begins the loop. For each value of x, the body of the loop (the statements between the FOR and NEXT
statements) executes exactly once. The STEP clause may be omitted from the FOR statement, in which case an
increment of 1 is used:

! Table of square roots
PRINT “Number”, “Square Root”
FOR number = 1 to 10

PRINT number, Sqr(number)
NEXT number
END

Note that the index variable is increased at the NEXT statement.  Thus, upon completion of the loop, the index
variable equals the first value that exceeds the limit value. Hence in the first example, x has a value of 10.1 upon
completion of the loop, while in the second example, number is equal to 11 after the loop. 

41Loop Structures



If the initial value of the index is greater than the limit value, the loop is not executed. For example:
! Sum of odd numbers to n
INPUT n
LET sum = 0
FOR i = 1 to n step 2 ! Odd numbers only

LET sum = sum + i ! Add them up
NEXT i
PRINT sum ! Answer
END

If a value of 0 is supplied for n, then the body of the loop is not executed at all, and an answer of 0 is printed —
which is correct! 

Negative increments are also allowed, in which case the loop continues until the value of the index variable is less
than the limit value. For example,

FOR x = 3.2 to 1.3 step -0.5

executes the loop with x = 3.2, 2.7, 2.2, 1.7 and exits with x = 1.2. In the case of a loop with a negative increment,
the loop body will not be executed at all if the initial value is less than the limit value.
Beware of unintentionally changing the value of the index variable inside the body of the loop. Although you may
do so, it can lead to unexpected results.
Occasionally, you may want to exit from a FOR loop before the index variable completes its defined sequence. True
BASIC provides the EXIT FOR statement for exactly this purpose. When an EXIT FOR statement is executed,
True BASIC immediately skips to the line following the NEXT statement. Upon such an exit, the index variable
retains the value it had when the EXIT FOR statement was executed.

The EXIT FOR statement is typically used as part of a decision structure. For example, you may want to examine
a series of values until some condition is met:

! Find smallest integer whose 5th power
!    is greater than a billion
FOR n = 1 to 100                   ! Examine each integer

IF n^5 > 1e9 then EXIT FOR
NEXT n
PRINT n                            ! First integer to satisfy condition
END

If you find yourself using an EXIT FOR statement that is not part of a decision structure, then you most likely
don’t need the loop that contains it.

DO Loops
Often, you do not know how many times you will need to execute the body of a loop. Instead, you want to repeat
the loop until a condition is met. The DO loop fulfills this need.

A DO structure, or DO loop, starts with a DO statement and ends with a LOOP statement. The following program
illustrates the simplest form of the DO structure:

DO
PRINT “Happy Birthday!”
PRINT “And many happy returns.”

LOOP
END

The DO loop in this program will repeat forever – that is, until the user stops the program. (To stop a running
program, see the “True BASIC Environment” chapter in the Introduction section.) Loops that run forever are
called infinite loops.

42 True BASIC Language System



Although infinite loops are useful sometimes, you will usually want a loop that ends once a condition is met. True
BASIC provides three ways of ending a DO loop. You may attach a condition to the DO statement or to the LOOP
statement, or you may use an EXIT DO statement within the loop. 

You have two options for attaching a condition to the DO statement: the WHILE clause and the UNTIL clause.
The WHILE clause follows the DO keyword and specifies a condition as a logical expression:

INPUT PROMPT “Initial sum, annual interest rate? “: sum, interest
LET mo_rate = interest/12

DO WHILE sum < 1000
LET sum = sum * (1 + mo_rate)
LET months = months + 1

LOOP

PRINT “It will take”; months; “months at”; interest; “to earn $1,000.”
END

As long as the value of the logical expression is true, the body of the loop will be executed repeatedly. Before each
pass through the body of the loop, True BASIC checks the value of the condition; as soon as it becomes false, the
program continues with the line immediately following the LOOP statement. 

The UNTIL clause is used the same way, except that the loop continues until the condition becomes true. Thus,
the following two DO statements have the same effect:

DO WHILE sum < 1000
DO UNTIL sum >= 1000

You may also attach a WHILE or UNTIL clause to the LOOP statement. The behavior of the loop will differ only
in when the condition is checked. With the WHILE or UNTIL on the DO statement, the condition will be checked
before each pass through the loop. Thus, there is a possibility that the body may never be executed. In the above
example, if the user enters an initial value greater than 1000, the program will skip the body of the loop. 

On the other hand, when the WHILE or UNTIL clause is on the LOOP statement, the condition will be checked
after each pass through the loop. This guarantees that the body of the loop is always executed at least once. For
instance:

! Ask whether we should continue
DO

CALL Game_Sub ! User-defined subroutine
PRINT “Shall I continue”; ! Ask question
INPUT answer$

LOOP WHILE answer$ = “yes”

Here the LOOP statement contains the WHILE clause since the loop’s body must be executed at least once before
there is an answer to check.

While it is possible to specify a WHILE or UNTIL clause for both the DO and LOOP statements, this is seldom
necessary. Adding clauses to the top and bottom of a loop makes the loop’s behavior difficult to understand, and
you should avoid this technique in all but exceptional circumstances.

Occasionally, you may want to exit from the body of a DO loop without waiting until the next pass. To do so, use
the EXIT DO statement. When an EXIT DO statement is executed, True BASIC immediately skips to the line
following the next LOOP statement. 

As with the EXIT FOR statement, you will typically use an EXIT DO statement as part of a decision structure,
as in the following code segment:

43Loop Structures



! Ask whether we should continue
DO

CALL Step_One ! User-defined subroutine
INPUT PROMPT “Shall I continue”: answer$ ! Ask question
IF answer$ = “no” then EXIT DO
CALL Step_Two ! User-defined subroutine

LOOP

You may find it convenient to use an EXIT DO statement as well as a WHILE or UNTIL clause attached to the
LOOP or DO statement. One might represent the normal termination, while the other may be an exit under
special conditions.

Nested Loops
As with decision structures, you may nest a loop within another loop structure, and you may nest loops within
decision structures or vice versa. You may nest loops and decision structures several layers deep; in other words,
a nested structure may in turn contain another nested structure. The important rule is that the nested structure
must be completed before the containing structure continues.

Here’s an example of nested loops and decision structures:
! Print triangular patterns of letters
FOR row = 1 to 6

FOR triangle = 1 to 3
FOR xcount = 1 to row

IF triangle = 1 then
PRINT “a”;

ELSEIF triangle = 2 then
PRINT “b”;

ELSE
PRINT “c”;

END IF
NEXT xcount
PRINT,            ! Move to next column for next triangle

NEXT triangle
PRINT                 ! Move to next row

NEXT row
END

This program uses three nested loops and a decision structure to produce the following output:
a               b               c               
aa              bb              cc              
aaa             bbb             ccc             
aaaa            bbbb            cccc            
aaaaa           bbbbb           ccccc           
aaaaaa          bbbbbb          cccccc          

To better understand the operation of these structures, it is worthwhile to study this code in detail.

The program contains three nested FOR loops and one IF structure. Notice how the indentation helps identify
the nested structures. One loop governs the number of rows of text contained in each triangle. One loop controls
the number of triangles. And the third loop forms the triangular shapes by varying the number of characters
printed on each line. The decision structure determines which letter is used for each triangle.

The outer-most loop uses row as its index variable. As you can infer from the name of its index variable, this is the
loop that controls the number of rows printed. To change the number of rows used in the printed figure, simply

44 True BASIC Language System



change the limit value of this loop. Each pass through the body of this loop is responsible for printing one row of
the final image.
The body of this outer-most loop contains the middle loop and a vacuous PRINT statement that ensures that each
row starts on a new line. The middle loop uses triangle as its index variable and controls how many triangles are
printed — changing the limit value of this loop will change the number of triangles. Each pass through the body
of this middle loop prints the current row of a single triangle.

To accomplish this, the body of the middle loop contains the third and final loop plus a PRINT statement
containing nothing but a comma to force the text cursor to the next print zone. The inner-most loop uses count as
its index variable and the current value of row as its limit value. Since the value of row increases by one with each
pass through the outer-most loop, using it as the limit value of the inner-most loop results in the inner-most loop
being executed once on the first pass through the outer-most loop, twice on the second pass, and so forth. Each
pass through this loop prints one character in the current row of the current triangle.

The body of the inner-most loop contains an IF structure that determines which letter to print based upon the
value of triangle. Since the value of triangle changes with each pass through the middle loop, its value is used to
print a different letter for each triangle.

Nested structures give you lots of power and flexibility; however, they can also create extremely complex programs
that are difficult to debug and maintain. While nested structures provide the best solution to many programming
needs, it is important that you understand how such nesting works before you use it.

45Loop Structures



46 True BASIC Language System



CHAPTER

7
Data as Part of the Program

Earlier chapters illustrate two methods for assigning values to variables. You can use the LET statement for
direct assignments or use the various input statements to let the user make assignments while the program is
running. A third method allows your program to assign values to variables from blocks of data stored in the pro-
gram itself. This assignment method consists of two statements: the DATA statement, which defines the values,
and the READ statement, which assigns those values to variables.

As with the INPUT statement, the READ statement can also assign values read from a data file. This chapter
discusses only built-in data (data stored in the program itself). You will find a discussion of data files in Chapter
12 “Files for Data Input and Output.”

Data Blocks
A DATA statement consists of the keyword DATA followed by a data list. A data list is a series of numeric
and/or string constants separated by commas. The items in the data list should follow the same rules as data
entered in response to an INPUT statement. String constants containing leading or trailing spaces, commas,
quotation marks, or an exclamation point must be enclosed in quotes. Quotation marks that are not part of the
data must be doubled. The null (or empty) string ("") is a valid string constant and may be used as a data item.

DATA statements are simply storage areas for information used by the program; they are not executed. Thus,
you may put them anywhere in the program; common placements are just before the END statement to keep
them out of the way, or near their associated READ statements to make the program easier to understand.
Before it runs the program, True BASIC collects all the data items into a single data pool. The data pool will
contain each of the data lists in the order in which they appear in the program.

When you start writing programs with several program units, the rules for DATA statements get a bit more
complicated. For now, it will suffice to note that each program unit has its own separate data pool, which con-
tains only the contents of the DATA statements located within that program unit. For more information on data
pools and program units, refer to Chapter 11 “Libraries and Modules.”

Reading Data
The READ statement assigns values from the data pool to specific variables. It is similar to the INPUT state-
ment, except that it obtains its information from the data pool rather than from the user. READ statements,
like most True BASIC statements, are executed as they are encountered, and they always take the next data
item from the data pool.

To understand the concept of the next data item, you must first understand the concept of the data pointer. The
data pointer indicates which data item in the data pool should be used next. True BASIC handles the data
pointer automatically, so you don’t need to worry about it. When the data pool is created, the data pointer
“points to” the first data item in the pool. Each time a READ statement uses a data item, True BASIC automati-
cally moves the data pointer to the next item. When the last item in the pool has been read, the pointer is set
beyond the end of the pool. If your program tries to execute a READ statement when the pointer points beyond
the end of the pool, True BASIC generates an error.

47



Consider this example:
READ x, y ! 3, 4
PRINT x + y ! 7
READ x, y ! 2, 3
READ a$, z ! “Answer is,” 4
PRINT a$; (x + y) * z ! “Answer is, “ (2 + 3) x 4
GET KEY k ! Hold output until a key is pressed
DATA 3, 4, 2
DATA 3, Answer is, 4
END

This program has two DATA statements, which are combined to form the data pool:
3
4
2
3
Answer is
4

The first READ statement reads the first two items from the data pool and leaves the data pointer at the third
item. Thus, the variable x will be assigned the value 3, and y will be assigned the value 4. The program prints
the sum of these values (7) before it executes the second READ statement.

The second READ statement reads the value 2 into x and the value 3 into y, leaving the data pointer pointing at
the fifth data item. Notice that the fifth data item is not a valid numeric constant; it must be read into a string
variable. The third READ statement does just that, reading that value into the string variable a$ and reading
the sixth item into the variable z. These variables are then used to produce the second line of output.

Thus, the entire output of the program will be:
7
Answer is 20

Note that the DATA statements must list items in the precise order in which they will be read by the READ
statements. You may not read a non-numeric value into a numeric variable, but you may read any value into a
string variable. And while you may read fewer items than are contained in the data pool, you may not read more
items than are in the data pool.

Checking for More Data
Since READ statements are often used inside loop structures to repeat the same block of statements with sev-
eral different values, True BASIC provides two special logical expressions that your program may use to avoid
reading past the end of the data pool. These expressions are MORE DATA and END DATA.

The logical expression MORE DATA is true as long as the data pointer is not pointing beyond the last data item in
the pool. The logical expression END DATA is true only when the data pointer has passed the last item in the
pool. You may use these anywhere you can use a logical expression, such as the condition in an IF statement or as
the condition in a WHILE or UNTIL clause. For example, consider the following program:

PRINT “Number”, “Square Root”
DO WHILE MORE DATA

READ x
PRINT x, Sqr(x) ! Show square root

LOOP

DATA 1,2,3,5,6,7,8,10,11,12
END

48 True BASIC Language System



Because of the flexible way in which this program is written, extending the printed table is a simple matter of
adding additional data items.

Another mechanism for detecting the end of the data pool is the IF MISSING clause in the READ statement, as
in:

DO
READ IF MISSING then EXIT DO: x
PRINT x

LOOP

In this example, the EXIT DO statement will be executed only if the data pointer has passed the last data item
in the pool.

Reusing Data
Sometimes, your program will need to use the same data pool more than once. The RESTORE statement sets
the data pointer back to the first item in the pool, allowing its reuse. For example, the program:

FOR n = 1 to 1000
READ x
PRINT x;
IF END DATA then RESTORE

NEXT n

DATA 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
DATA 99, 98, 97, 96, 95
END

will print 1,000 numbers, using the 15 numbers in the data pool repeatedly.

If your program uses line numbers, then you may specify a line number with the RESTORE statement. In that
case, True BASIC moves the data pointer to the item in the data pool that corresponds to the first item in the
DATA statement at that line number.

49Data as Part of the Program



50 True BASIC Language System



CHAPTER

8
Built-in Functions

True BASIC provides built-in, or pre-defined, functions that perform a wide range of operations. This chapter
introduces many commonly used built-in functions; additional functions are introduced in other chapters as
appropriate. If you cannot find a built-in function that performs the operation you require, you can define your own
functions as described in Chapter 10 “User-defined Functions and Subroutines.”

Function Basics
A function is a structure that simplifies a complex operation into a single step. Functions act as “black boxes.”
They accept some input value or values and process that input in a defined manner to produce or “return” an out-
put value. As long as you know how and when to use a particular function, you need not be bothered by how it actu-
ally works.
Consider, for example, the process of taking the square root of a numeric value. If you had to define this process in
your program every time you needed a square root, your programs would require extra code and you would prob-
ably tire of entering the same code over and over.
Fortunately, True BASIC has a built-in function that compresses the entire square root operation into a single
step. Using the SQR function, your program can easily find the square root of any number greater than or equal
to zero:

DO
INPUT PROMPT “Enter a number: “: n
IF n < 0 then EXIT DO
PRINT “The square root of”; n; “is”; Sqr(n)

LOOP
END

The SQR function displays the square root of a numeric value provided by the user.
If a function returns a numeric value, as the SQR function does, it is a numeric function. Functions that return
a string value are string functions. Other functions may return logical values or entire arrays (as discussed in
the following chapter). A function’s name reflects the type of value it returns; a function returning string values
has a name that ends with a dollar sign ($). 
The input values that you provide when you use a function are called its arguments, and the value the function
returns is called its return value. Often a function’s return value is referred to simply as that function’s value.
Note that even though functions may require several arguments as input, a function returns one and only one
value (except for the special array functions). 
In the program example above, the variable n is the argument to the SQR function. The SQR function takes the
value of n and returns its square root. True BASIC uses the function’s return value at the place where the function
is invoked. In the above example that value is displayed by the PRINT statement; it could also be part of an
expression used in an assignment statement:

LET x = ( Sqr(z) + y ) / z

Not all functions require arguments, but those that do follow very strict rules. The function’s definition
determines the number, type, and order of its arguments. A function definition works with specific parameters.
When you invoke the function, you usually must supply matching arguments as input for those parameters. You

51



specify the argument list for a function in parentheses after the function’s name, separating multiple
arguments by commas.

For example, the REPEAT$ function uses a string parameter and a numeric parameter, in that order. It returns
a string formed by the string parameter repeated the number of times specified by the numeric parameter. When
you use the function you must provide a string argument followed by a numeric argument:

PRINT Repeat$(“Tra la! “, 4)

The function will then substitute the values of the arguments for the parameters to compute its return value:
Tra la! Tra la! Tra la! Tra la! 

Some of True BASIC’s built-in functions are defined with optional parameters. They assume some default value
for these optional parameters if you do not supply matching arguments when you invoke the function. For exam-
ple, the ROUND function rounds numeric values. It uses two numeric parameters: the value to be rounded and
the number of places it should be rounded to the right or left of the decimal point. If you omit the second argument,
ROUND assumes 0 for that parameter. For example:

PRINT Round (123.4567, 3), Round (123.4567), Round (123.4566, -2)

prints the following:
123.457         123             100 

True BASIC matches the arguments you specify when you invoke a function with the parameters in that function’s
definition based solely on their position in the argument list. In other words, the value of the first argument in the
invocation will be used as the value of the first parameter in the definition, and so on. If the type of an argument does
not match the type of the corresponding parameter, then True BASIC generates an error.

You may use a function anywhere you would use an expression. A function invocation, along with its associated argu-
ment list, is itself an expression and may be used to build more complex expressions. Here are some typical uses of
numeric and string functions (the functions themselves are introduced in the following sections):

LET answer = 3 * Log(2*z - 7.2)
LET z = Exp(-x) * Cos(2*t - 1)
DO WHILE Sin(x) < .5
LET reply$ = Lcase$(input$)
IF Ucase$(continue$[1:1]) = “Q” then STOP

Arguments to functions may be constants, variables, or expressions — as long as they are the correct type. Because
functions are themselves expressions, you may use them as arguments to other functions. Here are some examples:

LET n = Int(Rnd * 10) + 1 ! Random integer between 1 and 10
LET answer = Round(Sqr(x), 2) ! Round square root to 2 decimal
places
PRINT Repeat$ (echo$, Int(Rnd*5)+1) ! Repeat a random no. of times

Numeric Functions
Many of True BASIC’s built-in numeric functions, like the SQR function, perform mathematical operations that
would be difficult or impossible to implement with the mathematical operators discussed in Chapter 2 “Constants,
Variables, and Expressions.” This section introduces most of the built-in mathematical and trigonometric func-
tions along with two other functions that examine the numeric capabilities of the computer running your program.
(Other functions that return numeric values are introduced in the “String-handling Functions” and “Time and
Date Functions” sections of this chapter.)

Most numeric functions take one or two arguments which may be numeric constants, numeric variables, or any
other numeric expression. As noted above, numeric functions are themselves numeric expressions so they may be
used as arguments to other functions:

LET answer = Max(Sin(x), Cos(2*x))  ! Larger of sine or cosine

52 True BASIC Language System



Mathematical Functions
The following table summarizes the built-in mathematical functions. The numeric arguments in the table are rep-
resented by x, y, or n.

Mathematical Functions
——————————————–––————————————————————————

Function Result
ABS(x) Absolute value of x
SGN(x) Sign of x; returns 1 if positive, -1 if negative, 0 if x = 0
SQR(x) Square root of x
EXP(x) The natural exponent of x, or ex where e = 2.718281828...
MIN(x,y) Smaller of two numbers
MAX(x,y) Larger of two numbers
MOD(x,y) Remainder when x is divided by y
REMAINDER(x,y) Remainder when x is divided by y
ROUND(x,n) Value of x rounded to n decimal places; n assumed to be 0 if not specified
TRUNCATE(x,n) Value of x truncated to n decimal places; n assumed to be 0 if not specified
RND A pseudo-random number greater than or equal to 0 and less than 1
LOG(x) Natural logarithm of x
LOG10(x) Common logarithm of x (base 10)
LOG2(x) Logarithm to the base 2 of x
INT(x) Greatest integer <= x
IP(x) Integer part of x
FP(x) Fractional part of x
CEIL(x) Ceiling of x or least integer >= x

——————————————–––————————————————————————
While most of these functions are direct parallels of their mathematical counterparts, a few warrant special attention. 

The SGN, or signum, function is often used in mathematics and is very useful for programming. The value of
Sgn(x) is +1, 0, or –1, depending on whether x is positive, zero, or negative.

The MOD function has many uses. One use is to test whether one number is a multiple of another, in which case
the MOD function returns a value of zero. Consider the following program that finds out if a number is odd or even:

DO
INPUT PROMPT “Enter a number (0 to quit): “: n
IF n = 0 then

EXIT DO
ELSEIF Mod(n,2) = 0 then

PRINT “The number “; n; “is even.”
ELSE

PRINT “The number “; n; “is odd.”
END IF

LOOP
END

The REMAINDER function is a variant of the MOD function that uses a different convention for negative num-
bers. For more details on the subtle differences between these two functions see their formal descriptions in Chap-
ter 18 “True BASIC Statements and Built-in Functions and Subroutines.”
When you want to round off a numeric value, use the ROUND function which rounds x to n decimal places. If the
value of n is 0, or if the second argument is omitted, then x is rounded to an integer. To round to the left of the dec-
imal point, use a negative value for n. For example, -3 will round x to the nearest thousand. The TRUNCATE
function is similar, but simply drops any extra digits. The number 1.7 rounded to an integer becomes 2, but when
truncated, the .7 is dropped and it becomes 1.

The RND function requires no arguments. It generates a pseudo-random number greater than or equal to 0 and
less than 1. Each time the RND function is invoked, a new number is returned. While the numbers are not truly

53Built-in Functions



random, True BASIC’s random numbers stand up well under statistical tests and hence allow the simulation of
chance events. 

To simulate a game with a 37% probability of winning, you could use the following code segment:
IF Rnd <= .37 then

PRINT “You win”
ELSE

PRINT “You lose”
END IF

The RND function can also simulate the rolling of a die. Since the result of rolling a die is always an integer rang-
ing from one to six, you could use the statement:

LET die = Int(6*Rnd) + 1

If executed repeatedly, this statement will produce integers from one to six with equal probabilities.

To facilitate debugging, True BASIC produces the same sequence of pseudo-random numbers each time you run a
program. Once the program is debugged, however, you will almost certainly want it to behave differently each time
it is run.

To force the program to produce a different sequence of pseudo-random numbers each time it is run, simply insert
a RANDOMIZE statement near the beginning of your program. This statement produces a new “seed” for the ran-
dom-number generator, resulting in a new series of pseudo-random numbers. Please note that the RANDOMIZE
statement need only be executed once; it is neither necessary nor desirable for a program to execute it repeatedly.

The INT function returns the greatest integer that is less than or equal to its argument, and the CEIL function
returns the least integer that is greater than or equal to its argument. For instance, Int(2.34) returns 2while
Ceil(2.34) returns 3. Similarly, Int(-2.34) equals -3 and Ceil(-2.34) equals -2.

A variant of the INT function is the IP function, which returns the integer part of its argument. The two functions
work differently for negative numbers, however: IP essentially strips the decimal part of the number away return-
ing the value to the left of the decimal point, while INT returns the greatest integer less than or equal to its argu-
ment. Thus, both Int(3.267) and Ip(3.267) equal 3, but Int(-3.267) equals -4 and Ip(-3.267)
equals -3. The FP function returns the fractional part of a number. It is always true that Ip(x) + Fp(x) = x.
——————————————–––—————————————————————————
[ ! ] Note: True BASIC also provides some built-in subroutines. Subroutines differ from functions in that

they do not return a value in the same way and must be invoked with a CALL statement. Subroutines
are discussed in detail in Chapter 10 “User-defined Functions and Subroutines.”
However, here we introduce the DIVIDE subroutine, which may be invoked as follows:
CALL DIVIDE(x, y, q, r)

The DIVIDE subroutine performs integer division of x by y and assigns the value of the quotient to q
and the remainder to r.

———————————————————————–––————————————————

Trigonometric Functions
Trigonometric functions are summarized in the following table. Most take one or two numeric arguments, indi-
cated by x and y in the table.

Examples of Trigomonetric Functions
———————————————–––———————————————————————

Function Result
PI The constant 3.1415...
SIN(x) Sine
COS(x) Cosine
TAN(x) Tangent

54 True BASIC Language System



SEC(x) Secant
CSC(x) Cosecant
COT(x) Cotangent
ATN(x) Arctangent
ACOS(x) Arccosine
ASIN(x) Arcsine
COSH(x) Hyperbolic cosine
SINH(x) Hyperbolic sine
TANH(x) Hyperbolic tangent
DEG(x) Converts x from radians to degrees
RAD(x) Converts x from degrees to radians
ANGLE(x,y) Counter-clockwise angle between positive x-axis and point (x, y)

————————————————–––——————————————————————
The PI function requires no argument and always returns the value of that famous constant (3.1415...). It is a
function and not a variable; it would not make sense to assign a value to it. The PI function is useful in trigono-
metric formulas such as:

LET z = Sin(x + Pi/4)

Unless your program specifies otherwise, True BASIC assumes that values representing angles in trigonometric func-
tions are measured in radians. If you want to work with angles measured in degrees, you can change True BASIC’s
behavior with the OPTION ANGLE statement. This statement takes two forms. The form

OPTION ANGLE degrees

instructs True BASIC to assume degrees for the arguments to all subsequent trigonometric functions. The angle
measure set by the OPTION ANGLE statement remains in effect until the end of the program (or the current pro-
gram unit) or until another OPTION ANGLE statement changes the setting. You may use

OPTION ANGLE radians

to return to radian measures if necessary.

If you need to convert a single value from radians to degrees, use the DEG function, which takes the radian value
to be converted as its only argument. Use the RAD function to convert a single value from degrees to radians.

The ANGLE function returns the angle measured counterclockwise between the positive x-axis and the point spec-
ified by its arguments. The first argument represents the x-coordinate of the point, and the second the y-coordinate.
The return value is in radians or degrees depending upon the current angle measure option.

While any numeric expression may serve as a numeric argument, certain mathematical functions specify values that
are illegal when used as arguments. For example, Log(-2), Tan(Pi/2) and Angle(0,0) will produce errors.

The accuracy of the trigonometric and transcendental functions on most operating systems is the full accuracy
spedified by the IEEE standard for eigh-byte arithmetic, that is, about 15 significant digits. 

Range-of-numbers Functions
True BASIC provides two numeric functions — the MAXNUM and EPS functions — that help you discover the
range of numbers available on your computer. The values of these functions depend on what computer you use. 

The MAXNUM function, which does not accept an argument, returns the largest positive number expressible by
the computer currently running the program. 

The EPS function returns the smallest positive number that “makes a difference” when added to or subtracted
from the value of the argument. Thus, Eps(0) is the smallest positive number expressible by the computer cur-
rently running the program. Similarly, if Eps(1e15) equals 4 on your computer, then adding or subtracting 3 to
1e15 will not change its value, and you know that the fractional part of your number is meaningless — and even
the last digit of the integer part is suspect.

55Built-in Functions



String-handling Functions
True BASIC also provides several functions to help you work with strings. Some string-handling functions trans-
form a string argument into another string. Other string-handling functions, however, search for values within
strings and are actually considered numeric functions because they return numeric values. This section intro-
duces these two groups of functions plus the USING$ function. (See the section on “Time and Date Functions” for
two more functions that return string values.)

String Search Functions
The following table lists those string-handling functions that return a numeric variable.  These are generally clas-
sified as string search functions:

Examples of String Search Functions
————————————————–––——————————————————————

Function Result
LEN(x$) Number of characters in x$
POS(x$,a$,c) First occurrence of a$ in x$ at or after character number c
CPOS(x$,ch$,c) First occurrence of a character in x$ from string ch$ at or after 

character number c
NCPOS(x$,ch$,c) First occurrence of a character in x$ not from string ch$ at or after

character number c
POSR(x$,a$,c) Last occurrence of a$ in x$ at or before character number c
CPOSR(x$,ch$,c) Last occurrence of a character in x$ from string ch$ at or before

character number c
NCPOSR(x$,ch$,c) Last occurrence of a character in x$ not from string ch$ at or before

character number c
———————————————————–––———————————————————

The LEN function finds the number of characters in the string value supplied as its argument. The LEN function
used with substring expressions is extremely useful when you need to process a string one character at a time. For
example, the following program:

LINE INPUT PROMPT “Enter a line of text: “: line$
LET count = 0
FOR i = 1 to Len(line$)

IF line$[i:i] = “,” then LET count = count + 1
NEXT i
PRINT “Number of commas in line:”; count
END

counts the number of commas in a line input by the user. Notice how the LEN function limits the FOR loop so that
the body is executed once for each character in line$. Within the body of the loop, a substring expression uses the
index variable i to examine the i-th character of the string, counting it if it is a comma.
The other functions in the above list allow your program to search for the occurrence of one string inside another. 
Pos(x$,a$,c) searches in x$ for the next occurrence of the substring a$. The search can start at a specific character
position in x$, specified by c. However, if c is omitted, the search starts at the beginning of the string. The POS
function can be very useful for parsing a string. Parsing is the process of breaking a string into its separate com-
ponents. For instance, the following program parses a line into individual words:

LINE INPUT PROMPT “Enter a line: “: line$
LET line$ = line$ & “ “
LET start = 0
DO

LET end = Pos(line$,” “,start) - 1 ! End of 1st word from ‘start’
PRINT line$[start:end] ! Print from ‘start’ to end of word
LET start = end + 2 ! Reset value of ‘start’
IF start > Len(line$) then EXIT DO

56 True BASIC Language System



LOOP
END

As it finds each word, it prints that word on a line by itself, as follows:
Enter a line: Hello, who are you?
Hello,
who
are
you?

This simplified implementation of the parsing process assumes that words are separated by exactly one space. A
slightly more comprehensive version can be written using the CPOS and NCPOS functions.

Cpos(x$,ch$,c) and Ncpos(x$,ch$,c) treat the string ch$ as a list of characters. The CPOS function
searches x$ for the first occurrence of any character from this list, while the NCPOS function searches x$ for the
first occurrence of any character not from the list. As with the POS function, the final numeric argument, c, is
optional; if c is specified, the search begins at that character position.

Thus, the parsing program could be written as follows:
LET delim$ = “ ,.?!;-()”
LINE INPUT PROMPT “Enter a line: “: line$
LET line$ = line$ & “ “
LET start = Ncpos(line$,delim$)
DO

LET end = Cpos(line$,delim$,start) - 1
PRINT line$[start:end]
LET start = Ncpos(line$,delim$,end+1)
IF start = 0 then EXIT DO

LOOP
END

This version of the parsing program is significantly more flexible. It allows several standard punctuation charac-
ters to act as the separators between words (such characters are typically called delimiters), and it will ignore
multiple separators between words.

The POSR, CPOSR, and NCPOSR functions search in reverse; that is, they work backwards from the end of the
string to be searched.

The following table illustrates the behavior of the seven string search functions. For each function, the return value is
the number (or position) of a character where a match is found. If no match is found, the return value is 0:

Examples of String Search Functions
——————————————————————————————————————

Example Returns Interpretation
LEN(“Hello there!”) 12 Number of characters in “Hello there!”
POS(“Harvard”,”ar”) 2 First occurrence of “ar”
POS(“Harvard”,”ar”,3) 5 First occurrence of “ar” at or after character 3
POS(“Harvard”,”ra”) 0 First occurrence of “ra”
POSR(“Harvard”,”ar”) 5 First occurrence starting from the end
CPOS(“Harvard”,”dv”) 4 First occurrence of a character from the string”dv”
CPOSR(“Harvard”,”dv”) 7 First occurrence starting from the end
NCPOS(“Harvard”,”dv”) 1 First occurrence of a character not in the string  “dv”
NCPOSR(“Harvard”,”dv”) 6 Ditto, but starting from the end
NCPOS(“Harvard”,”adrv”,2) 0 First occurrence of a character not in “adrv”

at or after the second character
——————————————————————————————————————

57Built-in Functions



String Transform Functions
Along with the numeric string-search functions, True BASIC has several built-in string functions that transform
their string argument in some way:

String Transform Functions
——————————————————————————————————————

Function Result
LCASE$(x$) Change all letters to lowercase
UCASE$(x$) Change all letters to uppercase
LTRIM$(x$) Remove leading blanks
RTRIM$(x$) Remove trailing blanks
TRIM$(x$) Remove leading & trailing blanks
REPEAT$(x$,n) Return x$ repeated n times

——————————————————————————————————————
———————————————————————–––————————————————
[ ! ] Note: Functions do not actually change the values of their arguments. Thus, when a function is

referred to as transforming or changing its argument, the statement should be interpreted as meaning
that the function returns a value that represents a transformation of the value of its argument. After
the function invocation, however, the value of the actual argument remains unchanged.

———————————————————————–––————————————————
The LCASE$ and UCASE$ functions can be useful for testing user input. Consider, for example, a situation
where you expect the user to answer a prompt with the input “Yes”. If you use the test: 

IF Lcase$(answer$) = “yes” then

then it does not matter whether the user types YES, Yes, yEs, or yes in response to your prompt. Allowing the user
to ignore case when not important makes your programs more user friendly.

The LTRIM$, RTRIM$, and TRIM$ functions are handy when you are using substring expressions. For exam-
ple, if you are testing the user’s input based on its first character, you might strip off leading spaces to ensure that
you are testing the first real character. The following variation on the previous example would accept Y, y,
Yes, yep!, “ Yes, sir “, and any other phrase beginning with the letter “y” as an affirmative response:

IF Lcase$(Trim$(answer$)[1:1]) = “y” then

As shown earlier, the REPEAT$ function generates strings with repeating patterns. The string specified as the
first argument is repeated the number of times specified by the second (numeric) argument. 

The USING$ Function
Another useful string function is the USING$ function, which is related to the PRINT USING statement. The
USING$ function returns a string formatted by a format string according to the same rules as the PRINT USING
statement. The USING$ function does not print the resulting string, however. For example, 

LET result$ = Using$(“##.###”, 13.756812)

assigns the string value “13.757” to the variable result$. The value returned by the USING$ function may
be displayed anywhere on the screen, stored in a file, or further manipulated.

Converting Between Strings and Numbers
True BASIC maintains a strict distinction between numeric and string values. Most operations and functions are
specific to one or the other. For instance, you cannot subtract two strings, nor can you concatenate two numbers.
Sometimes, however, you need to work around these distinctions by converting between strings and numbers.
True BASIC provides several built-in functions that allow you to convert between data types. The simplest of these
are the STR$ and VAL functions.
The STR$ function returns the string representation of the numeric value given as its argument. The form of the
string representation is the same as would be produced by a PRINT statement, except that leading and trailing

58 True BASIC Language System



spaces are not included. Thus, the STR$ function lets you print a numeric value without its leading or trailing
spaces. For instance:

LET n = 2
LET m = 3
PRINT Str$(n); “+”; Str$(m); “=”; Str$(n+m)

would produce the output:
2+3=5

If the value of a string expression follows the rules for a numeric constant, then the VAL function can convert that
string value into its equivalent numeric value. This can be useful when you are processing numeric input entered
as strings. Consider the following variation on the earlier parsing example that takes a delimited list of numbers
and prints their sum:

LET delim$ = “ ,.?!;-()”
LINE INPUT PROMPT “Enter a series of numbers: “: line$
LET line$ = line$ & “ “
LET sum = 0
LET start = Ncpos(line$,delim$)

DO
LET end = Cpos(line$,delim$,start) - 1
LET sum = sum + Val(line$[start:end])
LET start = Ncpos(line$,delim$,end+1)
IF start = 0 then EXIT DO

LOOP
PRINT “Their sum is”; sum
END

The CHR$ and ORD functions play a similar role for single characters. The ORD function translates a single
character string into its corresponding code number in the current character set — usually the ASCII character
set. If c$ is a one-character string, then Ord(c$) returns the code number corresponding to that character in the
current character set. For example,

GET KEY z
IF z = Ord(“.”) then EXIT DO

will jump out of a DO loop when the user types a period. ORD also accepts longer names for some ASCII charac-
ters. Thus, ORD(“BS”) returns 8, which is the character code for the “back space” character; see Appendix A for
a list of ASCII codes and names. When its argument is the null string, the ORD function returns a value of –1.
The CHR$ function goes the other way, converting a code number into its corresponding character. If n is a num-
ber in the range 0 to 255, Chr$(n) returns the character corresponding to that number in the current character
set. You can use CHR$ to translate GET KEY input into a string value:

DO
GET KEY k
IF 32 < k and k < 127 then

PRINT Chr$(k); “ is”; k
ELSE

PRINT “Key is not a printable character”
END IF

LOOP UNTIL k = Ord(“ “)               ! Space bar stops program
END

You can also use CHR$ to introduce non-printing characters into your program. For instance, Chr$(9) returns
the tab character, and Chr$(27) returns the escape character.

Advanced programmers may wish to “pack” numeric values into string variables. This technique can save mem-
ory and is often required when working with the machine at a lower level. The PACKB subroutine allows you to
pack a numeric value into a specific set of bits within a string variable. A call to this built-in subroutine takes the
following form: 

CALL Packb(s$,b,nb,number)

59Built-in Functions



This call instructs True BASIC to represent the numeric value of number (rounded) using nb bits and to store the
result into s$ beginning at bit position b. (The value of number is rounded to an integer if necessary, and special
conventions apply to negative integers and to integers that do not fit into the specified number of bits.) You can
save large amounts of memory space (at the expense of computation speed) by packing integers into a string.
If the bit position b is larger than the length of the string, the packed number is added to the end of the string.
This can be useful because if you keep appending to a given string, you don’t have to keep track of the bit position
— instead, just use a very large number for b, such as the MAXNUM function.
To recover the numeric value from the string, use the UNPACKB function:

LET number = Unpackb(s$,b,nb)

This statement reverses the operation of the previous call to the PACKB subroutine. It converts nb bits from s$
beginning at bit position b and returns the resulting integer value.

An example of packing and unpacking is included in the section on byte files in Chapter 12 “Files for Data Input
and Output.” For a more detailed description of the PACKB subroutine and the UNPACKB function see Chapter
18 “True BASIC Statements and Built-in Functions and Subroutines.”

Time and Date Functions
True BASIC provides two string and two numeric functions that let you get time and date values from your com-
puter’s internal clock.

The TIME function returns the time as the number of seconds since midnight (so use caution when using it in pro-
grams that may be run overnight). This makes it easy to time a program:

LET t1 = Time ! Starting time in seconds
DO

CALL RunQuiz (score) ! User-defined subroutine
LOOP until score > 90.

LET t2 = Time ! Time at completion
PRINT “Time elapsed:”; t2-t1; “seconds”

The TIME$ function returns the time measured by the 24-hour clock as a string in the format “HH:MM:SS”,
where HH represents the hour, MM the minute, and SS the second. For example: “08:05:45” or “15:16:10”.

The DATE function returns a numerical representation of the current date consisting of the last two digits of the
year followed by the ordinal number of the current day within the year. For example, DATE would return the
value 95041 on February 10, 1995. Because earlier dates always have lower numerical values, this format is use-
ful for sorting date values.

The DATE$ function returns the date as a string in the format “YYYYMMDD”, where YYYY represents the year,
MM the month, and DD the day. Thus, DATE$would return “19960714” on July 14, 1996. Although not the stan-
dard date format, dates in this format can be easily sorted. You can also print substrings of these functions to pro-
duce desired output. For example:

LET today$ = DATE$[5:6] & “/” & DATE$[7:8] & “/” & DATE$[3:4]
PRINT “Today is “; today$
END

would produce output such as:
Today is 07/14/94

———————————————————————————————————————
[ ! ] Note:  For any calculations involving dates cross the year 2000 boundary, we recomment using

DATE$. The DATE function will not work properly, as it supplies only the last two digits of the year
number.

———————————————————————————————————————

60 True BASIC Language System



CHAPTER

9
Arrays and Matrices

An array is a data structure that allows you to group several numeric or string variables under a single name. It
may be one-dimensional list or vector or a two-dimensional table or matrix, or it may have several dimensions.
An array may contain either string or numeric values, but a given array may not contain both types of values.

Arrays are an extremely powerful tool for organizing the data used by your program. This chapter introduces the
basics of arrays and matrices, as well as several advanced topics, to help you use these powerful data structures
efficiently and effectively.

Array Basics
Often, your programs will use a large number of logically related values. Consider, for example, a program to work
with a teacher’s grade book for a class of 15 students over the course of a semester.

Such a program would need to manipulate several values, including the names of the students and their grades. Using
simple variables, sometimes called scalars, the program would need 15 variables to store the names. If there are ten
grades per semester, then the program would need another 150 simple variables to store the grades. As you can imag-
ine, building such a program using simple variables would be a real headache.

Fortunately, True BASIC offers arrays for the temporary storage and manipulation of related values. An array is
a named collection of numeric or string values. You can think of an array as a group of variables with the same
name. For instance, the grade-book program might use two arrays — one named names$ containing the student
names and another named grades containing their grades.
————————————————————————–––———————————————
[ ! ] Note:  Like any variable, values stored in an array remain there only during the program run. You

must supply the values to your program as some form of input — from the keyboard, from DATA state-
ments, or from a file. If you wish to preserve array data for future use, you should have the program
write the array contents to a file. Using arrays along with data files gives you a powerful tool for manip-
ulating large amounts of data. This chapter gets you started with arrays; see Chapter 13 “Files for Data
Input and Output” for more information on using data files.

————————————————————————–––———————————————
The individual variables contained in an array are called its elements. All of the elements of a given array must
be of the same type — either numbers or strings. Thus, arrays are often referred to as numeric arrays or string
arrays, depending upon the values they can contain. You may use any valid numeric variable name for a numeric
array, as in grades, or any valid string variable name for a string array, as in names$. However, you may not
use the same name for both a simple variable and an array.

Before you can use an array, you must define it in a DIM (dimension) statement. A DIM statement tells True
BASIC that you will be using the specified name as an array variable. The form of the name tells True BASIC
whether you will be using the array to store string or numeric values, and what follows specifies the number of
dimensions and the size of each dimension. For example:

DIM names$(15), grades(15, 10)

defines the string array names$ as a list of 15 elements. Each element in names$ may be treated as a separate
string value. It also defines the numeric matrix grades as a table with 15 rows (in the first dimension) and 10

61Built-in Functions



columns (in the second dimension). The array dimensions specified in a DIM statement must be numeric con-
stants, not variables or expressions.
Each element in an array is assigned a number called a subscript. Unless you specify otherwise, these numbers
begin at 1. For instance, the fifteen items in the names$ array would be numbered 1 through 15. Likewise, the fif-
teen rows in the grades matrix would be numbered 1 through 15, and the 10 columns would be numbered 1
through 10.
You use subscripts to refer to specific elements within an array. You specify the subscript in parentheses after the
array name. For instance, names$(5) represents the fifth item in the names$ array. With multi-dimensional
arrays, you must specify a subscript for each dimension. For instance, grades(5,3) represents the item in the
third column of the fifth row of the grades matrix. You may use any valid numeric expression as a subscript; if
the value of the subscript is not an integer, True BASIC will round it to the nearest integer.
When you use a subscript to refer to a specific element of an array, you may use that array element as you would
a simple variable of the same type:

LET score(i) = i * x
LET cost(n) = october(n,3) * d(3)
PRINT name$(7), age(k)

To better understand the use of arrays, let’s consider an example. The following program sets up a multiplication
table and uses it:

DIM product(10,10)

FOR i = 1 to 10 ! For each row
FOR j = 1 to 10 ! For each column in current row

LET product(i,j) = i*j
NEXT j

NEXT i

DO
INPUT PROMPT “Enter two integers to multiply; use 0,0 to end: “: a, b
IF a = 0 and b = 0 then EXIT DO
PRINT a; “*”; b; “=”; product(a,b)

LOOP
END

The two FOR loops assign values to each element of the two-dimensional array product. The value for each ele-
ment equals its row subscript multiplied by its column subscript. The INPUT PROMPT statement gets two
numeric values from the user. The program then uses those values as subscripts and prints the value of the cor-
responding element in product — which is the product of the two subscripts. 

If one of the input numbers (rounded if necessary) is less than 1 or greater than 10, then a “Subscript out of bounds”
error results and the program stops. You can usually adapt your programs to avoid such errors. For example, you
could modify this program by placing the PRINT statement in an IF structure:

DIM product(10,10)
FOR i = 1 to 10

FOR j = 1 to 10
LET product (i,j) = i*j

NEXT j
NEXT i
DO

INPUT PROMPT “Enter two integers to multiply; use 0,0 to end: “: a, b
IF a = 0 and b = 0 then 

EXIT DO
ELSEIF a < 1 or a > 10 or b < 1 or b > 10 then

PRINT “Please re-enter, using two numbers from 1 to 10”
ELSE

PRINT a; “*”; b; “=”; product(a,b)
END IF

62 True BASIC Language System



LOOP
END

There are other ways of preventing errors from stopping your program. For more information see Chapter 16
“Error Handling.”
The lowest valued subscript in each dimension is that dimension’s lower bound. The highest valued subscript in
each dimension is that dimension’s upper bound. If a DIM statement specifies only one numeric constant per
dimension, True BASIC uses that number as the dimension’s upper bound and assumes 1 as the lower bound. How-
ever, you may also specify a dimension’s lower bound in a DIM statement. For example:

DIM profit(1980 to 1995), count(-10 to 10, 3)

defines the numeric array profit as having a lower bound of 1980 and an upper bound of 1995. Thus, profit has
16 elements, which you may refer to using the year as the subscript. In a similar fashion, this statement defines the
numeric matrix count as having a lower bound of -10 and an upper bound of 10 in the first dimension and a lower
bound of 1 and an upper bound of 3 in the second dimension. Thus, the matrix count has 63 elements divided into
21 rows of 3 columns each. Note that you may use a colon (:) in place of the word TO in array dimensions.

Once an array has been defined to have a certain number of dimensions, the number of dimensions cannot be
changed. However, you can change the size of each dimension. Several ways of altering the size of a dimension are
discussed in the sections that follow.

It is important to realize that the DIM statement reserves memory (RAM) for each array that it defines. Thus, you
should avoid dimensioning arrays you don’t need or making arrays much larger than required. Even if you never
use them, every element in every array contains a value (0 or the null string if you haven’t assigned a specific
value) and thus takes up space in memory. The size of your arrays is limited only by the amount of memory avail-
able; however, if you are not careful, you may find yourself running out of memory.

Memory considerations are especially important with multi-dimensional arrays. True BASIC lets you create
arrays of many, many dimensions, but you should avoid them unless you have good reason to use them. Multi-
dimensional arrays can use up memory very quickly. The number of elements in a multi-dimensional array is the
product of the sizes of its dimensions. For example:

DIM big(20,20,20,20)

defines a four-dimensional numeric array big. Doing the math, we get 20 x 20 x 20 x 20 = 160,000 elements! Since
each numeric value in True BASIC takes up eight bytes, the number of bytes of memory required for big equals
(roughly) the number of elements times 8, or well over a megabyte of memory. Although it might look relatively
innocent, the array big could easily cause your program to run out of memory. 

As a more extreme example, consider this: a 20-dimensional numeric array, even if each subscript could take on
only two values, would require eight megabytes. The point is, quite simply, don’t add extra dimensions to an array
unless they are absolutely necessary.

Array Input and Output
As the above examples demonstrate, you can treat an individual element of an array as you would treat a simple
variable. If you wanted to do something to all the elements in an array, you could use a loop to repeat the same
operation for each element:

DIM names$(15)
FOR i = 1 to 15

INPUT name$(i)
NEXT i

However, you will often find it easier to perform operations on an entire array at once. True BASIC provides sev-
eral specialized MAT statements that allow you to do exactly that. The simplest examples of MAT statements are
the MAT READ, MAT INPUT, and MAT PRINT statements. The first of these reads all the elements of the
array from DATA statements, the second gets the values for the elements from the user, and the last displays all
of the values in the array.

63Arrays and Matrices



The MAT READ statement allows your program to read the values for one or more arrays from the current data
pool of items in DATA statements. It works very much like the READ statement except that it reads values into
an entire array. For multi-dimensional arrays it uses odometer order, that is, the last subscript runs through its
range, then the next subscript (to the left of the last) is increased by one, etc. For a two-dimensional array this
means that it reads the first row, then the second row, etc. For example:

DIM day$(7), pay(3,2)
MAT READ day$, pay
DATA Monday, Tuesday, Wednesday, Thursday
DATA Friday, Saturday, Sunday
DATA 5.25, 7, 3.75, 12.10, 4.15, 5.35

The array day$ will contain the days of the week. The matrix pay is 3 rows by 2 columns, hence: 
pay(1,1)=5.25 pay(1,2)=7 
pay(2,1)=3.75 pay(2,2)=12.10 
pay(3,1)=4.15 pay(3,2)=5.35 

The MAT INPUT statement works as does an INPUT statement with multiple input items. The MAT INPUT
statement expects to receive all the elements of the array in the same order as they would be provided for the MAT
READ statement. The user must enter the correct number of items, in the correct order, separated by commas. If
the user enters too few or too many items, they will be asked to re-enter the data. The user can end a line with a
comma if more space is needed to enter all the input.

Like the INPUT statement, the MAT INPUT statement displays a question mark as its default prompt. You can
overrule the question mark by using the MAT INPUT PROMPT statement. For example,

DIM list(7)
MAT INPUT PROMPT “Type 7 numbers: “: list

The LINE INPUT statement also has an equivalent MAT statement:
DIM text$(15)
MAT LINE INPUT text$

This code segment will prompt the user with question marks for 15 lines of input. It will read each line as one ele-
ment of the string array text$.
The MAT PRINT statement displays the contents of an entire array. It prints elements in odometer order, begin-
ning a new line after each row. It leaves a blank line after each array, or after two-dimensional sections of higher
dimensional arrays. This makes it much easier to recognize the shape of the array. The normal convention is to
print items in print zones, as if a comma had been used as the print separator between elements.  As with the
PRINT statement, the zone width is normally 16 characters, but you may reset it with a SET ZONEWIDTH state-
ment. For example, consider two MAT PRINT statements added to the earlier sequence:

DIM day$(7), pay(3,2)
MAT READ day$, pay
DATA Monday, Tuesday, Wednesday, Thursday
DATA Friday, Saturday, Sunday
DATA 5.25, 7, 3.75, 12.10, 4.15, 5.35
MAT PRINT pay
MAT PRINT day$
END

This program produces the following output:
5.25            7
3.75            12.1
4.15            5.35

Monday          Tuesday         Wednesday       Thursday        Friday
Saturday        Sunday

If you use a semicolon after the array name in a MAT PRINT statement, True BASIC will print the elements in
a row close together, as if you had used a semicolon as the print separator between elements. For example:

MAT PRINT pay; day$

64 True BASIC Language System



will print the elements of the numeric array pay close together, and the elements of the string array day$ in
zones. Having no punctuation after the last array name has the same effect as having a comma after it.  (Remem-
ber that True BASIC prints a space before and after each positive numeric value.)

5.25  7
3.75  12.1
4.15  5.35

Monday          Tuesday         Wednesday       Thursday        Friday
Saturday        Sunday

To dictate the format of the output, use a MAT PRINT USING statement. The MAT PRINT USING statement
prints the individual elements of the array, formatted by the format string, just as if they were printed one by one
with PRINT USING statements. If there are more elements than fields in the format string, the string is reused,
starting from the beginning. For example:

LET format$ = “##.###   “
MAT PRINT USING format$: pay

will print numbers rounded to three decimal places and leave three spaces after each number. In this example, two
values are printed per line representing the two columns of each row in the table:

5.250    7.000
3.750   12.100
4.150    5.350   

Keep in mind that you may sometimes want to use a loop rather than a MAT statement to input or print all the
elements of an array. Consider the following simple version of a grade-book program that finds the average grade
for each student:

DIM names$(6), grades(6,3), averages(6)
MAT READ names$, grades
FOR s = 1 to 6 ! For each student

LET grade_total = 0
FOR g = 1 to 3 ! Add grades

LET grade_total = grade_total + grades(s,g)
NEXT g
LET averages(s) = grade_total/3 ! Compute average grade

NEXT s
MAT PRINT names$, averages ! Print results

DATA J. Andersen, S. Bree, D. Cordoza, G. Davison, A. Ellis, M. Feinstein
DATA 90, 92, 96, 90, 88, 85, 78, 84, 83
DATA 77, 79, 81, 85, 89, 84, 85, 94, 86

GET KEY k                               ! Wait for keystroke
END

The MAT PRINT statement first prints all values of names$ and then all values of averages, giving the fol-
lowing output:

J. Andersen     S. Bree         D. Cordoza      G. Davison      A. Ellis
M. Feinstein

92.666667       87.666667       81.666667       79              86 
88.333333 

However, you might prefer the output you would get if you replace the statement:
MAT PRINT names$, averages

with the loop:
FOR n = 1 to 6

PRINT names$(n), averages(n)
NEXT n

65Arrays and Matrices



In this case, the corresponding elements from each array are printed together, as follows:
J. Andersen      92.666667 
S. Bree          87.666667 
D. Cordoza       81.666667 
G. Davison       79 
A. Ellis         86 
M. Feinstein     88.333333 

What if you find it easier to enter the data keeping student names and grades together, as follows?
DATA J. Andersen, 90, 92, 96
DATA S. Bree,     90, 88, 85
DATA D. Cordoza,  78, 84, 83
...

To do that you will need to replace 
MAT READ names$, grades 

with a more complex, nested loop so that you read an entire row of grades for each element in names$:
FOR n = 1 to 6 ! For each student

READ names$(n) ! Read one name
FOR g = 1 to 3 ! Read three grades

READ grades(n,g)
NEXT g

NEXT n

When you are deciding whether to use a MAT statement or an equivalent loop with multiple arrays, be sure you
consider how the data will be organized as well as how you wish to write the program code.

Any of the MAT input and output statements may be used with a channel number to get input from a file or to
print results to a printer or file. For example:

DIM names$(15)
OPEN #1: name “StuNams”
OPEN #10: printer
MAT LINE INPUT #1: names$          ! Get names
MAT PRINT #10: names$              ! Print to printer
....

Arrays used with data files are very helpful in managing and manipulating large sets of related data. Keep in
mind, however, that data in a file must be in the correct order and format for the input statement you’ll use. If you
print to a file and intend to input that data again later, you must print the data in an acceptable format. This issue
is discussed in Chapter 12 “Files for Data Input and Output.” 

Redimensioning Arrays
Unlike many other programming languages, True BASIC allows your program to change the number of elements
in each dimension of an array while it is running. This process is known as redimensioning, although the word
is somewhat misleading since the number of dimensions cannot be changed. The lower and upper bounds of each
dimension, however, can be changed, and so the array may become larger or smaller. You can redimension arrays
with the MAT REDIM statement or by specifying the new dimensions in certain MAT statements.

Here’s an example of the MAT REDIM statement:
DIM table(0 to 2, 5)
MAT REDIM table(4, -1 to 6)

The first statement creates the numeric array table with three rows numbered 0 to 2 and five columns num-
bered 1 to 5. The MAT REDIM statement changes table so that it has four rows numbered 1 to 4 and eight
columns from -1 to 6. 

Redimensioning has many uses. A typical use is to have the program ask the user for a list and its size, as in the
example below. This technique lets you use the same program for arrays with different number of elements, and
it helps conserve memory by keeping arrays as small as possible.

66 True BASIC Language System



DIM name$(1)
INPUT PROMPT “How many names: “: n
MAT REDIM name$(n)
MAT INPUT PROMPT “Enter them: “: name$
...

You must still use the DIM statement to declare that name$ is a one-dimensional string array, but the number of ele-
ments you specify is irrelevant, since you will redimension it when you supply n in the MAT REDIM statement.

This combination of statements is so common that True BASIC lets you redimension the array directly in a MAT
INPUT, MAT LINE INPUT, or MAT READ statement. You can combine the MAT REDIM and MAT INPUT
statements above to form a single MAT INPUT statement that includes a variable for the dimension of name$:

DIM name$(1)
INPUT PROMPT “How many names: “: n
MAT INPUT PROMPT “Enter them: “: name$(n)
...

Here is a similar example that reads an array from DATA statements: 
DIM table(10,10)
READ m, n                               ! Actual size
MAT READ table(m,n)                     ! Read correct size
DATA 3, 4
DATA 1,2,3,4,5,6,7,8,9,10,11,12
...

This example sets up the array, then reads the first two data items which are used to define the actual size of the
table. With this trick, the program can work for tables of any size without your having to rewrite the program. You
need to change only the data lists in the DATA statements.

The MAT assignment statement, described in the “Array Assignment” section below, can also redimension an
array when you assign values to its elements.

Finally, there is a version of the MAT INPUT statement that allows you to input a one-dimensional array of an
unspecified size:

MAT INPUT list(?)

The question mark in the statement instructs the program to accept a list of any length. True BASIC adjusts the
upper bound of the subscript to make the size exactly right for the number of elements the user enters. The user
must separate items with commas and end a line with no comma to indicate the end of the input items. Note that
you can use the question mark (?) only with the MAT INPUT statement and only for one-dimensional arrays.

Redimensioning with the MAT READ or MAT INPUT statement changes both the shape and the contents of an
array. MAT REDIM will preserve all or part of the contents of an array. While this may be useful, you should be
careful in using it, as shown below.

Suppose that the 2-by-2 array sample contains the following values:
 1 2 
 3 4 

and you then use the statement:

MAT REDIM sample(3,2)

The array is now:
 1 2 
 3 4 
 0 0 

as you would expect. But if you use the statement:
MAT REDIM sample(2,3)

67Arrays and Matrices



the result would be:
 1 2 3 
 4 0 0 

which may not be what you want. 

Two precautions will prevent this problem. If you wish to use the MAT REDIM statement and retain the previ-
ous contents of the array, then

• do not change the lower bound(s), and 
• redimension only one-dimensional arrays or only the first dimension of two-dimensional arrays.

The MAT REDIM statement can be extremely useful when you need to make the most of the memory available to
your program. A dimension of 0 effectively removes the array from memory, thus freeing the space it occupied.
Therefore, when you need as much memory as you can muster, redimension any unnecessary arrays to zero ele-
ments in each dimension. Beware, however, that in doing so you will lose the contents of that array; use this tech-
nique only when you no longer need the contents of an array.

Functions That Find Array Sizes 
Along with letting you redimension arrays, True BASIC provides functions that let you find out the current sizes
of arrays. Three functions may be used to discover the ranges of subscripts:

Subscript Range Functions
——————————————————————————————————————

Function Result
LBOUND(array,d) Lower bound of subscript in dimension d of array
UBOUND(array,d) Upper bound of subscript in dimension d of array
SIZE(array,d) Total number of elements in dimension d of array

——————————————————————————————————————

If the array has only one dimension, you may omit the second argument d in the argument list of the LBOUND
and UBOUND functions. If you omit the second argument d in the argument list of the SIZE function, the func-
tion returns the total number of elements in the entire array. For example, the following program inputs a list and
prints it in reverse order:

DIM list(10)
PRINT “Enter a list of numbers: “
MAT INPUT list(?) ! Input any number of items & redimension
LET n = Size(list) ! How many numbers
FOR i = n to 1 step -1 ! Reverse order

PRINT list(i);
NEXT i
END

These array subscript functions are also useful for writing array-handling subroutines. The following code seg-
ment searches the array name$ for a particular name n$:

LET u = Ubound(name$)
FOR i = 1 to u                          ! i will be position in list

IF name$(i) = n$ then EXIT FOR
NEXT i
IF i > u then LET i = 0                 ! Not found

Array Assignment
As you have seen, loop structures provide a concise and convenient mechanism for processing the individual elements
of an array in series. The following program segment that copies the contents of one array into another:

DIM source(0), target(0)
PRINT “Enter a list of numbers: “

68 True BASIC Language System



MAT INPUT source(?) ! Input any number of items & redimension
LET n = Size(source) ! How many numbers entered
MAT REDIM target(n) ! Redimension target array
FOR i = 1 to n ! Copy source to target

LET target(i) = source(i)
NEXT i

Just as the MAT READ, MAT INPUT, and MAT PRINT statements let you input or print an entire array instead
of using a loop to operate on each element, the MAT statement lets you copy the entire contents of one array to
another. The following equivalent of the previous example shows how it simplifies array operations:

DIM source(0), target(0)
PRINT “Enter a list of numbers: “
MAT INPUT source(?) ! Input any number of items & redimension
MAT target = source ! Copy source to target

The MAT statement assigns values to each element in an array.  You can think of it as a specialized version of the
LET statement that operates exclusively on arrays.  

When you assign the values in one array to another by using an array variable on the right side of the MAT state-
ment, the two arrays must be of the same type (numeric or string) and must have the same number of dimensions.
If necessary, True BASIC automatically adjusts the upper bounds of the array being assigned to. For example:

DIM growth(2,1991 to 1993), temp(1,1)
MAT READ growth
DATA 25.6, 13.92, 15.2, 29.89, 12.64, 28.01
MAT temp = growth

Here the array temp takes on the values of the array growth, and its upper bounds are adjusted to the proper
size. Note that the lower bounds are not changed.  Thus, the new dimensions for temp are (2,3) after the assign-
ment. To avoid unexpected results, you may wish to specifically dimension arrays used in assignments to have the
same lower bounds. 

While the MAT statement is commonly used to assign the contents of one array to another, you can also use it to
assign the same value to each element of an array. If the value to the right of the equal sign is a constant, expres-
sion, or variable representing a single value, that single value is assigned to every element of the array specified
to the left of the equal sign.  For example:

DIM name$(10), grades(10,6), factor(10,6), init(6)
INPUT f
MAT name$ = “unregistered”
MAT grades = 100
MAT factor = f
MAT init = ((f*100) / 5)

These statements assign the string “unregistered” to all 10 elements in the array name$, the value 100 to all
elements in grades, and the value input for the variable f to all elements in factor. Each element in init takes
on the value of the expression (f*100)/5. Note that you must always use parentheses around an expression rep-
resenting a single value in a MAT statement, as in the last line of the example above. 

Built-in Array Constants
True BASIC provides several built-in array constants that you may use with the MAT statement. Array con-
stants are special functions that return a particular array; they may be used only in a MAT statement on the right
side of the equal sign. For example:

MAT word$ = Nul$ ! all elements null strings
MAT table = Zer(3,4) ! 3-by-4 table, all elements 0
MAT table = Con ! all elements 1, or “constant”
MAT table = 7*Con(2,6) ! 2-by-6 table, all elements 7

If you give no dimensions with the array constant, the array being assigned to keeps its current dimensions.  If you
do provide dimensions, the array being assigned to will be redimensioned to the size specified. Note, however, that

69Arrays and Matrices



the lower bound will not be changed, and the upper bound will be adjusted so that the resulting array has the
proper number of elements. Consider, for example:

DIM test(10) ! A 10-element array
MAT test = Zer(3:9) ! A 7-element array
PRINT Lbound(test), Ubound(test)
END

The DIM statement in this example defines the array test as having a lower bound of 1 and an upper bound of
10. Given the dimensions supplied with the ZER array constant used in the MAT statement, you might expect the
new lower bound to be 3 and the new upper bound to be 9. However, if you run this program you will see that the
lower bound of test remains 1 and the upper bound becomes 7. True BASIC retains the original lower bound of
1 and adjusts the upper bound so that test contains the same number of elements as in the constant Zer(3:9).

True BASIC’s array constants are as follows:
Examples of Array Constants

——————————————————————————————————————
Constant Result
CON An array with every element set to 1
IDN An identity matrix. It must be a square two-dimensional array, and it will

have elements set to 1 running along the diagonal from top left to the
bottom right.  All other elements are set to 0. Since the array must be
square (both dimensions the same size), you may redimension the array
being assigned to by specifying the bounds of one or both dimensions. 
For example Idn(4) is equivalent to Idn(4,4) and contains the elements:

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

NUL$ An array with each element set to the empty or null string “”
ZER An array with each element set to 0

——————————————————————————————————————

Array Arithmetic
True BASIC supports all of the fundamental mathematical operations for arrays and matrices. Many of these
operations use the standard arithmetical operators with arrays as their operands. Other operations require spe-
cial built-in functions. This section introduces operator-based array arithmetic and the following section discusses
the function-based options. Both sections assume that you are familiar with the general concepts of matrix arith-
metic, and make no attempt to teach these concepts.

True BASIC’s array arithmetic expressions follow the normal mathematical rules for matrix arithmetic. The
array to which the result is assigned must always have the correct number of dimensions, but True BASIC auto-
matically redimensions it to the correct shape by changing the upper bounds. Note that as with array assignment
described above, True BASIC redimensions an array by changing the upper bounds only; it does not change the
lower bounds. We recommend that all arrays involved in matrix arithmetic have the same lower bounds. Addi-
tional restrictions for each operation are described below.

For array expressions, True BASIC allows only a single operator per MAT statement. The array operations are
addition, subtraction, multiplication, and scalar multiplication.

Array Addition and Subtraction
In array addition and subtraction the specified operation is applied to all pairs of corresponding elements. Thus,
the arrays must be of exactly the same size and shape (same number of dimenstions and same number of elements

70 True BASIC Language System



in each dimension). Although the lower and upper bounds for the dimensions are not important, the number of ele-
ments is. In the statement:

MAT c = a + b     ! Sum of corresponding elements of two arrays

the first element in bwill be added to the first element in a, then the second elements in each will be added, then
the third, and so forth until all pairs of corresponding elements have been added. The resulting array of sums will
be assigned to c, and c will be redimensioned (if necessary) so that it has the same size and shape as a and b.

For a more complete example of array addition and subtraction, consider the following program:
DIM a(5), b(5), sum(1), diff(1)
MAT READ a, b
DATA 1, 2, 3, 4, 5
DATA 5, 4, 3, 2, 1
MAT sum = a + b
MAT diff = a - b
MAT PRINT sum
MAT PRINT diff
END

which produces these results:
6               6               6               6               6

-4              -2               0               2               4 

Notice that the target arrays sum and diff must be defined in the DIM statement. Although True BASIC will
resize them as necessary, it will not create them automatically.

As long as they are of the same size and shape, you can add and subtract two arrays of any number of
dimensions.

Array Multiplication
Array multiplication may be applied only to one- and two-dimensional arrays. If both arrays are one-dimensional,
they must be the same size and the product will be a one-dimensional array containing one element. The array
specified as the first (or left hand) operand of the multiplication operator will be treated as a row vector, and the
array specified as the second (or right hand) operand of the multiplication operator will be treated as a column vec-
tor. The result will be the “dot product” of the two operand arrays. For example:

DIM a(3), b(3), product(1)
MAT a = 2
MAT b = 4
MAT product = a * b
MAT PRINT a
MAT PRINT b
MAT PRINT product
END

gives the results:
2               2               2

4               4               4

24 

If the arrays to be multiplied are two-dimensional, the number of columns in the first array must equal the number
of rows in the second. The result will have the number of rows of the first array and the number of columns of the sec-
ond. In other words, if a is an l by m array, then bmust be m by n, and the result will be l by n.

71Arrays and Matrices



Array Multiplication
——————————————————————————————————————

a(2,3) b(3,4) c(2,4)
——————————————————————————————————————

As an example of matrix multiplication, consider the following program:
DIM a(2,3), b(3,4), product(1,1)
MAT a = 2
MAT b = 4
MAT product = a * b
MAT PRINT a
MAT PRINT b
MAT PRINT product
END

which gives the following results:
2               2               2
2               2               2

4               4               4               4
4               4               4               4
4               4               4               4 

24              24              24              24
24              24              24              24 

If one array operand of the multiplication operator is one-dimensional and the other is two-dimensional, the prod-
uct will be one-dimensional. If the first array operand is one-dimensional, it is treated as a row vector (single row
with multiple columns) and must match the first dimension of the second array. If the second array operand is one-
dimensional, it is treated as a column vector (many rows in one column) and must match the second dimension of
the first array. 
In other words an array with m elements may be multiplied by an m by n array, or an l by m array may be multi-
plied by an array with m elements. In the first case the product will be a one-dimensional array with n elements,
while in the second case the product will be a one-dimensional array with l element. For example:

DIM a(2), b(2,4), product(1)
MAT a = 2
MAT b = 4
MAT product = a * b
MAT PRINT a
MAT PRINT b
MAT PRINT product
END

produces:
2               2

4               4               4               4
4               4               4               4

16              16              16              16 

72 True BASIC Language System



Scalar Multiplication
You can also multiply an array by a single, non-array value.  Such non-array values are often called scalar val-
ues. The scalar value used in the multiplication may be a positive numeric constant, a numeric variable, or any
numeric expression enclosed in parentheses. The scalar value must appear as the first operand and may not be
preceded by a sign; thus, to use a negative scalar value you must use a variable or enter the value as an expression
in parentheses, such as (-4). The array operand, which must appear as the second operand, may be of any number
of dimensions. Each element of the array operand is multiplied by the scalar value producing an array of the same
size and shape as the array operand. For example:

DIM apples(2,3), income(1,1)
LET cost = .59
MAT READ apples
DATA 27, 14, 52, 22, 29, 7
MAT income = cost * apples ! Scalar multiplication
MAT PRINT USING “$##.##   “: income
GET KEY k ! Wait for keystroke
END

produces:
$15.93   $ 8.26   $30.68   
$12.98   $17.11   $ 4.13   

Multiplication is the only array operation allowed for a scalar. If you wish to add or subtract the same value from
all elements of an array, create an array with all elements containing that value and use array addition or sub-
traction as described previously. Note as well that the only operators defined for array arithmetic are addition,
subtraction, and multiplication.

Built-in Functions for Array Operations
True BASIC also supplies some built-in functions that take one- or two-dimensional arrays as their arguments.
Some return a single numeric value and others return array values. These functions allow you to perform calcu-
lations on arrays beyond those supported by the array operators described in the previous section.

Functions for Array Operations
——————————————————————————————————————

Function Result

DET The determinant of the last square two-dimensional array inverted by the
INV function; returns 0 if no array has been inverted

DET(x) The determinant of the square two-dimensional array x; returns 0 if x
is singular

INV(x) The inverse of the square two-dimensional array x; if x is singular or
nearly singular True BASIC gives an error message

DOT(x,y) The dot product of the two one-dimensional arrays x and y, which must
have the same number of elements

TRN(x) The transposition of the two-dimensional array x
——————————————————————————————————————

The DET function returns a numeric scalar value representing the determinant of the square matrix specified as
its argument. If the square matrix is singular, the DET function returns a value of 0. If no array argument is spec-
ified, the DET function returns the determinant of the last matrix inverted with the INV function. If no matrix
has been inverted, a value of 0 is returned.

The INV function returns the inverse of the square matrix specified as its argument. The result will be a square
matrix of the same dimensions as the argument. If the argument is singular, or nearly singular, then True BASIC
generates an error. Since matrix inversions are notoriously susceptible to round-off errors, it is wise to check the
value returned by the DET function after each inversion to determine if the matrix just inverted was almost sin-
gular. If the DET function returns a value that is nearly zero, the inverted results are probably meaningless.

73Arrays and Matrices



The following program demonstrates the use of the INV and DET functions:
DIM scores(2,2), inverse(1,1)
MAT READ scores
DATA 1,2,3,4
MAT inverse = Inv(scores)
MAT PRINT scores
MAT PRINT inverse
PRINT “Determinant: “; Det
END

This program produces the following output:
1               2
3               4

-2.              1.
1.5            -.5

Determinant: -2 

The DOT function returns a numeric scalar value representing the dot product, or inner product, of the two one-
dimensional arrays specified as its arguments. The two arrays must be one-dimensional and must have the same
number of elements. Here is a typical use of the DOT function:

DIM price(12), amount(12)
MAT INPUT PROMPT “Prices: “: price
MAT INPUT PROMPT “Amounts: “: amount
LET total = Dot(amount, price)   ! Total purchase price
...

Each element of the amount array is multiplied by the corresponding element of the price array and the value
of total is set equal to the sum of these products.

The TRN function returns the transposition of the two-dimensional array specified as its argument. The result
will be a two-dimensional array with the rows and columns of the argument array interchanged. In other words,
the transposition of an m by n matrix named x gives an n by m matrix which we will call r such that r(i,j)
equals x(j,i). For example, the program:

DIM Scores (2,4), Transpose(1,1)
MAT READ Scores
DATA 27, 14, 34, 52, 22,12, 29, 7
MAT Transpose = Trn(Scores)
MAT PRINT Scores
MAT PRINT Transpose
END

produces the results:
27              14              34              52
22              12              29              7

27              22
14              12
34              29
52              7 

Remember that you may use only one array or matrix operation per MAT statement. You may build more complex
matrix expressions, however, using a series of MAT statements. The following program illustrates the computa-
tion of such a complex expression:

! Compute the inverse of i - (1/2)*a*Trn(a)

DIM a(3,2), i(3,3), x(3,3), c(3,3)

74 True BASIC Language System



MAT READ a
DATA .1, .2, .3, .4, .5, .6
MAT x = Trn(a)
MAT x = a * x
MAT x = (1/2) * x    ! (1/2)*a*Trn(a)
MAT i = Idn(3)
MAT x = i - x
MAT c = Inv(x)       ! Inverse
MAT PRINT c
PRINT Det(x)         ! Check determinant
END

In this example, only the shape of the array a is relevant; the other arrays are redimensioned by MAT statements.
Note that the “working matrix” x occurs on both the left and right side of the equal sign in several statements.
True BASIC always evaluates the right side first, then redimensions the matrix on the left (if necessary) and
assigns the answer to it. This is why the program above works correctly.

Sorting and Searching the Contents of Arrays
As you work with arrays, you may want to sort the elements within them or search for a particular element.  True
BASIC provides several subroutines that can sort or search your arrays. A subroutine is a block of statements that
carry out a specific task. As with functions, you may need to specify one or more arguments when you invoke a sub-
routine. Subroutines differ from functions in that you invoke them with a CALL statement and they return values
via the arguments you specify — thus a subroutine may return more than one value or array.

The sorting and searching subroutines are not built into True BASIC, they are contained in the SortLib.TRC “library
file” that is placed in the TBLIBS directory when you install True BASIC. This section introduces these subroutines
and the SortLib.TRC library. For complete information on subroutines and library files, see Chapters 10 “User-
defined Functions and Subroutines” and Chapter 11 “Libraries and Modules.” Briefly, a LIBRARY statement must
name the file or files containing any non-built-in subroutines your program will use. You then invoke the subroutine
with a CALL statement that includes arguments for the subroutine, as follows:

! Print an alphabetized list of names

LIBRARY “c:\TBSilver\TBLIBS\SortLib.TRC”    ! Use appropriate pathname

DIM names$(1)
PRINT “Input names (last name first), typing a comma”
PRINT “after each name except the last.”
MAT INPUT names$(?)

CALL SortS (names$())             ! Sort string array names$

FOR i = 1 to Ubound(names$())
PRINT names$(i)               ! Print sorted array, one name per line

NEXT i

END

At the CALL statement, True BASIC carries out the task defined by the specified subroutine. That task may
assign new values to the argument in the CALL statement as it does for the names$ array above. (The SortS
subroutine is described more fully below.)

Most of the sorting and searching subroutines are in the library file SortLib.TRC (saved in TBLIBS). The
LIBRARY statement must use the appropriate “pathname” format to indicate the location of the library file for
the computer you will use to run your program. 

SortLib.TRC includes subroutines for simply and quickly sorting, reversing, or searching the elements of both
numeric and string arrays. These simple sorts are very fast and require little memory as the sort is done “in place”
— the original array is replaced by the values of the sorted array.

75Arrays and Matrices



SortLib.TRC also includes subroutines for “pointer sorts” and customized “comparison sorts.” A pointer sort does
not change the original array, but instead creates an index array containing subscript pointers to the sorted val-
ues of the original array. Pointer sorts are helpful if it is important to keep the original order for ties or if you wish
to use the sorted order of one array to print values from other “parallel” arrays. 

A comparison sort lets you customize the way values will be sorted or sort values based on one or more specific
“key fields.” You may customize both simple and pointer sorts.

Simple Sorts and Searches
The simple sorting and searching subroutines in the SortLib.TRC library are as follows:

Simple Sorting and Searching Subroutines
——————————————————————————————————————
Subroutine Library Result
SortN(a()) SortLib Sorts numeric array a into ascending order
SortS(a$()) SortLib Sorts string array a$ into ascending order
ReverseN(a()) SortLib Reverses order of elements in numeric array a
ReverseS(a$()) SortLib Reverses order of elements in string array a$
SearchN(a(),n,i,f) SortLib Searches the sorted numeric array a for the value n;

if found, reports the subscript value as n and f as a
non-zero value

SearchS(a$(),s$,i,f) SortLib Searches the sorted string array a$ for the value s$; if found,
reports the subscript value as n and f as a non-zero value

——————————————————————————————————————

The SortN and SortS subroutines sort numeric and string arrays into ascending order. They arrange values
according to the standard meaning of True BASIC’s <= operator. Numeric values are sorted in ascending order by
value and strings are sorted according to code values for the standard character set; thus, uppercase characters
come before lowercase characters (see Appendix A for code values of the standard character set).

To use these subroutines, you must name SortLib.TRC in a LIBRARY statement (using the pathname format
appropriate for your computer) and invoke the subroutine with a CALL statement. Both of these subroutines
require one argument — a numeric array for the SortN subroutine or a string array for the SortS subroutine.
When the CALL statement is executed, the subroutine sorts the elements in the array passed as an argument.
The subroutine changes the contents of the array, returning an array with all of its elements sorted into ascend-
ing order. For example, the following program:

! Sort a list of scores

LIBRARY “SortLib.TRC” ! Use appropriate pathname

DIM scores(10)
DO WHILE MORE DATA

LET i = i + 1
READ scores(i)

LOOP
DATA 99.5, 87.5, 89, 93.25, 89, 75, 80

CALL SortN (scores()) ! Sort in ascending order
MAT PRINT scores ! Print the result
END

prints the following:
0               0               0               75              80 
87.5            89              89              93.25           99.5 

Notice that the SortN subroutine sorts the entire array. It keeps all tie values and includes zeroes for unassigned
values.

76 True BASIC Language System



The SortS subroutine works similarly for string arrays, merging in null strings for any unassigned values.
Remember that characters are sorted by their character-code value. Thus the program:

! Sort a list of phrases

LIBRARY “SortLib.TRC” ! Use appropriate pathname

DIM words$(10)
DO WHILE MORE DATA

LET i = i + 1
READ words$(i)

LOOP
MAT REDIM words$(i) ! Eliminate unassigned elements

DATA zebra, orangutan, Tiger
DATA apples, apple pie, tiger
DATA “widget, small”, “widget, large”

CALL SortS (words$()) ! Sort in ascending order
MAT PRINT words$ ! Print the result
END

produces the following output:
Tiger           apple tarts     apples          orangutan       tiger
widget, large   widget, small   zebra

Here, “Tiger” and “tiger” are not equivalent because uppercase and lowercase letters are different charac-
ters; and “Tiger” precedes all the lowercase words because the uppercase alphabet precedes lowercase letters
in the standard character code. Similarly “apple tarts” comes before “apples” because the space character
comes before letters in the standard character set. (If you wish to sort uppercase and lowercase letters as equiva-
lents you could create a second array with all uppercase or lowercase elements and sort that or use a comparison
sort as explained below.)

Notice that the above program eliminates the problem of null strings by redimensioning the array to eliminate
unassigned elements before sorting.

The SortN and SortS subroutines are very fast and, because they work “in place” in the original array, they use
very little memory beyond that already required by the array itself. They gain speed at the sake of complexity,
however. The additional sorting subroutines described in the rest of this chapter give you greater control over how
elements are sorted.

The SortN and SortS subroutines sort in ascending order only. You can easily sort in descending order, however, by
reversing the elements after a simple ascending sort. The ReverseN and ReverseS subroutines (also contained in
SortLib.TRC) reverse the order of the numeric or string array argument, respectively. For example, you could adapt
the numeric sort example above to print scores in reverse order by adding a call to the ReverseN subroutine:

! Sort a list of scores

LIBRARY “SortLib.TRC” ! Use appropriate pathname

DIM scores(10)
DO while more data

LET i = i + 1
READ scores(i)

LOOP
DATA 99.5, 87.5, 89, 93.25, 89, 75, 80

CALL SortN (scores()) ! Sort in ascending order
CALL ReverseN (scores()) ! Reverse the order
MAT PRINT scores ! Print the result
END

77Arrays and Matrices



This program prints the following:
99.5            93.25           89              89              87.5 
80              75              0               0               0 

Similarly, you could use the ReverseS subroutine with a sorted string array.

The SearchN and SearchS subroutines search sorted numeric or string arrays for a specified value. These sub-
routines take four arguments: the array to be searched, the value to search for, and two numeric variables that are
used to return the results of the search. For example:

LIBRARY “SortLib.TRC” ! Use appropriate pathname

DIM array(20)
FOR i = 1 to 20

LET array(i) = Int(100*Rnd) + 1  ! Create array of 20 random numbers
NEXT i
CALL SortN(array()) ! Sort random numbers in ascending order
DO

INPUT PROMPT “Enter a number from 1 to 100 (0 to quit): “: number
IF number <= 0 then EXIT DO
CALL SearchN (array(), number, index, found)
IF found <> 0 then

PRINT number; “found at element”; index
ELSE

PRINT number; “not found”
END IF

LOOP

END

The last argument, found in the example above, returns 0 if the search value (number above) is not found or a
non-zero value if it is found. The third argument, index above, returns the subscript of the element if the value
is found. If the value is not found, index equals the subscript where the value would have been stored in the
sorted array if it existed. 

The SearchS subroutine works the same way except that the array and search value must be strings. Note that
the array passed to the SearchN or SearchS subroutine must be sorted into ascending order. 

——————————————————————–––—————————————————
[ ! ] Note:  The SearchN and SearchS subroutines must be passed arrays that are already sorted into

ascending order because these subroutines use a binary search, which is generally much faster than an
element-by-element, or “sequential,” search. In a binary search, the subroutine looks first at the ele-
ment at the mid-point of the array. If that element does not equal the search value, the routine finds
out if it is greater than or less than the search value. The binary search then “ignores” the half of the
array that is too small or too large and looks at the mid-point of the remaining range of elements. This
process continues until the value is found or two consecutive elements are found to bracket the search
value. The values of the array must therefore be arranged in order from smallest to largest.

————————————————————–––———————————————————

Pointer Sorts
Though quick and efficient, the SortN and SortS subroutines lose the original order of elements in the array. This
could be a problem if, for example, you have separate arrays for names, addresses, and phone numbers. If you use
the SortS subroutine to change the order of elements in the array of names, you would lose the relationship
between the arrays. For such cases, you should use a “pointer sort.” The two basic pointer sorts are implemented
by the PSortN and PSortS subroutines for numeric and string arrays, respectively.

78 True BASIC Language System



——————————————————————————————————————
Subroutine Library Result
PSortN(a(),i()) SortLib Performs a “pointer sort” on values in numeric array a and

stores the sorted pointers, or indices, in the array i
PSortS(a$(),i()) SortLib Performs a “pointer sort” on values in string array a$ and

stores the sorted pointers, or indices, in the array i
——————————————————————————————————————

In a pointer sort, the original array is not changed. Instead, the subroutine sorts the values and creates an index
array whose elements are subscripts pointing to the sorted values of the first array. For example, here’s an adap-
tation of the earlier phrase-sorting program:

! Sort a list of phrases

LIBRARY “SortLib.TRC” ! Use appropriate pathname

DIM words$(10), index(10)
DO WHILE MORE DATA

LET i = i + 1
READ words$(i)

LOOP
MAT REDIM words$(i), index(i) ! Eliminate unassigned elements
DATA zebra, bananas, orangutan 
DATA apples, kiwis
CALL PSortS (words$(), index()) ! Sort in ascending order
PRINT “The words$ array contains the values:”
MAT PRINT words$ ! Print the original array
PRINT “The index array contains the values:”
MAT PRINT index ! Print the index array
PRINT “Thus, the sorted values of words$ are:”
FOR n = 1 to i

PRINT words$(index(n)), ! Print words$ elements in sorted order
NEXT n
PRINT

END

This gives the results:
The words$ array contains the values:
zebra           bananas         orangutan       apples          kiwis

The index array contains the values:
4               2               5               3               1 

Thus, the sorted values of words$ are:
apples          bananas         kiwis           orangutan       zebra

Note that the order of elements in words$ has not changed, but index gives the order in which the elements of
words$ should be read to produce a sorted list. The first word in the sorted list is element 4 or “apples”, the
second word is element 2 or “bananas”, and so on. As with simple sorts, pointer sorts sort the entire array.
Thus, if an array contains unassigned elements, the resulting index array will contain pointers for all the zeros or
null strings in the array.

Pointer sorts are especially useful if your program uses “parallel” arrays. If you have one array containing student
names and another containing their grades, you can do a pointer sort on grades and then print both arrays in
sorted order using the index array. The following example does just that, and uses the ReverseN subroutine to
sort the index array in descending order:

79Arrays and Matrices



! Sort students by grades

LIBRARY “SortLib.TRC” ! Use appropriate pathname

DIM names$(5), grades(5), index(5)
MAT READ names$
MAT READ grades
DATA Adams, Bell, Cosi, Du, Eisen
DATA 77,    94,   88,   80, 95

CALL PSortN (grades(), index()) ! Sort in ascending order
CALL ReverseN (index()) ! Reverse indices

FOR n = 1 to 5
PRINT names$(index(n)), grades(index(n))

NEXT n
PRINT

GET KEY k ! Wait for keystroke
END

This produces the following output:
Eisen            95 
Bell             94 
Cosi             88 
Du               80 
Adams            77 

Pointer sorts are also helpful if you need a stable sort, which keeps the original order in case of ties. This is not
important for simple sorts where the whole string is compared. But if you sort by just part of the data, as you can
do with comparison sorts, this may be important. 

Customized Sorts and Searches
The sorting routines you’ve seen so far all use the usual True BASIC <= operator to sort values into ascending
order, and they consider the entire value in making the comparison. Customized sorting and searching routines
let you sort or search on one or more key parts of the data or define exactly how to compare two values. Thus, you
could choose a sort that ignores the difference between uppercase and lowercase letters, or devise one that sorts
roman numerals in the correct order.

SortLib.TRC contains custom-sorting versions of all the sorting and searching subroutines introduced so far
(except the reversing routines, for which custom comparisons are not needed):

Customized Comparison Sorting Subroutines
———————————————————————————————–––———————

Subroutine Result
CSortN(a()) Sorts numeric array a in ascending order using 

customized comparison routine called CompareN
CSortS(a$()) Sorts string array a$ in ascending order using one 

or more special options
CSearchN(a(),n,i,f) Searches the sorted numeric array a for the value n

using a customized comparison routine called
CompareN; if found, reports the subscript value as i
and f as a non-zero value

CSearchS(a$(),s$,i,f) Searches the sorted string array a$ for the value s$
using one or more special options; if found, reports the
subscript  value as iand f as a non-zero value

80 True BASIC Language System



CPSortN(a(),i()) Performs a “pointer sort” on values in numeric array a
using a customized comparison routine called CompareN
and stores the sorted pointers, or indices, in the array i

CPSortS(a$(),i()) Performs a “pointer sort” on values in string array a$
using one or more special options to customize the sort, and 
stores the sorted pointers, or indices, in the array i

———————————————————–––———————–––————————————
First, let’s see how we can sort a string array ignoring case. Before calling the subroutine CSortS, we call the
subroutine Sort_IgnoreCase.

! Sort a list of phrases ignoring case

LIBRARY “SortLib.TRC”, “CompCase.TRC” ! Use appropriate path names
DIM words$(10)
DO while more data

LET i = i + 1
READ words$(i)

LOOP
MAT REDIM words$(i)
DATA zebra, ELEPHANTS, Tiger
DATA apples, tiger, Llama
DATA Widget, Oranges
CALL Sort_IgnoreCase ! Treat upper- and lowercase alike
CALL CSortS (words$()) ! Sort in order defined in CompareS
MAT PRINT words$ ! Print the result
END

This program prints the following:
apples          ELEPHANTS       Llama           Oranges         Tiger
tiger           Widget          zebra

Besides ignoring case, there are several other options. 

Special Customized Sorting Options
——————————————————————————————————————

Subroutine Result
CALL Sort_Off Remove all special string sorting options
CALL Sort_ObserveCase Do not ignore case (default)
CALL Sort_IgnoreCase Ignore distinction between upper- and lowercase
CALL Sort_NiceNumbers_on Use "intuitive" ordering for numbers within strings
CALL Sort_NiceNumbers_off Ignore numbers in strings (default)
CALL Sort_NoKey No key fields (default)
CALL Sort_OneKey (f1, t1) One key field
CALL Sort_TwoKeys (f1, t1, f2, t2) Two key fields

——————————————————————————————————————
As an example of a sort based on a key field, here’s a program that sorts strings based on area code and then last
names within area codes:

LIBRARY “SortLib.TRC” ! Use appropriate pathname

DIM phonelist$(4)
MAT READ phonelist$
DATA “Smith Rosario 802-543-1234”
DATA “Li Steven 617-123-1200”
DATA “Arndt J. K. 802-331-3333”
DATA “de Forbe Francis 205-256-2424”

CALL Sort_TwoKeys (20, 22, 1, 9)

CALL CSortS (phonelist$())

81Arrays and Matrices



FOR i = 1 to 4
PRINT phonelist$(i)

NEXT i

END

This produces the output:
de Forbe Francis 205-256-2424
Li Steven 617-123-1200
Arndt J. K. 802-331-3333
Smith Rosario 802-543-1234

As an example of sorting numbers "intuitively," imagine you have strings containing numbers, such as A1, A2, A3,
A10, B1, B2, B12, and so on. The SortS or PSortS subroutine would arrange these as:

A1     A10    A2     A3     B1     B12    B2

Calling the subroutine Sort_NiceNumbers_on before calling CSortS subroutine would sort them as follows,
putting the numeric text in proper numeric sequence:

A1     A2     A3     A10    B1     B2     B12

You may use customized comparisons with searches as well. Since the CSearchN and CSearchS subroutines
both use the binary search method, the data must first be sorted. For example, if you wish to search the phone list
in the example above by last name, you should first sort by the last-name field, as follows. 

LIBRARY “SortLib.TRC” ! Use appropriate pathname

DIM phonelist$(4)
MAT READ phonelist$
DATA “Smith Rosario 802-543-1234”
DATA “Li Steven 617-123-1200”
DATA “Arndt J. K. 802-331-3333”
DATA “de Forbe Francis 205-256-2424”

CALL Sort_IgnoreCase

CALL Sort_OneKey (1, 9)

CALL CSortS (phonelist$()) ! Sort using chars 1 through 9 only

INPUT PROMPT “Enter last name: “: find$

LET find$ = (find$ & "         ")[1:9] ! Make 9 characters long

CALL CSearchS (phonelist$, find$, index, found) ! Search with option
IF found <> 0 then

PRINT phonelist$(index)
ELSE

PRINT “Not found”
END IF

END

Observe that you must use the same customized options for the search phase as for the previous sort phase.

You can write your own customized comparison routines. Note that the sort and search subroutines whose names
begin with the letter "C" invoke a special comparison subroutine CompareN or CompareS, for numeric arrays and
string arrays, respectively. The CompareN and CompareS subroutines use the same three-parameter format:

CompareN (a,b,r)

or
CompareS (a$,b$,r)

82 True BASIC Language System



The first two parameters pass the two values to be compared — numeric or string — from the sorting routine to
the comparison routine. The third parameter must be a numeric variable that returns a value to indicate the sort
order, as follows:

r must return -1 if a should come before b, i.e., a < b

r must return 0 if a and b tie, i.e., a = b

r must return 1 if a should come after b, i.e., a > b

If you have special sorting requirements, you should examine the source code for the sorting
library, found in SortLib.tru. You can precede each line in CompareN or CompareS
with an exclamation point "!", which is the comment character for True BASIC. Then
simply write your own routine without exclamation points! Use the existing routines as
patterns. The routines CSortS, etc., are already set up to call a subroutine by the name
CompareS, etc.

83Arrays and Matrices



84 True BASIC Language System



CHAPTER

10
User-defined Functions
and Subroutines
True BASIC has three structures that let you break up a program into smaller units: user-defined functions, sub-
routines, and pictures. These structures make it easier to write and debug programs because you can build large
programs from small pieces. This chapter shows how to define and use your own functions and subroutines. Pic-
tures are for graphics only and are discussed in Chapter 13 “Graphics.” 

You’ve already seen many of the functions built into True BASIC in Chapter 8 “Built-in Functions.” However, you
may not always find a built-in function that calculates the value you need; you may wish to define your own func-
tions. Like a built-in function, a user-defined function always returns a single value of a specific type and is
unable to change the value of any arguments passed to it. You may use (or “invoke”) a function wherever you may
use an expression of the same type. Once the function has been evaluated, its return value is substituted at the
place it is invoked.

A subroutine is a block of statements that carries out one or more tasks. A subroutine does not return a value as
a function does, but it can return values by changing the values of arguments passed to it. You invoke a subrou-
tine with a CALL statement.

Within their definitions, functions and subroutines may invoke themselves. This is known as recursion.

Functions and subroutines may be part of your main program, in which case they are internal procedures and
they share all variables with the rest of the main program. Functions and subroutines may also be placed outside
the main program as external procedures whose variables are local or “sealed off” from the main program and
any other external procedures.

Defining Functions
——————————————–––—————————————————————————
[ ! ] Note: The keywords DEF and FUNCTION are synonymous throughout the True BASIC language

and may be used interchangeably. In the following discussion, the DEF keyword is used solely for the
sake of simplicity. You may use FUNCTION if you feel that it makes your programs easier to read and
maintain.

————————————————–––———————————————————————
You use either a single-line DEF statement or a more complex DEF structure to define your own functions. The
simple DEF statement:

DEF Sech(x) = 1 / Cosh(x)

defines the hyperbolic secant function. Once you have defined a function in your program, you may use it in any
appropriate expression, such as:

LET factor1 = Sech(-.123)

Each function has a name and may have parameters whose values you supply when you invoke the function. In
the example above, Sech is the name of the function and x is its one numeric parameter. When you invoke the
Sech function, you must supply a single numeric value as an argument. 

85



Before evaluating the function, True BASIC will assign the value of the argument to the variable used as the para-
meter. In the example above the function is invoked with Sech(-.123), where the value –.123 is the argument.
True BASIC assigns this value to the parameter variable x in the function definition. Thus, the expression
1/Cosh(x) is evaluated as 1/Cosh(-.123). The value of this expression becomes the return value of the
function and is substituted in place of the function invocation in the LET statement. Note that the value of the
argument is assigned to the parameter variable; functions cannot change the values of arguments passed to them.
———————————————————–––————————————————————
[ ! ] Note: When variable arguments are passed to a function, the values of those arguments are assigned

to the corresponding parameters within the function definition. True BASIC considers the parameters
in a function definition to be distinct from the arguments; that is, an argument and its matching para-
meter are different variables. Because they are different variables, changes to parameters within the
function definition have no effect on the values of their corresponding arguments. Thus, functions can-
not change the values of the arguments passed to them. This parameter passing mechanism is called
passing by value.

————————————————————–––———————————————————
The DEF statement restricts the definition of the function to a single line, which is fine for simple functions. Often,
however, more complex function definitions require looping or decision structures that cannot be expressed on a
single line, or they may simply be easier to create as a series of steps. For functions longer than a single line, you
use a DEF structure. For example:

DEF Gcd(a,b) ! Greatest common divisor
DO

LET r = Mod(a,b) ! Remainder in division
IF r = 0 then EXIT DO ! We are done
LET a = b ! Else iterate
LET b = r

LOOP
LET Gcd = b ! Value of the function

END DEF

Here Gcd is the name of the function, and a and b are the parameters. A DEF structure begins with a DEF state-
ment that names the function and its parameters and ends with an END DEF statement. A LET statement must
assign a value to the function name (Gcd) before the end of the definition. Once you’ve defined the function, you
may use Gcd with two numeric arguments as a numeric expression. For example:

PRINT Gcd(121,55)

will print the value 11. 

The rules for naming functions are the same as those for naming variables. However, you may not use the same
name for both a variable and a function. The return value of a function may be either a number or a string; for
string functions, the name must end with a dollar sign. Before you may use a function in a program, you must first
define it with a DEF statement or structure or you must name the function in a DECLARE DEF statement (see
the discussion of external functions later in this chapter).

Parameters may be numeric variables, string variables, or names of arrays. When you invoke a function, the argu-
ments you provide must match the parameters named in the DEF statement. True BASIC matches arguments
and parameters by the order in which they appear:

DEF   abcdef (x, z$, u)

↑ ↑ ↑
LET n = abcdef (3.2, “dog”, y)

Here the value 3.2 is assigned to x, “dog” is assigned to z$, and the value of y is assigned to u. The value of
abcdef is then computed according to its definition, and the answer is assigned to n. “Cat” would not be legal
as the last argument, since you cannot assign a string to the numeric variable u.

86 True BASIC Language System



You may also define functions without parameters. For example:
DEF Die = Int(6*Rnd) + 1 ! Simulate one die
LET dice2 = Die + Die ! Sum of two dice
END

You may exit from the middle of a DEF structure with an EXIT DEF statement. Take care that you assign a value
to the function before the exit, or the function will return the default value (0 or the null string).

Arrays as Parameters
Here’s an example of a function that uses an array as a parameter. It finds the largest value in a one-dimensional
numeric array:

DEF Max_element(a())
LET largest = a(Lbound(a))
FOR i = Lbound(a)+1 to Ubound(a)

IF a(i) > largest then LET largest = a(i)
NEXT i
LET Max_element = largest

END DEF

An array parameter is indicated by empty parentheses, or “bowlegs,” with commas to tell True BASIC how many
dimensions that array contains. The number of commas is always one less than the number of dimensions. Thus,
() represents a one-dimensional array, (,) a two-dimensional array, and (,,) a three-dimensional array. 

When the function is invoked, the use of bowlegs with the array argument is optional. Thus, either of the follow-
ing is legal:

PRINT “The highest score is”; Max_element(scores)

PRINT “The highest score is”; Max_element(scores())

as long as scores has been declared as a one-dimensional array in a DIM statement. It is the argument scores
that requires a DIM statement, not the parameter a(). Remember that the parameter will be assigned the value
of the argument. Therefore, the size of a will be adjusted to reflect the size of scores.
————————————————–––———————————————————————
[ ! ] Note: Since each parameter in a function definition is a separate copy of its associated argument,

arrays as function parameters are not particularly efficient. Each time you invoke a function containing
an array parameter, True BASIC must create a copy of the array passed as an argument. For large
arrays, this can require a lot of time and memory. If you need to pass arrays to a procedure, try to use a
SUB structure instead — SUB structures pass array parameters by a more efficient mechanism.

——————————————————–––—————————————————————
Recursive Functions
Within a function definition, the name of the function may normally occur only on the left side of the equal sign (=)
in a LET statement. That is why we used the temporary variable largest for the computations within
Max_element, assigning a value to the function name only at the end of the definition. An exception to this rule
is recursion, whereby a function may invoke itself. It is useful in many circumstances, but it is somewhat tricky
to master. If you are unfamiliar with recursive programming, you may want to find a book on programming tech-
niques or some other resource from which to learn the technique. 

One of the most common examples of a recursive function is the calculation of a factorial:
DEF Fact(n) ! Factorial function or n!

IF n = 0 then
LET Fact = 1

ELSE
LET Fact = n*Fact(n-1) ! Recursion

END IF
END DEF

87User-defined Functions and Subroutines



If you ask for Fact(7), the value of the function is 7*Fact(6), which invokes the same function to compute
Fact(6) and so on. Notice, however, that when the value of the parameter is 0, the function no longer invokes
itself, thus ending the “recursive chain” and allowing the previous invocations of the function to be completed in
reverse order.

Variables Within Function Definitions
The simplest way to use a function is to define it at the beginning of the program that will use it; in other words,
the function definition is “internal” to the main program. If you do this, however, you must be careful with the vari-
ables you use within the function definition. Look again at the Max_element function defined earlier in this
chapter:

DEF Max_element(a())
LET largest = a(Lbound(a))
FOR i = Lbound(a)+1 to Ubound(a)

IF a(i) > largest then LET largest = a(i)
NEXT i
LET Max_element = largest

END DEF

Notice that, besides finding the largest value in the array, Max_element changes the values of largest and i.
If the invoking program uses variables by the same name (and the Max_element definition is contained in that
program), the program’s variables are also changed — the variables are global to the program and the function
definition. Be careful how you use such a function. For instance, if you invoke the function inside a loop that starts
with the statement:

FOR i = 1 to 10

chaos will result. Or, if you had previously defined a variable named largest, its value would be changed when-
ever this function is invoked.

You can avoid this sort of problem in two ways. First, you could list largest and i in a LOCAL statement within
the DEF structure. This would force True BASIC to create separate variables named largest and i for each
invocation of the function, preventing any changes to these variables from affecting those outside the DEF struc-
ture. Or, you could define Max_element as an “external function” where variables are effectively “sealed off”
from the rest of the program. The LOCAL statement and external procedures are described later in this chapter.

Defining Subroutines
Functions are useful, but they’re not ideal for all situations. For even greater flexibility in organizing your pro-
grams, True BASIC lets you define subroutines in addition to functions. 

Subroutines, unlike functions, do not have a return value. This means that they cannot be invoked as part of an
expression; instead, subroutines are invoked with a CALL statement. As you will see below, subroutines also dif-
fer from functions in the mechanism used to pass parameters — subroutines may change the values of their argu-
ments. The differences between functions and subroutines make each type of structure better suited to certain
uses than the other.

In general, functions are most useful when you need to calculate and return a single string or numeric value, and
subroutines are most useful everywhere else. Subroutines help you organize your programs by packaging well-
defined tasks into discrete structures. This packaging of tasks makes it easy to reuse that code both within the cur-
rent program and in future projects. You need to define a subroutine only once but you may call it as many times
as necessary.

For example, programs frequently ask questions that require a “yes” or “no” answer. A good program would check
whether the answer really was legal and allow the user to type answers in upper or lower case. The following sub-
routine meets all of these needs, and can be quite useful:

SUB Yes_no(qu$, ans$) ! Get a “yes” or “no”
DO

88 True BASIC Language System



PRINT qu$; ! Ask the question
INPUT ans$ ! Get the answer
LET ans$ = Lcase$(ans$) ! All lc, easy to check
IF ans$ = “yes” or ans$ = “no” then EXIT DO    ! Ok
PRINT “Answer ‘yes’ or ‘no’” ! Else try again

LOOP
END SUB

You may invoke this subroutine as follows:
CALL Yes_no(“Shall I go on”, a$)
IF a$ = “no” then STOP

The SUB structure begins with a SUB statement that names the subroutine and any parameters, and it ends with
an END SUB statement. In the example above, Yes_no is the name of the subroutine and qu$ and ans$ are its
two string parameters. When you invoke the Yes_no subroutine with a CALL statement, you must supply a
string value as its first argument and a string variable as its second argument.

Let’s examine this distinction between the two arguments a bit further. The first parameter qu$ is an input
parameter, which means that the definition of Yes_no uses — but does not change — its value. Thus, if you want
the PRINT statement within Yes_no to print anything, you must specify a string value as the first argument
when you call the subroutine. Note that the input-parameter value may be supplied as a constant, expression, or
a variable; it’s the value that’s important .

The second parameter ans$ is not used until it has been given a value by the INPUT statement within the sub-
routine. Its value at invocation is inconsequential; however, its value upon completion of the subroutine contains
the user’s answer. Thus, ans$ is an output parameter. You must specify a variable for its argument, so the sub-
routine can change its value. When the value of the output parameter is changed the value of its argument vari-
able also changes. The terms input parameter and output parameter clarify how the parameter is used — whether
it requires a value or a variable as an argument. Note that a single parameter may act as both an input and an out-
put parameter, in which case the input value must be supplied as a variable and the value of that variable will be
changed by the subroutine.
———————–––————————————————————————————————
[ ! ] Note: When a variable argument is passed to a subroutine, the corresponding parameter is treated as

an equivalent name for the same variable. Because they are the same variable, changes to a parameter
within the subroutine definition will have an immediate and matching effect on the value of its corre-
sponding argument — if that argument is a variable. Thus, subroutines, unlike functions, can easily
change the values of the arguments passed to them. This mechanism of passing parameters is called
passing by reference.

———————————————–––————————————————————————
In the example above, the subroutine is invoked with the statement:

CALL Yes_no(“Shall I go on”, a$)

where the string constant “Shall I go on” is the first argument and the string variable a$ is the second argu-
ment. Before it executes the code in the SUB structure, True BASIC assigns the value of the string constant to the
parameter qu$ and associates the parameter ans$ with the variable a$. The subroutine prints a prompt using
the parameter qu$, and assigns the lowercase equivalent of the user’s response to the parameter ans$. Once it
reaches the END SUB statement, the program continues with the statement immediately following the CALL
statement. Since the parameter ans$ and the argument a$ are essentially different names for the same variable,
the lowercase value stored into ans$ within the subroutine is also the new value of a$.

While a subroutine can modify any variable that is used as an argument in the CALL statement, it cannot mod-
ify expressions used as arguments. Thus, arguments such as sum, name$, score(7), and titles$() may
be changed, but variables within expressions such as x+3, a$ & b$, and c$[2:4] cannot be changed. Remem-
ber that while x is a variable, (x) is an expression. Therefore, if you want to make sure that the value of an input

89User-defined Functions and Subroutines



variable is not changed, enclose it in parentheses. This trick allows you to pass parameters to a subroutine by
value rather than by reference.

You may exit from the middle of a subroutine with an EXIT SUB. In the Yes_no subroutine, you could use EXIT
SUB in place of EXIT DO.

Arrays as Parameters
As with functions, you may use arrays as parameters in subroutines. Here’s a subroutine that uses a numeric
array and numeric variable to accomplish the same thing as the earlier function example that finds the largest ele-
ment in an array:

SUB Largest (a(), value) ! Largest value in a list
LET b1 = Lbound(a) ! Find the bounds
LET b2 = Ubound(a)
LET value = a(b1) ! Assume first is largest
FOR i = b1+1 to b2 ! But compare to all others

IF a(i) > value then LET value = a(i)
NEXT i

END SUB

The same rules apply to specifying array parameters for subroutines as for functions (although the passing mech-
anism is distinctly different). Each array parameter must be followed by empty parentheses, or bowlegs. For
instance, a() defines a as a one-dimensional array, a(,) defines it as a two-dimensional array, and a(,,) as a
three-dimensional array. In the CALL statement, the parentheses are optional. Thus, either of the following is
legal:

CALL Largest (prices(), v)

CALL Largest (prices, v)

as long as prices has been previously declared as a one-dimensional array in a DIM statement. It is the argu-
ment prices that requires a DIM statement, not the parameter a.

It is more efficient to pass arrays to subroutines than to functions. Arrays are passed to functions by value; the
argument array must be copied to the parameter array, which takes time and storage space. With subroutines,
however, arrays are passed by reference. Argument and parameter array names are associated to refer to the
same array, hence the array is not duplicated. As with scalar variables, subroutines can change the values within
argument arrays.

Channel Numbers as Parameters
Subroutines may also use channel numbers as parameters (functions may not). For example:

SUB OpenFile (qu$, #1) ! Open a file
PRINT qu$; ! Prompt user
INPUT f$ ! Name of file
CLOSE #1 ! In case #1 open
OPEN #1: name f$

END SUB

CALL OpenFile(“Data file”, #3) ! Invoke it

The file opened as channel #1 within the subroutine is associated with channel #3 in the calling program. Chan-
nel numbers and their uses are described fully in Chapter 12 “Files for Data Input and Output.” 

Variables within Subroutine Definitions
As with functions, you must be careful with any non-parameter variables you use within subroutines that are
“internal” to (i.e., defined within) the main program. Look again at the Largest subroutine defined earlier in this
section:

90 True BASIC Language System



SUB Largest (a(), value) ! Largest value in a list
LET b1 = Lbound(a) ! Find the bounds
LET b2 = Ubound(a)
LET value = a(b1) ! Assume first is largest
FOR i = b1+1 to b2 ! But compare to all others

IF a(i) > value then LET value = a(i)
NEXT i

END SUB

Notice that, in addition to finding the largest value in the array, the definition of Largest changes the values
of b1, b2, and i. If the subroutine is part of the program that calls it, those variables are “global” — they are the
same as any variables with the same name in the main program. For instance, if you invoke the subroutine inside
a loop that starts with the statement:

FOR i = 1 to 10

chaos will result. Also, if you had previously defined a variable named b1 or b2, its value would be changed when-
ever this subroutine is invoked.

As with functions, you can avoid this problem in two ways. First, you could list b1, b2, and i in a LOCAL state-
ment within the SUB structure, forcing True BASIC to create separate variables named b1, b2, and i for each
invocation of the subroutine. Or, you could define Largest as an external subroutine where variables are effec-
tively “sealed off” from the rest of the program. The LOCAL statement and external procedures are described
later in this chapter.

Functions vs. Subroutines
While functions and subroutines play similar roles, there are some fundamental differences. 

A function computes a value and that value is used in an expression. Arguments are passed to functions by value
— the argument’s value is copied to the parameter and the function cannot change the value of the argument itself. 

Subroutines carry out tasks and they can change the value of arguments passed to them. Arguments are passed
to subroutines by reference; thus an argument variable is essentially the same variable as its corresponding para-
meter variable. For instance, in the example above showing an array parameter for a subroutine, Largest sends
the answer back via the argument that corresponds to the parameter value. 

The Gcd function (defined earlier in this chapter) illustrates the fact that a function does not change the value of
its arguments. Suppose that it is invoked as follows:

DEF Gcd(a,b) ! Greatest common divisor
DO

LET r = Mod(a,b) ! Remainder in division
IF r = 0 then EXIT DO ! We are done
LET a = b ! Else iterate
LET b = r

LOOP
LET Gcd = b ! Value of the function

END DEF

LET a = 121
LET b = 55
PRINT Gcd(a,b); “is the greatest common divisor of”; a; “and”; b
END

It prints the following:
11 is the greatest common divisor of 121 and 55 

The arguments a and b still have their original values, even though the definition of Gcd manipulates them as
parameters. True BASIC assures this by copying the values into temporary variables.

91User-defined Functions and Subroutines



Generally, if you want to compute a single value, a function is the best choice. This also ensures that the values of
the arguments of the function do not get changed because they are passed by value. 

Using array parameters for functions may be wasteful, however, since copying a large array takes a lot of time and
space. Although the function Max_element and subroutine Largest accomplish the same thing, the subroutine
Largest is probably the better choice. In the subroutine — which passes arguments by reference — the array is not
copied. Instead, the argument and parameter variables are associated so that they refer to the same original array.

Subroutines provide greater flexibility than functions. Subroutines can carry out a number of tasks and change
the values of any number of variables passed to them. You may change any function into a subroutine simply by
adding its value as an extra parameter. But the reverse is not true, as the following routine shows:

SUB NextItem (old$, delim$, new$) ! Find next item
LET p = Cpos(old$, delim$) ! Next delimiter
IF p=0 then LET p = Len(old$) + 1
LET new$ = old$[1:p-1] ! Next item
LET old$ = Ltrim$(old$[p+1:1000]) ! Remove from old$

END SUB

This subroutine identifies items that are separated by delimiters. If delim$ is given the value “ ,;” then items
may be separated by spaces, commas, or semicolons. This routine not only finds new$ but also modifies old$. A func-
tion could not do this, since functions return only a single value and cannot change the values of their parameters.

As stated earlier, you may exit from the middle of either a function or a subroutine using EXIT DEF or EXIT
SUB. However, if you use EXIT DEF, take care that you assign a value to the function before the exit, or the func-
tion will return the default value (0 or the null string).

Internal and External Procedures: Global and Local Variables
True BASIC programs may consist of one or more program units, the most important of which is the main pro-
gram. The main program includes the entire program up to and including the END statement. Every True BASIC
program must contain a main program. Thus, when a program consists of only one program unit, that program unit
must be the main program (which is to say that it must end with the END statement).
A True BASIC program may use additional program units in the form of external procedures or modules. This sec-
tion discusses external procedures; modules are discussed in Chapter 11 “Libraries and Modules.”
A procedure is a defined function, subroutine, or picture (pictures are discussed in Chapter 13 “Graphics”). An
external procedure is not part of another program unit. You may define external procedures in the same file as
the main program but after the END statement, or in separate files called libraries (see the next chapter). Each
external procedure is a separate program unit.
Procedures that are defined within another program unit (modules excepted) are internal procedures. You may
define internal procedures within the main program before the END statement or within external procedures.
Each internal procedure is considered part of the program unit in which it is defined. Thus, internal procedures
are not separate program units.
You define internal and external procedures in exactly the same way, you invoke them in the same manner, and
you use arguments and parameters in the same way to communicate with them. It is their position in relation to
other program units that determines whether they are internal or external. There is one important distinction
between them, however: variables that are not used as parameters are treated very differently in external and
internal procedures. Also, external functions must be named in DECLARE DEF statements within the calling
program unit (see the next section on “Internal and External Functions”).
Internal procedures share all variables that are not listed as parameters with the program unit in which they are
defined. And since internal procedures may be invoked only within the same program unit in which they are
defined, we say that non-parameter variables in internal procedures are global variables, because they are
shared throughout the scope of that program unit.

92 True BASIC Language System



Consider, for example, the following program, in which AddressCode is an internal subroutine defined before
the END statement of the main program:

! Create address codes for mailing labels
DIM fnames$(3), lnames$(3)
MAT READ fnames$, lnames$
DATA Frank, Peter, James
DATA Hardy, Wimsey, Qwilleran

FOR i = 1 to 3
LET first$ = fnames$(i)
LET last$ = lnames$(i)
CALL AddressCode(fnames$(i),lnames$(i),code$)
PRINT “The address code for “; first$; “ “; last$; “ is “; code$

NEXT i

SUB AddressCode(f$,l$,c$)
LET last$ = Ucase$(l$[1:4])
LET first$ = Ucase$(f$[1:3])
LET c$ = last$ & first$

END SUB

END

When this program is run, it gives the following results — which are probably not what the programmer intended!
The address code for FRA HARD is HARDFRA
The address code for PET WIMS is WIMSPET
The address code for JAM QWIL is QWILJAM

What happened? The first time through the FOR loop, the program assigns “Frank” to first$ and “Hardy”
to last$. It then calls the AddressCode subroutine, passing the first elements in the two arrays to f$ and l$,
and associating the argument code$with c$ to receive the address code. When the subroutine ends, the PRINT
statement uses the values of first$, last$, and code$. But why doesn’t it print “Frank” and “Hardy” for
first$ and last$?
The problem is that the subroutine uses the same variable names first$ and last$ and it changes the values
of those variables. Because the subroutine is internal to the main program those variables are shared throughout
the program unit. Hence, the PRINT statement, which occurs after the call to the subroutine, uses the changed
values for first$ and last$.
Here’s the program reorganized so that AddressCode is an external subroutine, stored after the END statement
of the main program:

! Create address codes for mailing labels
DIM fnames$(3), lnames$(3)
MAT READ fnames$, lnames$
DATA Frank, Peter, James
DATA Hardy, Wimsey, Qwilleran

FOR i = 1 to 3
LET first$ = fnames$(i)
LET last$ = lnames$(i)
CALL AddressCode(fnames$(i),lnames$(i),code$)
PRINT “The address code for “; first$; “ “; last$; “ is “; code$

NEXT i

END

SUB AddressCode(f$,l$,c$)
LET last$ = Ucase$(l$[1:4])
LET first$ = Ucase$(f$[1:3])
LET c$ = last$ & first$

END SUB

93User-defined Functions and Subroutines



Now the program gives the intended output as follows:
The address code for Frank Hardy is HARDFRA
The address code for Peter Wimsey is WIMSPET
The address code for James Qwilleran is QWILJAM

Even though the subroutine uses the same variable names, any changes to those variables do not affect the vari-
ables in the main program. Hence, first$ and last$ retain the values they had before the CALL statement.

This works because external procedures do not treat variables other than parameters in the same way as do inter-
nal procedures. All non-parameter variables in external procedures are distinct from those in the program unit
that invokes the procedure — even if they have the same name! An external procedure’s variables are created
when the procedure is invoked and destroyed when it is terminated. We say that non-parameter variables in exter-
nal procedures are local variables, because they are available only within the procedure that uses them — they
cannot affect variables in the calling program unit

The next two sections give additional examples of internal and external functions and subroutines and discuss
some important practical issues related to using them.

Internal and External Functions
Just as you must define all internal functions before you can use them, you must name all external functions
before you can use them. You don’t need to include parameters in the DECLARE DEF statement; you list only the
names of the functions. You must always define or declare a function before you can use it, so that True BASIC will
know that its name refers to a function and not a variable or array. This is illustrated in the third program exam-
ple below.
As noted in the previous section, you must be aware of what variables you use when you write internal procedures,
regardless of whether the procedure is a function or a subroutine. As another less obvious example, consider the
following internal function that reverses the order of characters in a string:

DEF Reverse$(s$) ! Reverse of string
LET x$ = “” ! Empty string to start
FOR i = 1 to Len(s$) ! A character at a time

LET x$ = s$[i:i] & x$ ! Add in reverse order
NEXT i
LET Reverse$ = x$ ! Value of function

END DEF

PRINT Reverse$ (“Hello there!”) 
GET KEY k                    ! Hold output until a key is pressed
END

The Reverse$ function in this program correctly returns the following to the PRINT statement:
!ereht olleH

But look at what happens if you use the Reverse$ function as follows to reverse four strings supplied by the user:
DEF Reverse$(s$) ! Reverse of string

LET x$ = “” ! Empty string to start
FOR i = 1 to Len(s$) ! A character at a time

LET x$ = s$[i:i] & x$ ! Add in reverse order
NEXT i
LET Reverse$ = x$ ! Value of function

END DEF

FOR i = 1 to 4
LINE INPUT PROMPT “Enter a string: “: string$
PRINT Reverse$(string$)

NEXT i
PRINT “All done!”
END

94 True BASIC Language System



Here’s a sample run:
Enter a string: Hello.
.olleH
All done!

What happened? The program is supposed to ask for four strings. The problem is that the Reverse$ function uses
two variables that are not parameters: x$ and i. This is a dangerous situation, since either variable might be used by
some other part of the program — and indeed the variable i is used by the main program as well. 

When the program begins, True BASIC creates the function definition (but doesn’t execute it) and then begins
with the FOR loop that uses the function to reverse four strings. This works fine the first time through the loop
(where i equals 1). The program gets a string from the user and invokes the Reverse$ function to print that
string backwards. The function works properly but notice what it does to i. When Reverse$ finishes it has
changed the value of i to the length of the string argument plus 1 (or in this example 7). (It has also changed the
value of x$ but x$ isn’t used anywhere else in the program.) Thus, when True BASIC executes the NEXTstate-
ment after the PRINT statement, it increments i to 8 so the main FOR loop ends. The program prints the final
statement and stops. 

Now let’s look at this same program rewritten with Reverse$ as an external procedure:
DECLARE DEF Reverse$

FOR i = 1 to 4
LINE INPUT PROMPT “Enter a string: “: string$
PRINT Reverse$(string$)

NEXT i
PRINT “All done!”
END

DEF Reverse$(s$) ! Reverse of string
LET x$ = “” ! Empty string to start
FOR i = 1 to Len(s$) ! A character at a time

LET x$ = s$[i:i] & x$ ! Add in reverse order
NEXT i
LET Reverse$ = x$ ! Value of function

END DEF

We did just two things to make this change. We moved the function definition to follow the END statement of the main
program (we could have moved it to a separate file). And we added the DECLARE DEF statement at the beginning of
the main program to tell True BASIC that Reverse$ is a function that is defined elsewhere. 

When you run the revised version of the program, it works as expected:
Enter a string: Hello.
.olleH
Enter a string: Able was I
I saw elbA
Enter a string: ere
ere
Enter a string: I saw Elba!
!ablE was I
All done!

When Reverse$ is an external function, all variables used in the definition are local to that definition only. The
function’s variables are totally separate from those in the rest of the program, even if they happen to have the same
names. The only information shared with the main program is the string argument passed to the function’s para-
meter and the string value returned by the function.

95User-defined Functions and Subroutines



Internal and External Subroutines
As you’ve seen, all variables in an internal subroutine are shared with the rest of the program. Variables in an
external subroutine are local to that subroutine; the only shared values are those passed between arguments and
parameters. 

To create an external subroutine, you simply place it after the END statement or in a separate file. There is no
equivalent to the DECLARE DEF statement. Because you must invoke a subroutine with a CALL statement, it
is always clear to True BASIC that you are referring to a subroutine  and not a variable or array. 

Although you can use global variables to share information between your program and internal subroutines, we
recommend that you use parameters to clearly indicate information passed to and from your subroutines. For
example, the following program uses an internal subroutine to get an answer from the user, check it for correct-
ness, and respond appropriately. Although it uses no parameters, it works because all variables are shared with
the rest of the program:

!State quiz

DIM questions$(10), answers$(10)
LET count, correct = 0
DO WHILE MORE DATA

LET count = count + 1
READ questions$(count), answers$(count)

LOOP

FOR i = 1 to count
DO

PRINT questions$(i)
CALL Get_answer

LOOP UNTIL correct = 1
NEXT i

SUB Get_answer
INPUT ans$
IF Lcase$(ans$) = answers$(i) then

PRINT “Correct!”
LET correct = 1

ELSE
PRINT “Wrong, try again...”
LET correct = 0

END IF
END SUB

DATA “What is the 50th state”, hawaii
DATA “What is the largest state”, alaska
DATA “What state has the nickname ‘Old Dominion’”, virginia

END

There are two potential problems with this program, however. The subroutine would not work if you later decide
to make it an external procedure that can be shared with other programs. Also, if the above statements were part
of a lengthier program, it might not be clear where the program sets the value for correct — used as the exit
condition for the DO loop.

You are generally better off using parameters for any values you need to share between the program and the sub-
routine. For example, you could rewrite Get_answer to use two parameters — a string variable and a numeric
variable. Notice that the string argument supplied in the CALL statement is an element of the string array
answers$; a single element in an array is treated as a single variable.

Consider the following variation:

96 True BASIC Language System



...
FOR i = 1 to count

DO
PRINT questions$(i)
CALL Get_answer(answers$(i), correct)

LOOP UNTIL correct = 1
NEXT i

SUB Get_answer(a$,c)
INPUT ans$
IF Lcase$(ans$) = a$ then

PRINT “Correct!”
LET c = 1

ELSE
PRINT “Wrong, try again...”
LET c = 0

END IF
END SUB
...

This version of the subroutine will now work equally well as an external subroutine. Also, it is clear from reading
the program code which values are shared with the subroutine. The first argument supplies the correct answer to
the subroutine. After it carries out its tasks, the subroutine passes back an appropriate value to the argument
correct.

Advantages and Disadvantages of External Procedures
When you use external procedures, you don’t have to worry about duplicating variable names. This is particularly
important if you wrote a routine a long time ago and have forgotten the names used within it, or if someone else wrote
it. To use an external procedure you need to know: (1) its name, (2) what kind of arguments it takes, and (3) what it
does. You do not need to know how it is programmed or what variables are used.
You may store external procedures in separate “library files” (see the next chapter). You can therefore use the
same procedure from any number of programs by referring to the library file. Thus, you need not copy or rewrite
commonly used code into each of your programs. 
The price for this protection is that the values of local variables are lost when an external function or subroutine
terminates and all local channels are closed. As a consequence, such external procedures cannot ‘remember’ what
they did the last time they were called. The next chapter describes “modules” which give you much greater control
over the scope of variables, letting you create procedures that can remember the values of local variables and
define items available to more than one program unit.

The LOCAL Statement
The LOCAL statement serves two purposes. You may use it to indicate variables or arrays that are to be local to
an internal procedure and not available outside that procedure. You may also use it in combination with an
OPTION TYPO statement to catch misspelled variable names.

The LOCAL statement is helpful in internal procedures when you want to keep variables separate from the rest
of the program. For example, in the internal subroutine:

SUB Xyz
LOCAL i

FOR i = 1 to 10
LET sum = sum + i

NEXT i
END SUB

97User-defined Functions and Subroutines



the variable i is local, and hence considered different from i in the rest of the main program. In effect, i is treated
as if Xyzwere an external routine, yet sum is available to the main program. Clearly this option is useful for assur-
ing that a temporary variable like i does not conflict with one in the rest of the program.

You may also list arrays — with their dimensions — in a LOCAL statement. Because you must give the array
dimensions, the LOCAL statement takes the place of a DIM statement for those arrays.

An OPTION TYPO statement tells True BASIC to alert you if it finds an incorrect variable name. You must
declare all variables that first appear in your program or program unit after the OPTION TYPO statement. True
BASIC uses the declared names as a “dictionary” of acceptable names; it also accepts any variable names used
before the OPTION TYPO. If True BASIC encounters any other variables, such as a misspelled name, an error
occurs. For example, if you attempt to run a program that begins as follows:

OPTION TYPO
DIM grades(10)                  !  or LOCAL grades (10)
LOCAL name$, sum, average

INPUT PROMPT “Student’s name: “ : names$
PRINT “Enter grades separated by commas.”
MAT INPUT grades
...

True BASIC will halt at the misspelled names$ variable on the INPUT PROMPT statement and print the mes-
sage “Unknown variable.”
For this to work best, you should place the OPTION TYPO statement early in your program unit and then declare
all your variables. You declare variables with LOCAL statements, arrays with LOCAL or DIM statements, and
parameters by placing them in the SUB, DEF, FUNCTION, or PICTURE statements defining procedures (for
information on picture procedures see Chapter 13 “Graphics”). You may also declare variables using the PUBLIC,
SHARE, and DECLARE PUBLIC statements described in the next chapter.
You may use the OPTION TYPO statement in any program unit or module header (see the next chapter). Once
used, it applies to all the variables that first appear after the OPTION TYPO statement, and it remains in effect
until the end of the file that contains it. Note that OPTION TYPO is technically not an executable statement —
it is used only when True BASIC compiles the program. For this reason, its effects are related to its position in the
file, not to its position in the flow of control. Thus, when the OPTION TYPO statement appears in an external
procedure stored after the END statement of the main program, it applies only to the remainder of that procedure
and any other procedures that are stored after it in the file. It does not apply to any portion of the file that precedes
it — including those portions of the main program that follow the invocation of the procedure containing the
OPTION TYPO statement.

98 True BASIC Language System



CHAPTER

11
Libraries and Modules

The previous chapter shows how procedures break a program into separate tasks, and evaluates the differences
between functions and subroutines and between internal and external procedures. In addition, the previous chap-
ter explains the distinctions between local and global variables. To fully understand the concepts presented in this
chapter, you should be familiar with all the concepts presented in the previous chapter.

This chapter explains how to further organize your programs using special files called libraries and also how to
gain very specific control over the scope of variables and/or procedures using specialized structures called mod-
ules. Modules allow you to collect several external procedures into a single program unit and gain specific control
over the scope of each and every variable, array, channel number, and/or procedure that they contain. Libraries
let you collect several external procedures and/or modules together in a single file that you can then access from
any number of programs and/or other libraries.

Libraries
You may place external procedures and modules after the END statement of your main program, but you’ll usu-
ally find it more convenient to store them in one or more separate files or libraries. A library is a file that contains
any number of external procedures (functions, subroutines, or pictures) or modules, but no main program. 

Any of your programs can use the procedures and modules in a library without having to duplicate any code. And
you can compile libraries separately from the main program. Even your uncompiled programs can use compiled
versions of libraries, thus reducing the time it takes your program to begin running by decreasing the amount of
code that must be compiled. (See “The True BASIC Environment” chapter in the Introduction for information on
compiling programs and libraries.)

Each library file must begin with an EXTERNAL statement as its first non-comment line. The EXTERNAL
statement tells True BASIC not to look for a main program in the current file, allowing the library to be compiled
separately from the main program file. Because no main programs are allowed, a library may not contain an END
statement. 

Here’s an example of a simple library that contains a function and a subroutine that might be useful for various
games of chance:

! Making random choices

EXTERNAL

SUB RollDice (sum_dice, num_dice) ! Roll any number of dice
LET sum_dice = 0
FOR i = 1 to num_dice

LET roll = Int(6*Rnd + 1)
LET sum_dice = sum_dice + roll

NEXT i
END SUB

DEF Coin$ ! Toss a coin
IF Rnd < .5 then

LET Coin$ = “heads”

99



ELSE
LET Coin$ = “tails”

END IF
END DEF

You can use a library simply by naming the file that contains it in a LIBRARY statement. For instance, if a compiled
version of the above library is saved in a file named CHANCLIB.TRC (in the currently active directory or folder), you
could use any of its procedures by naming it in a LIBRARY statement, as in the following program:

! A game of luck and skill

LIBRARY “ChancLib.TRC” ! Access the library file
DECLARE DEF Coin$ ! Declare a library function

RANDOMIZE

INPUT PROMPT “Choose heads or tails to see who goes first: “ : c$
IF c$ = Coin$ then ! Toss a coin

LET turn = 1 ! User goes first
ELSE

LET turn = -1 ! Computer goes first
END IF

CALL RollDice (dice,4) ! Roll 4 dice
...

Notice that functions defined in a library are like all other external functions — you  must declare them in a
DECLARE DEF statement before you can use them. The LIBRARY statement merely tells True BASIC where
to look for any external procedures not defined within the main program file. You still need a DECLARE DEF
statement to inform True BASIC that Coin$ is a defined function rather than a variable.

The LIBRARY statement tells True BASIC where to look for external procedures by naming the file that contains
them. You must give the complete file name, including any extensions, and you must provide enough information
to allow True BASIC to locate the file. If you specify a simple file name, True BASIC assumes that the library file
is in the current directory (or folder). If the library file is in another directory, then you must provide a valid path
to the directory containing the file as part of the file name. That path name may start from the current directory
or from the root level of your current disk or a specified disk. For a summary of the rules for defining path names
and file names under various operating systems, see the introductory chapter on “The True BASIC Environment.”
—————————————————–––——————————————————————
[ ! ] Note: The rules for path names and file names vary between different operating systems. In addition,

the paths to specific files can change when you move between computers running the same operating
system, or even at different times on the same computer. Therefore, you may need to update a pro-
gram’s LIBRARY statements when the program’s environment changes.

——————————————————–––—————————————————————
You may list several library files in a single LIBRARY statement:

LIBRARY “ChancLib.TRC”, “GamesLib.TRC”, “Finance.TRC”

If the libraries happen to contain two or more routines with the same name, True BASIC will use the first routine
it finds, examining libraries in the order given in the LIBRARY statement. 

You may name a library file more than once, and you may place LIBRARY statements in external procedures. In
fact, it is sometimes best to include a LIBRARY statement in every procedure that calls another external proce-
dure (even if you are likely to have named the needed library elsewhere). The reason lies in the way True BASIC
searches libraries for procedures: it searches libraries in the order named for procedures it “knows” are needed; if
one of those procedures then calls another, True BASIC does not “back track” to search earlier libraries. Thus you
should name libraries containing higher-level procedures first, or put an appropriate LIBRARY statement in the
higher procedure itself. Keep in mind, however, that unless all libraries are always kept in the same directory, you

100 True BASIC Language System



must update LIBRARY statements if the directory structure containing the files changes. For complex, portable
programs, it may be safest to create bound versions. (Bound programs are compiled with all the necessary libraries
and run-time resources; see “The True BASIC Environment” in the Introduction for information on binding pro-
grams.)

The OPTION TYPO statement may help prevent typographic errors within libraries as well as the main pro-
gram. If you wish to use OPTION TYPO for external procedures in library files, you should include the statement
at the beginning of the first procedure to which you wish it to apply. Since it is non-executable and its position in
the file determines its effect, the OPTION TYPO statement will then apply to the procedure that contains it and
all those that follow it in the library, forcing variables and arrays used within those procedures to be pre-declared
in a LOCAL, DIM, SHARE, PUBLIC, or DECLARE statement (see the following section on modules).

Modules
A module is a structure that lets you combine several external procedures into a single program unit and specif-
ically control the availability of those procedures and their variables. 

We’ll look first at the special properties that make modules particularly useful and then examine how the MOD-
ULE structure defines modules. The next section gives several examples of modules to help you further under-
stand their structure and usage.

A module can “own” information in the form of shared variables, arrays, and channel numbers. Such shared items
are available throughout the module — they need not be explicitly passed as parameters. Since shared items are
“static,” they retain their values between invocations of the procedure. Thus, if a procedure sets the value of a
shared item, that item will have that value the next time the procedure is invoked (provided, of course, that
another procedure in the module hasn’t changed the item’s value in the interim). Shared items are not available
to the main program, other modules, or external procedures outside the module — they are “hidden” from program
units outside the module.

In addition to the shared items available to procedures within the module, a module may make some items pub-
lic so that any other program unit, such as the main program or other modules, may use them. Within the mod-
ule that defines them, public items have the same properties as shared items, but they are also available to any
other program unit that declares them.

Usually, the external procedures within a module are publicly available to any program unit outside the module.
However, modules also let you designate some procedures as private so that their use is limited to other proce-
dures in the module. Such procedures are “hidden” from other program units.

One final special property of modules is the initialization segment. An initialization segment is a series of state-
ments preceding the first procedure definition in a module. Each of these statements will be executed in sequence
during the initialization of that module, which takes place before the main program is executed.

A module is defined by a MODULE structure with the following format:
MODULE ModName

(module header statements)
(module initialization statements)
(procedures of the module)

END MODULE

where ModName is the name given to the module. This name is for your convenience and is used by True BASIC
only for error messages.

Module Header Statements
Each module starts with a module header, which is a series of statements that define the nature of various variables,
arrays, channel numbers, and procedures used within the module. The module header may consist of SHARE state-
ments, PUBLIC statements, PRIVATE statements, and any of the DECLARE or OPTION statements.

101Libraries and Modules



SHARE statements define the variables, arrays, and channel numbers that will be available to all procedures
within the module but not to program units outside the module. Shared items are static and therefore retain their
values until the program ends. Likewise, shared channel numbers remain open (once they have been opened) until
they are specifically closed or the program ends.
PUBLIC statements define the variables and arrays that will be available to program units outside the module.
Of course, public items are also available to all the procedures within the module. Like shared items, public items
are static and retain their values until the program ends.
Notice that channel numbers may only be shared, they may not be made public. Also note that arrays that appear
in a PUBLIC or SHARE statement must be dimensioned by that statement — a DIM statement is neither
required nor allowed for an array defined in a PUBLIC or SHARE statement.
PRIVATE statements specify certain procedures of the module that may not be accessed from outside the mod-
ule. You could therefore use PRIVATE statements to restrict access to “dangerous” procedures that could destroy
the module’s data structures. PRIVATE statements also let you use the name of the routine for other purposes
outside the module. Thus, if you have a private subroutine called Sum in the module, you may use sum as a vari-
able or procedure name in the main program. If you declare a function in a PRIVATE statement, you don’t need
a DECLARE DEF statement in the same module header.
A DECLARE DEF statement in a module header makes the functions it names available to all procedures in the
module. However, you don’t need a DECLARE DEF statement in the module header for functions that will be
used only from other program units, as the other program unit must have a DECLARE DEF statement for that
function.
A DECLARE PUBLIC statement in a module header will make public items defined elsewhere in the program
available throughout the current module. When a DECLARE PUBLIC statement lists a public array, the array
name must be followed by appropriate bowlegs (with commas for arrays or two or more dimensions) to inform True
BASIC how many dimensions that array contains. Public items defined in PUBLIC statements need not be listed
in DECLARE PUBLIC statements within the same module header.
——————————————————————–––—————————————————
[ ! ] Note: Any program unit that uses public items defined as public elsewhere in the program must have

a corresponding DECLARE PUBLIC statement listing those items. While PUBLIC and DECLARE
PUBLIC statements may appear in any program unit, a single item may appear in only one PUBLIC
statement per program. However, that single item may be specified by any number of DECLARE
PUBLIC statements throughout the program.

————————————————————–––———————————————————
While other DECLARE statements (see Chapter 18 “Statements and Built-in Functions and Subroutines”) may
also appear in a module header, there is little point since they have no effect.

Module headers may also contain the various OPTION statements, such as OPTION TYPO. However, since
none of the OPTION statements is executable, they all affect the module in terms of their position within the file
itself. That is, an OPTION statement in a module header will apply to all lines remaining in the file (both in that
module and any other modules or procedures that follow it), regardless of the order in which procedures are actu-
ally executed.
Here is the beginning of a module that illustrates most of these header statements:

MODULE MyMod
PUBLIC princ, int_rate, values(2,100) ! Global variables & arrays
SHARE mo_rate, mo_prin, mo_sum ! Shared variables & arrays
SHARE temp(1,1), f
SHARE #1, #2 ! Shared channels
DECLARE DEF Daily ! Global & shared function
PRIVATE Sum ! Private procedure
DECLARE PUBLIC account_no, personal() ! Public variable & array

!    defined elsewhere
...

102 True BASIC Language System



Module Initialization
After the module header and before the procedures of the module, you may include statements that “initialize” the
module. This initialization segment may assign values to variables, open channels, or set certain conditions. In
fact, the initialization segment may even invoke procedures in the module. True BASIC executes these initializa-
tion statements before it executes the main program.

Typically, you would assign initial values to public and shared variables. These variables would then have the
assigned values when the main program begins. It does not make sense to initialize any other variables, arrays, or
channels, as they are local to the initialization segment and their values are lost when initialization is completed.
————————————–––———————————————————————————
[ ! ] Note: When a module is stored in a library file, the statements in its initialization segment will be

executed only if that module is accessed by the program; simply listing the library in a LIBRARY
statement does not initialize the modules in that library. Modules are accessed when one of their proce-
dures is invoked or when a public variable that they define is declared. When more than one module is
defined within a single library, they are initialized in the order in which they appear in the file, but
each module will be initialized only if it used in some way by the program. Modules located in the same
file as the main program are initialized regardless of whether or not they are accessed.

———————————————————–––————————————————————
As an example, here’s the beginning of a module showing the module header and initialization segment. 

MODULE Cards
SHARE card(0 to 51), n               ! Module header
SHARE val$(0 to 12), suit$(0 to 3)
PRIVATE Decipher

MAT READ val$, suit$                 ! Initialization segment
DATA two, three, four, five, six, seven, eight
DATA nine, ten, jack, queen, king, ace
DATA clubs, diamonds, hearts, spades

RANDOMIZE
CALL Shuffle
...

The next section shows the complete Cardsmodule plus three other simple, but complete, modules and how they
might be used.

Using Libraries and Modules
You may use any procedure defined in a module just as you would use any external procedure, provided that the
module has not listed the procedure in a PRIVATE statement. If the module that contains the procedure is in a
library file, then the program unit that uses it must have an appropriate LIBRARY statement. If the procedure
is a user-defined function, you must also have a DECLARE DEF statement in the program unit that will use the
procedure.
To access items defined as public in a module, a program unit must name those items in a DECLARE PUBLIC
statement. Of course, if the module is in a library, the program unit must also have access to the library. Also,
remember that public arrays listed in a DECLARE PUBLIC statement must include appropriate bowlegs (with
commas for arrays or two or more dimensions) to inform True BASIC how many dimensions that array contains.
To gain a better understanding of modules and their use, consider the following examples.

Defining and Initializing Public Information
The following module exists simply to define some public items and initialize two of them:

103Libraries and Modules



MODULE Common
PUBLIC first, sum, p(2,50) ! Global variables
LET first = 1 ! Initialize
LET sum = 0

END MODULE

This module defines the variables first and sum and the array p as public and initializes first and sum. Any
program unit with access to this module may then include a statement:

DECLARE PUBLIC first, sum, p(,)

to have access to these public items. Once declared, these items will be available throughout the program unit that
declares them.

To make a constant globally available, you can define and initialize it in your module:
MODULE Common

PUBLIC first, sum, p(2,50)
PUBLIC e ! Global “constant”
LET e = Exp(1) ! Define the constant
LET first = 1
LET sum = 0

END MODULE

Then if a program unit names e in a DECLARE PUBLIC statement, ewill have the assigned value. This has the
disadvantage, though, that some program unit may change the value of e. To make sure that the value of e is not
accidentally changed, you could make it a function by removing e from the PUBLIC statement and changing the
LET statement in the module to:

DEF e = Exp(1)

This protects the value from unauthorized changes since e is no longer a variable. Note that the calling program
must use a DECLARE DEF statement rather than a DECLARE PUBLIC statement to gain access to the
defined function.

Defining “Data Structures”
You can define and manipulate rudimentary data structures using modules. The advantage to this is that you can
make such data structures available to any program without the programmer having to be aware of how they have
been implemented. The use of modules for this purpose can also eliminate the need to pass large numbers of argu-
ments between procedures involved in the maintenance of the data structures.

As a simple example, consider the following module that maintains all the necessary information about a deck of
cards during a card game. It shuffles, deals, and defines formatted names for the cards.

MODULE Cards
SHARE card(0 to 51), n ! Deck, number of cards left
SHARE val$(0 to 12), suit$(0 to 3) ! Values, suits
PRIVATE Decipher

MAT READ val$, suit$ ! Initialize module
DATA two, three, four, five, six, seven, eight
DATA nine, ten, jack, queen, king, ace
DATA clubs, diamonds, hearts, spades

RANDOMIZE
CALL Shuffle

SUB Shuffle ! Set up deck
FOR i = 0 to 51

LET card(i) = i
NEXT i
LET n = 52

END SUB

104 True BASIC Language System



SUB Deal(c) ! Deal a card
LET j = Int(n*Rnd) ! Pick random card
LET c = card(j)
LET n = n-1
LET card(j) = card(n) ! Fill place

END SUB

DEF Name$(c) ! Name of card
CALL Decipher(c, v, s) ! Card, value, suit
LET name$ = val$(v) & “ of “ & suit$(s)

END DEF

SUB Decipher(c, v, s)
CALL Divide(c, 13, s, v)

END SUB

END MODULE

Notice how this module uses the three shared arrays cards, val$, and suit$ to represent the deck of cards. All
these arrays are “owned” by the module — they are available to all the routines in the module, yet they cannot be
accessed from outside the module. This means that the data structure may be accessed only through the proce-
dures in the module.

Each of the arrays used to define the deck of cards is initialized in the initialization segment of the module, either
through the MAT READ statement or the invocation of Shuffle, so that the card deck is ready to go even before
the program begins executing. 

A simple use of this module might be:
! Deal 5 cards
LIBRARY “CardLib.TRC”         ! Access library containing Cards module
DECLARE DEF Name$             ! Declare library function

FOR i = 1 to 5
CALL Deal(c)              ! Use library subroutine
PRINT Name$(c)            ! Use library function

NEXT i

END

Note that the person writing the calling program does not need to know how cards are coded or how Shuffle
works. Note also that simple external procedures could not achieve this purpose, since the values of the arrays
would disappear between their invocations.

Sharing Variables to Imitate Turtle Graphics
Consider another module that imitates the use of the turtle graphics popularized by the programming language
Logo™. Turtle graphics work by allowing the user to move a small object, or “turtle,” around the screen. As the tur-
tle moves, it leaves a visible trail, drawing a picture on the screen. The turtle can turn left or right a certain num-
ber of degrees and can move forward or backward a specified distance. This type of graphics is sometimes called
relative graphics, which means that each pen position is measured relative to its previous position. 

Normally, True BASIC uses absolute graphics, in which each pen position is measured absolutely from a con-
stant origin. The following simple module lets True BASIC imitate turtle graphics:

MODULE Turtle
SHARE x, y, a ! Location, angle

! Same x, y, and a used
! throughout the routine

OPTION ANGLE DEGREES ! Initialize
CALL ClearScreen

105Libraries and Modules



SUB ClearScreen
CLEAR
SET WINDOW -140, 140, -120, 120
LET x, y = 0 ! Start at origin
LET a = 90 ! Head upward
PLOT 0, 0; ! Start drawing

END SUB

SUB Left(da)
LET a = a + da

END SUB

SUB Right(da)
LET a = a - da

END SUB

SUB Forward(d)
LET x = x + d*Cos(a)
LET y = y + d*Sin(a)
PLOT x, y;

END SUB

SUB Back(d)
CALL Forward(-d)

END SUB

END MODULE

Any of the five procedures may be called from outside or inside the module. In fact, Back calls Forward, and the
initialization segment includes a call to ClearScreen. The initialization segment sets degrees as the measure
for all angles, and, by invoking ClearScreen, it establishes the window coordinates and puts the turtle in the
center of the window heading up the screen. (See Chapter 13 “Graphics” for explanations of the CLEAR, WIN-
DOW, and PLOT statements.)

The SHARE statement lets the module “remember” the current position and direction of the turtle; the values of
the shared variables x, y, and a are never lost when control returns to the calling program. These shared variables
may be used by any routine in the module but they cannot be accessed or changed from outside the module. Indeed,
the calling program is not even aware of their existence!

The following is a very simple program that uses the module to move the turtle. All it needs to do is name the file
containing the module in a LIBRARY statement and then pass appropriate arguments to the Left, Right,
Forward, and Back subroutines.

LIBRARY “TURTLE.TRC”

PRINT “To turn the turtle type ‘R’ for right or ‘L’ for left”
PRINT “followed by an angle, and then press the return key.”
PRINT
PRINT “To move the turtle in the current direction, type ‘F’ or”
PRINT “‘B’ followed by a distance to move forward or backward,”
PRINT “and then press the return key.”
PRINT
PRINT “Press ‘C’ to clear the screen or ‘S’ to stop the program.”
PRINT “Press any key when you are ready to begin.”

GET KEY start
CLEAR

DO
IF KEY INPUT then

GET KEY how
LET how$ = Ucase$(Chr$(Mod(how,256)))

106 True BASIC Language System



SELECT CASE how$
CASE “L”

INPUT PROMPT how$: angle
CALL Left(angle)

CASE “R”
INPUT PROMPT how$: angle
CALL Right(angle)

CASE “F”
INPUT PROMPT how$: distance
CALL Forward(distance)

CASE “B”
INPUT PROMPT how$: distance
CALL Back(distance)

CASE “C”
CALL ClearScreen

CASE “S”
STOP

CASE ELSE
END SELECT

END IF
LOOP
END

Sharing Channel Numbers
Channel numbers may be shared and passed as parameters, but they cannot be public. Because channel numbers
may be shared, modules are often used to isolate the interface to files, logical windows, or a printer. You will find
much more information on channel numbers and their use in Chapter 12 “Files for Data Input and Output.”

The following example uses logical windows to illustrate shared channels. Logical windows are described in Chapter
13 “Graphics.” Briefly, however, you need to know that True BASIC defines the default logical window with coordi-
nates 0 to 1 from left to right and 0 to 1 from bottom to top. Thus, the lower left corner of the default window is 0, 0 and
the upper right is 1, 1. You can define smaller logical windows within a physical window by specifying the left, right,
bottom, and top coordinate limits in an OPEN statement, as in the following module. The WINDOW statement tells
True BASIC where to send subsequent output (see Chapter 13 “Graphics”).

MODULE Timer

SHARE start, #1, #2 ! Starting time, 2 windows
OPEN #1: SCREEN 0, .8, 0, 1 ! Working window
OPEN #2: SCREEN .85, 1, 0, 1 ! Time window
LET start = Time ! Use built-in function
CALL Clock

SUB Clock
LET t = Time
WINDOW #2 ! Print to time window
CLEAR
PRINT Round(t - start, 1)
WINDOW #1 ! Switch back to working window

END SUB

END MODULE

In this example, True BASIC would open the logical windows and print the initial time in window #2 as part of
module initialization before it executes the main program. Output from the main program will be printed in win-
dow #1. The main program can update the running time whenever it wishes with the statement:

CALL Clock

107Libraries and Modules



Note that the Clock subroutine in the module can switch logical windows, but the main program cannot itself
switch to the timing window (#2) nor can it change either logical window (though it could open other logical win-
dows of its own).

Notice also that the variable start is available only within the module. Thus, the timing mechanism is not ruined
if the calling program also has a variable called start.

Using the Supplied Libraries
Some of the advanced capabilities of the True BASIC language are not really part of “the language” at all, but are
included in the form of libraries. Since each built-in function and subroutine makes the language a little bit larger
and a little bit slower, much of the advanced functionality is provided in the form of external libraries. The follow-
ing libraries are included with the True BASIC language. 

Libraries Included with True BASIC Language (in TBLIBS)
——————————————————————————————————————

Library Functions or Subroutines Chapter Reference
Mathematical Tools

MathLib.TRC trig functions not already built-in 23
HexLib.TRC bit, octal, and hexadecimal manipulation routines 23

String Tools
StrLib.TRC string creation, conversion, formatting, and editing 23

Sorting and Searching Tools
SortLib.TRC sorting, searching, and reversing items on arrays 9, 23

Graphics Tools
BGLib.TRC pie charts, bar charts, and histograms 23
SGLib.TRC plotting data and function values 23
SGFunc.TRC plotting values of functions that you define 23
GraphLib.TRC simple graphing utilities 23

Interface Tools
TrueCtrl.TRC interface elements 14, 22
TrueDial.TRC dialog boxes 14, 22

File and Directory Tools
ExecLib.TRC file and directory control 12, 22

——————————————————————————————————————

In addition, other toolkits in the form of libraries, are available. See our web site for current listing and prices. 

To access any procedure in such a library, simply treat it as you would a procedure in a library that you have cre-
ated yourself. Name each library in a LIBRARY statement using an appropriate path name to precisely locate the
library, and declare any functions in DECLARE DEF statements.

108 True BASIC Language System



CHAPTER

12
Files for Data Input and Output

Programs commonly use files to save data for later retrieval or to share data with another program. This chapter
describes the use of files to store information produced by programs and to retrieve information stored by other
programs. It also describes the ExecLib library of subroutines that give your programs added control over files and
directories. Since sending textual output to a printer uses many of the same statements and techniques, this chap-
ter also discusses how to print textual output.

A file is a unit of information saved on a diskette, a hard disk, or some other “permanent” storage device. A file
may contain data, or it may contain a program or a library. Because they continue to exist after your program stops
and even after you turn off your computer, files provide long-term storage. A program may access a file to read
information from it or write information to it.

Files store information in a variety of ways. Some can contain only the text characters that you commonly enter at
the keyboard and display on the screen. Others can store information in more efficient formats that cannot be dis-
played directly on the screen. True BASIC can create and use text files and four forms of internal files —
stream, random, record, and byte.

————————————————————————–––———————————————
[ ! ] Note: Different operating systems use different terminology for the organization of their storage

media. Throughout this chapter, the term “directory” refers to the organizational component of a disk
that may contain one or more files or other directories. Directories that are contained within another
directory are “subdirectories” of that directory. Some operating systems refer to these as “folders” and
“subfolders,” but this chapter uses the terms directory and subdirectory throughout.

——————————————————————–––—————————————————
True BASIC programs may use files stored anywhere in any directory or disk accessible to the computer running
the program (this includes files and disks that are accessible across a network).

When you need to access a file, you must first open it using a file name that is appropriate to your computer’s oper-
ating system. That name may be a simple file name, indicating that the file is stored in your current directory, or
it may be a complete path name that indicates the file’s location. See “The True BASIC Environment” chapter in
the introductory section of this manual for information on file and path names appropriate for the different com-
puter operating systems.

The OPEN statement opens a file and assigns it a channel number. All other statements that operate on files use
the channel number rather than the file name.

The first few sections in this chapter describe statements and operations that apply to all of True BASIC’s file
types. The later sections discuss each file type and additional statements particular to that file type. Because the
internal files share many characteristics, they are described as a group and then individually. The final section
describes ExecLib routines that let your programs get information about files and directories and create, rename,
and remove directories.

109



A Summary of File Types
True BASIC uses five kinds of data files. The basic differences between the types lie in how information is stored
within the file and how you may access that information.

Text files use display format — they mimic the display that appears on your screen or printer. In text files, both
string and numeric values are represented as characters; numeric values are automatically converted to the string
of digits used to display them. To get information to and from text files, you use a channel number with the same
PRINT and INPUT statements that you use with the screen, printer, or keyboard. 

The other four file types store information in the internal format that the computer uses to represent values in
memory. Each string value is stored as a series of one-byte characters (similar to text files), but each numeric value
is stored in the internal IEEE eight-byte format that preserves its full precision. Because of the way information
is stored within them, you must use WRITE and READ statements, with a channel number, to get information to
and from internal files.

The five file types may be summarized as follows:
A text file is one that you may create and save using any text editor capable of saving a text-only file. As such, text
files may be displayed on the screen. Every program you create and save with the True BASIC Editor is a text file.
Since a compiled program cannot be displayed, it is not a text file. True BASIC views the printer as a text file with
the restriction that a program cannot read from it (for obvious reasons). You may, however, write to the printer;
hence, you may use file operations to produce hard copy on your printer. Text files are sequential-access files,
meaning that you must access each record (or item) in the order in which it appears in the file.

A stream file is stored in internal format and cannot be displayed on the screen. Like a text file, a stream file is
organized sequentially. That is, the elements must be read in exactly the same order in which they were written.

A random file is stored in internal format and cannot be displayed on the screen. The file is organized into records
of fixed length, and you can jump to any record in the file and read it or change it. (Text or stream files do not per-
mit this “random access.”) The records may contain any number of string and numeric values, in their internal for-
mat, as long as their cumulative length does not exceed the record’s maximum length.

A record file is like a random file except that each record may contain only one numeric or string value.

A byte file is the most general type of file. You may access any file as a byte file, or simply a sequence of bytes.
Approaching a file on the byte level lets you manipulate files created by any application, such as a word processor
or spreadsheet, provided you know how that application has represented the information within the file. Because
byte files let you operate on each byte individually, they also provide the flexibility required for effectively pack-
ing information to conserve storage space.

Basic File Operations
This section and the next discuss operations and concepts common to all five data-file types. Each file type is then
described more fully along with statements and operations particular to that file type.

Opening Files
Before you may use the information stored within a file, you must first open a channel to that file. This process
uses an OPEN statement as follows:

OPEN #3: NAME “USEFUL”

The OPEN statement obtains access to the named file (through the current operating system) and associates that
file with the specified channel number. Channel numbers always consist of a pound sign (#) followed by an inte-
ger between 0 and 999 (or a numeric expression that evaluates to such a value). Note, however, that channel #0 is
reserved for the default logical window, which is always open. (The default logical window is the default output
window automatically opened by True BASIC; see Chapter 13 “Graphics” for more information.) After you’ve
opened a file, you must always refer to it by its associated channel number.

110 True BASIC Language System



The file name in the OPEN statement may be a simple name referring to a file in the current directory, or it may
include a path name specifically indicating the location of the file. Legal file and path names vary between oper-
ating systems, so be sure to check “The True BASIC Environment” chapter in the introductory section for the rules
of any operating systems you or your program’s users will be using.

You may specify the file name as a string constant, a string variable, or a string expression as long as it evaluates
to a legal file name for the current operating system. If a file with the specified name does not exist, an error
results. 

You may add several options after the file name in an OPEN statement to specify how the file should be opened
and accessed. Each option consists of an option keyword and an option specifier, and each option is separated from
its neighbors by a comma. For example:

OPEN #1: NAME “DATA”, ORG TEXT, CREATE OLD, ACCESS INPUT

The options allowed in the OPEN statement may be summarized as follows:

OPEN Statement Options
———————————————————————––———————————————

Option Effect
ORGANIZATION TEXT Open as text file
ORGANIZATION STREAM Open as stream file
ORGANIZATION RANDOM Open as random file
ORGANIZATION RECORD Open as record file
ORGANIZATION BYTE Open as byte file
CREATE NEW Create a new file
CREATE OLD Open an existing file (default)
CREATE NEWOLD Open if exists, else create
ACCESS OUTIN Allow read/input or write/print (default)
ACCESS INPUT Allow read or input only
ACCESS OUTPUT Allow write or print only
RECSIZE n Set record length for random, record, or byte files

——————————————————————————––————————————
You may abbreviate the option keyword ORGANIZATION as ORG.

If you specify the ORG TEXT, ORG STREAM, ORG RANDOM, or ORG RECORD option when opening an exist-
ing file, True BASIC checks the file and gives an error if it does not match the specified type. If you use the ORG
TEXT, ORG STREAM, ORG RANDOM, or ORG RECORD option when opening a new or empty file, the file
becomes that file type. Any file may be opened with the ORG BYTE option; it will be treated as a byte file as long
as it remains open, no matter what type it really is. 
If you do not use an ORG option, True BASIC assumes the ORG TEXT option for new or empty files. Otherwise, it
checks the file and uses its current type (compiled True BASIC programs are opened as ORG BYTE). 
The CREATE options control what happens if the file does or does not already exist. The CREATE NEW option
instructs True BASIC to create a new file with the specified name; an error occurs if a file with that name already
exists. The CREATE OLD option opens an existing file; an error occurs if the file does not exist. The CREATE
NEWOLD option opens the file if it already exists and creates it if it does not. The CREATE NEWOLD option is
useful when a program will be run repeatedly; the first time it is run it creates a new file, afterwards it uses the
existing one. 
Omitting a CREATE option is the same as using the CREATE OLD option; that is, True BASIC looks for an exist-
ing file by default.
The ACCESS options let you limit what the program can do with the open file. The ACCESS INPUT option lets
the program read from the file but not change its contents — often an important safety feature. The ACCESS
OUTPUT option lets the program modify a file, but not read it — this can protect the confidentiality of the file. The

111Files for Data Input and Output



default is the ACCESS OUTIN option, which gives the program complete access to the file for both reading and
writing.

For example:
OPEN #7: NAME “FILE22.TRUE”, CREATE NEWOLD, ORG TEXT

either will open an existing file called FILE22.TRU and make sure that it is a text file, or it will create one. Since
an ACCESS option is not specified, both reading and writing will be allowed.

Even if you use ACCESS OUTPUT to limit access to a file to output, the operating system must permit True
BASIC to read that file to examine its type.

The RECSIZE option sets the record length for record, random, or byte files to the numeric value given with it. Records
are components of random-access files and are discussed more fully in the sections on random and record files later in
this chapter. If you use a RECSIZE option when opening a text or stream file, it will be ignored.

Although you must type out the option keywords, you may use string variables and string expressions in place of
the option specifiers. This can be extremely useful when writing subroutines. Also, note that channel numbers
may serve as parameters to subroutines (but not to functions). The channel-number parameter must consist of a
pound sign (#) followed by an integer — not an expression. As usual, the channel number passed as the corre-
sponding argument in the invocation need not be the same as the channel number used as the parameter in the
subroutine. For example:

SUB FileOpen(org$, cr$, acc$, #9)   ! Open specified file
PRINT “File name”;
INPUT f$
OPEN #9: NAME f$, ORG org$, CREATE cr$, ACCESS acc$

END SUB

This may be invoked using a statement such as:
CALL FileOpen(“record”, “old”, “outin”, #1)

Invoking FileOpen in this way will get the name of a file from the user and open the existing record file with
that name with full access privileges. The open file will be associated with channel #1 throughout the program unit
that contains the CALL statement.

Note that in the above subroutine, errors could occur if the user names a file that does not exist or is not a record
file. The following version of the subroutine provides better protection by “trapping” any errors. The WHEN struc-
ture and other error-handling techniques are discussed in Chapter 16 “Error Handling.”

SUB FileOpen(org$, cr$, acc$, #9) ! Protected file opener
DO

CLOSE #9 ! In case channel is open
INPUT PROMPT “File name: “: fname$
WHEN ERROR IN

OPEN #9: NAME fname$, CREATE cr$, ORG org$, ACCESS acc$
EXIT SUB ! Success

USE
PRINT “Cannot open that file.”

END WHEN
LOOP

END SUB

There are several reasons why an OPEN statement may fail. Therefore, it is generally a good idea to use an error
handler whenever appropriate to give the user more than one chance to specify a file name, as in the above example.
Remember that you must open every file before you may access it. If you try to access a channel number that has
not been properly opened (or that has been closed), an error will result.
Once a channel has been opened, it will remain open as long as it remains in existence or until you specifically close
it, as described in the next section. Channels obey the same scope rules as variables. How long a channel “remains
in existence” depends on where the channel is opened.

112 True BASIC Language System



A channel that is opened in the main program (or in a procedure internal to the main program) remains in exis-
tence throughout the remainder of the main program and may only be accessed within the main program. When
the program stops running, all open channels are closed and destroyed.
A channel that is opened in an external procedure remains in existence throughout the remainder of that proce-
dure’s invocation. However, when the procedure returns to its caller, any channels opened by the procedure
(except those passed to it) will be automatically closed and destroyed.
If an external subroutine needs to access a channel opened by its caller, the channel should be passed to the sub-
routine as a parameter (as in the previous example). When a previously opened channel is passed to a subroutine
as a parameter, the subroutine may not contain an OPEN statement for that channel. However, if an unopened
channel is passed to a subroutine as a parameter, the subroutine may open that channel. In this case, the channel
used as the corresponding argument in the CALL statement will be open when the subroutine returns to its caller.
Procedures contained in a MODULE structure follow the same rules as external procedures. However, if a chan-
nel number appears within a SHARE statement in that module’s header, that channel will be brought into exis-
tence when the module is initialized, and it will remain in existence until the program terminates. It will be avail-
able only to procedures contained within the module, and of course it must be explicitly opened before it may be
used. Once opened, though, a shared channel will remain open until the program terminates (or until it is specif-
ically closed, as described in the next section). (See Chapters 10 and 11 for more information on internal and exter-
nal procedures and on modules.)

Closing Files
Although you may use any channel number from 1 to 999 (#0 is reserved for the default logical window), True
BASIC does not allow more than twenty-five channels to be open at any one time (channel #0 is not counted). Gen-
erally, you will not need this many channels, but if your program opens several files (remember that the printer and
logical windows require channels too) you may find that you are running into this limit.

It is therefore a good practice to specifically close open channels when you no longer need them. You do this with
the CLOSE statement. For example:

CLOSE #3

closes channel #3. If channel #3 was not open, the CLOSE statement would simply be ignored. Channels are auto-
matically closed when the program terminates, and channels local to a procedure are closed when that procedure
terminates.

Once a channel has been closed, you may reuse the channel number previously associated with it. Note, however,
that if you attempt to open a channel that is still open, an error will result.

Erasing Files
True BASIC provides two means of erasing a file. The ERASE statement erases a file’s contents, and the
UNSAVE statement destroys the file itself.
The ERASE statement erases the entire contents of the file associated with the specified channel number. For
example:

ERASE #3               ! Erase whole file’s contents

Of course, the channel must be open with the ACCESS OUTIN option. The ERASE statement simply erases the
file’s contents; the file continues to exist and the channel to it remains open.

The ERASE statement does not change any of the file’s attributes (as specified by the associated OPEN state-
ment); however, once the file is empty some of these attributes (such as file type and record size) can be changed
intentionally or incidentally. For example, you may use the SET RECSIZE statement to change the record size of
an empty random or record file. And if you use a PRINT statement to send output to an empty file, that file will
become a text file.

113Files for Data Input and Output



A variation of the ERASE statement lets you erase the portion of the file following the current position of the file
pointer. (File pointers are described fully in the following section.) For example:

ERASE REST #3          ! Erase rest of file’s contents

If you wish to remove a file completely from the storage medium, use the UNSAVE statement. For instance, the
statement:

UNSAVE “FILE22.TRU”         ! Delete the file itself

would completely delete the file named FILE22.TRU. If the file does not exist, an error occurs. The UNSAVE state-
ment requires a file name rather than a channel number. In fact, you must close any channels associated with the file
before the UNSAVE statement is executed; if a channel to the file is open, an error occurs.

SET and ASK Statements
There is a lot of information involved in the maintenance of files, and True BASIC provides convenient ways to
access that file-related information. Several SET and ASK statements let you manipulate files and get informa-
tion about them. This section discusses those SET and ASK statements that work with all files. More specialized
SET and ASK statements are described in the sections about the individual file types.
————————————————————————————–––———————————
[ ! ] Note: Most of the ASK statements described in this section can also provide information about logical

windows and printers. For details on opening and using logical windows see Chapter 13 “Graphics.”
Details on opening and using printers are provided later in this chapter. You will also find information
on the appropriate SET and ASK statements in those sections.

——————————————————————————–––—————————————

File Pointers
For each currently open file there is an associated file pointer that indicates where the next information read
from or written to that file is to begin. When you first open a file, True BASIC places the file pointer at the begin-
ning of the file. As your program reads items from the file, or writes information to it, True BASIC automatically
moves the pointer to the end of the last item read or written.

In general, you do not need to move the file pointer yourself. However, there are occasions when you will need to
move it. For instance, you are allowed to write information only to the end of text and stream files. Since the file
pointer is at the beginning of a file when the file is opened, you must move the file pointer to the end of an existing
text or stream file before you can add information to it.

You control the position of the pointer with the SET POINTER statement, as follows:
SET #3: POINTER BEGIN             ! Go to beginning of file
SET #3: POINTER END               ! Go to end of file

The following forms of the RESET statement are equivalent to these SET POINTER statements:
RESET #3: BEGIN                   ! Go to beginning of file
RESET #3: END                     ! Go to end of file

You can reread a file if you reset the file pointer at the beginning, or append information to the file if you move the
file pointer to the end. 

For each attribute that can be set with a SET statement, there is a corresponding ASK statement (the reverse is
not always the case). Thus, you may easily find out the current position of a file pointer with the ASK POINTER
statement, as follows:

ASK #3: POINTER ptr$              ! Where is the pointer?

In this statement, the variable ptr$ will be assigned one of the values “BEGIN”, “MIDDLE”, or “END”
depending on the current position of the file pointer within the file associated with channel #3.

You can test whether you have reached the end of a file using the logical expressions END or MORE. For example,
this program fragment ensures that the file pointer is at the beginning of a text file and then prints the file’s contents:

114 True BASIC Language System



RESET #3: BEGIN
DO 

LINE INPUT #3: line$
PRINT line$

LOOP UNTIL END #3                 ! Is TRUE if at end of #3

The following program fragment is equivalent except that it prevents the error that would occur if the file is empty:
RESET #3: BEGIN
DO WHILE MORE #3                  ! Is TRUE if not at end of #3

LINE INPUT #3: line$
PRINT line$

LOOP

With random-access files such as random, record, and byte files, you can also move the file pointer to individual
records and ask for the current record number; see the descriptions for those files.

Names and Directories
You may use the ASK NAME statement to find out the name of an open file:

ASK #5: NAME filename$          ! Get name of file #5

The ASK NAME statement will report the full path name of the file associated with that channel number.
—————————————————–––——————————————————————
[ ! ] Note: The ASK NAME and SET NAME statements without channel numbers are provided for com-

patibility with earlier versions of True BASIC. In earlier versions, ASK NAME without a channel num-
ber reported the name of the current program. This version of True BASIC assigns the null string if
ASK NAME is used without a channel number; SET NAME is ignored.

————————————————–––———————————————————————
As noted earlier, you may use a path name in the OPEN statement to access files that are not stored in the cur-
rent directory. If you will be opening several files in the same directory, you may prefer to use a SET DIREC-
TORY statement to change the current directory, thus avoiding the need for path names in the OPEN state-
ments. For example, the statement:

SET DIRECTORY dir$              ! Change directory

would set the current directory to the directory specified by the value of dir$. The value of dir$must be a legal
directory name, and it may include a disk name. See “The True BASIC Environment” chapter in the introductory
section for information on specifying directories within various operating environments.
The ASK DIRECTORY statement lets you find out the name of the current directory. Thus, if you change direc-
tories in your program and wish to be able to return to the starting directory before the program ends, you could
store the name of your starting directory before changing to a new directory as follows:

ASK DIRECTORY old_dir$         ! Starting directory
SET DIRECTORY dir$             ! Change to new directory

Then, later switch back to the original directory with the following statement:
SET DIRECTORY old_dir$         ! Change to starting directory

When the program terminates, you are returned to the directory you were in when you ran the program.   The final
section in this chapter describes ExecLib library routines that accomplish the same thing as the ASK DIREC-
TORY and SET DIRECTORY statements.

File Characteristics
Other ASK statements provide information about the file itself or how the file was opened. The following state-
ments may be used regardless of the file type; see the specific file types for additional statements.

The ASK ORG statement finds out the type of file that is currently associated with an open channel. For instance,
the statement:

115Files for Data Input and Output



ASK #3: ORG org$

assigns a value of “TEXT”, “STREAM”, “RANDOM”, “RECORD”, or “BYTE” to the variable org$. If the channel
number refers to a printer, the value “TEXT” is assigned to org$; and if the channel number refers to a logical
window, “WINDOW” is assigned to org$.

The ASK RECTYPE statement finds out the nature of a file’s records. The statement:
ASK #3: RECTYPE rectype$

assigns a value of “DISPLAY” or “INTERNAL” to the variable rectype$. If the channel number refers to a text
file, a printer, or a logical window, the value “DISPLAY” is assigned to rectype$. For all other types of files,
“INTERNAL” is assigned to rectype$.

The ASK ACCESS statement finds out the access available for the file associated with the specified channel num-
ber. For instance, the statement:

ASK #3: ACCESS acc$

assigns to acc$ a value of “INPUT”, “OUTPUT”, “OUTIN”, “NETIN”, “NETOUT”, or “NETWORK”, as deter-
mined by the ACCESS option used when channel #3 was opened. If channel #3 refers to the printer, a value of
“OUTPUT” is assigned to acc$. If channel #3 refers to a logical window, “OUTIN” is assigned.

The ASK FILESIZE statement lets you find out the size of a file. For example:
ASK #3: FILESIZE fs ! Length in bytes (in records for random & record);

!   0 for printer or logical window

If the file associated with channel #3 is a text, stream, or byte file, then the number of bytes in the file is assigned
to fs. If the file is a record or random file, then the number of records in the file is assigned to fs. If the channel
refers to a printer or a logical window, a size of 0 is returned.

The ExecLib routines Exec_ReadDir and Exec_ClimbDir (described in the last section of this chapter) provide
additional information about files and directories including size, date and time last modified, and access permissions. 

Text Files
A text file consists of lines that you can create on the keyboard and display on the screen using the True BASIC
Editor (or any other application that can create and read “text-only” files). You can also create a text file entirely
from within your program. True BASIC puts information into text files in the same way it displays information on
the screen or printer, and it gets information from them just as it gets input from the keyboard. Thus, you use the
same PRINT and INPUT statements — along with an appropriate channel number — with text files. 

Text files are easy to understand and use. In fact, the PRINT and INPUT statements work just as they normally
do when used with the screen and the keyboard — all the same rules apply. Because you can create and view text
files with any screen editor, you can see the file structure and understand how it interacts with your programs.
Text files often provide input data to a program or store output for later display or printing.

Text files, however, are not as efficient as the other types of files for large amounts of data. It is often hard to out-
put information (such as strings or arrays) to a text file in a format that programs can easily read. Also, you may
lose some numeric precision when you store numeric information in text files. 
————————————————————–––———————————————————
[ ! ] Note: To understand the loss of numeric precision within text files (and the major difference between

text files and internal files), let’s take a brief look at what happens when a program takes input from the
keyboard and displays it on the screen. At the keyboard, you type characters that True BASIC interprets
based on a standard character set. If you input a string value, True BASIC stores the actual characters you
type (less leading and trailing spaces) in internal memory; each character occupies one byte of memory.
When you use a PRINT statement to display a string value, you get exactly what is stored in memory.
If you input a numeric value, however, True BASIC converts the characters you type into the number they
represent and stores that value in an internal format. In that internal format, numeric values have a pre-

116 True BASIC Language System



cision of at least 14 significant digits, and each value occupies eight bytes of memory. True BASIC per-
forms all calculations using the full precision of the internal numeric format.
When a PRINT statement displays a numeric value, however, you may not see the value to its full preci-
sion. Unless you specify otherwise with a PRINT USING statement, the PRINT statement displays
characters representing the numeric value according to the rules described in Chapter 3 “Output State-
ments.” For example, the program:

LET x = 296445886        ! Population
LET y = 1.37             ! Growth rate
PRINT x * y              ! New population
END

displays the value:
4.0613086e+8 

even though the internal value is calculated to be 406130863.82.
If you use a PRINT statement to store this value in a text file, the same series of characters that rep-
resent the value on the screen would be used to represent it in the file. A subsequent INPUT state-
ment would retrieve the value with its reduced precision. While this may not be a problem for many
applications, you should be aware of it.

———————————————————–––————————————————————
Let’s look now at a simple example that gets information from one text file and prints some of that information to
another file. The INPUT and PRINT statements work just as they normally do except that you specify a channel
number to indicate the file to be used:

OPEN #1: NAME “WAGES”, ORG TEXT, ACCESS INPUT
OPEN #2: NAME “NAMES”, ORG TEXT, CREATE NEWOLD
RESET #2: END

DO WHILE MORE #1          ! While there is more to read
INPUT #1: name$, age, salary
PRINT #2: name$, “Age:”; age

LOOP

END

Each time the INPUT statement in this example is executed, it reads a line from the first file, treating it as if it
had been typed at the keyboard. The line must have just the right number of items, of the right type (i.e., using
numbers for numeric variables), separated by commas. If the value to be assigned to the name$ variable contains
a comma, the string must be enclosed in double quotes. For example, the following line in the file would be legal:

“Williams, Pat”, 34, 28500

while this one would cause an error:
Williams, Pat, 34, 28500

because True BASIC would interpret Williams as the value of name$, and attempt to assign the string value
Pat to the numeric variable age.
Likewise, if a line in the file contains too few or too many items or the types do not match, an error occurs, since
there is no way of “re-asking” the file for input.
Lines being input from a file may end with a comma to indicate that there is more input on the next line. Along
with the INPUT statement, you may use the LINE INPUT, MAT INPUT, and MAT LINE INPUT statements
with text files. However, the various forms of the INPUT PROMPT statement are not allowed, since a file cannot
be prompted.
If you attempt to use the INPUT statement with a file opened with the ACCESS OUTPUT option, an error occurs.
You’ll also get an error if the file pointer is at the end of the file (i.e., if there is no more information to input).

117Files for Data Input and Output



Remember that you can use the SET POINTER or RESET statements to move the pointer to the beginning of the
file, and you can use the MORE or END logical clauses to test for more data in the file (see earlier section).

The PRINT statement in the example above:
PRINT #2: name$, “Age:”; age

also follows all the conventions for a PRINT statement used to display values on the screen, including commas
and semicolons. The file has a margin and a zonewidth, whose default values are 80 and 16, respectively, as they
are for logical windows on the screen. You may change these settings with the SET MARGIN and SET
ZONEWIDTH statements as follows:

SET #3: MARGIN 70
SET #3: ZONEWIDTH 10

Similarly, your program can find out the current margin and zonewidth of a file with the ASK MARGIN and ASK
ZONEWIDTH statements:

ASK #2: MARGIN m
ASK #2: ZONEWIDTH z

Since there is no cursor in a file, the SET CURSOR statement does not make any sense when applied to a file.
Similarly the two-argument version of the TAB function is forbidden with text files. You may, however, use the
TAB function with a single argument:

PRINT #2: name$; Tab(45); “Age:”; age

You may also use the MAT PRINT or PRINT USING statements to print to a text file. Here’s an example of the
PRINT USING statement used with a text file:

LET form$ = “###########################>   Age: ##”
PRINT #2, USING form$: name$, age

If you attempt to use the PRINT statement with a file that has been opened with the ACCESS INPUT option, an
error occurs. You’ll also get an error if you attempt to overwrite the existing contents of a text file. To avoid
attempts to overwrite, erase the contents of a file with the ERASE statement or reset the pointer to the end of the
file with a SET POINTER or RESET statement before printing to it.

As shown in the above example, it is easy to copy all or part of one file to another. Here’s another example that
changes all letters in a file to lowercase:

DIM line$(1000)
OPEN #3: NAME “Program5.Tru”

LET i = 0
DO WHILE MORE #3       ! Read lines into array

LET i = i + 1
LINE INPUT #3: line$(i)

LOOP

ERASE #3               ! Erase the file

FOR j = 1 to i         ! Rewrite in lowercase
PRINT #3: Lcase$(line$(j))

NEXT j
END

The program reads the file into an array, erases the file, and then writes lowercase versions of the lines back into
the file.

A word of caution about using the MAT PRINT and MAT INPUT statements with text files: while both work with
text files, the MAT PRINT statement does not write information in a format that will work with the MAT INPUT
statement. The MAT INPUT statement expects items of a row to be separated by commas, but the MAT PRINT
statement separates the items of a row by spaces. There are two ways to solve this problem: 

118 True BASIC Language System



(1) Create the file’s contents by printing individual elements, putting a comma after each item except the last:
...
FOR i = 1 to Ubound(array) - 1

PRINT #7: array(i); “, “;
NEXT i
PRINT array(Ubound(array))
...

(2) Use the LINE INPUT statement to input an entire line from the file and then “parse” the line into its com-
ponent items using the ExplodeN subroutine provided in the StrLib library.

LIBRARY “C:\TBSilver\TBLIBS\STRLIB.TRC”  ! Use appropriate path name
...
LINE INPUT #4: line$
CALL ExplodeN(line$, array(),” “)
...

You should also be cautious when printing strings to text files for later input. Remember that the INPUT state-
ment requires double quotes around strings containing commas or leading or trailing spaces. To overcome this
problem you could print such strings with enclosing quotes or, better yet, print just one string value per line and
then use the LINE INPUT statement to read the entire line. The latter solution is the best if your strings contain
double-quote marks, as you would have to repeat the double quotes within the string for the INPUT statement to
read the string correctly!

Internal Files — Stream, Random, Record, & Byte
The important differences between text files and the other types of data files are the statements you use to get data
to and from the files and the way in which the files store numeric values. 

Within text files, both numeric and string values are stored as series of characters. Numeric values are converted
to strings of digits that represent the value (with possible loss of full precision). Any application that can read text
can print or display such files. Because the format of text files is the same as for keyboard input or displays to the
screen, text files use the normal INPUT and PRINT statements with the addition of channel numbers. 

The remaining file types are all internal files — numeric and string values are stored in the same internal format
used by the computer’s memory when it runs your programs. String values are stored internally as characters just
as they are displayed, with one byte per character. Numeric values, however, are stored in the standard IEEE
eight-byte format that cannot be displayed. Because of the storage format, internal files require READ and
WRITE statements to input and output data. While internal files cannot usually be displayed directly on the
screen or printer, they do have several advantages:

• The numeric values retrieved from an internal file are read with exactly the same precision as the values
written to the file. With a text file, numeric values may lose precision when the PRINT statement converts
them from the computer’s internal format to a sequence of characters; any greater precision is lost and can-
not be retrieved when that sequence of characters is input from the file. 

• Reading and writing operations are faster with internal files, because there is no need to convert numeric
values between internal and display formats. 

• True BASIC internal files may be used with programs on any computer type. The internal format is the
same no matter where you run your programs. Also, the ability to read a file as a byte file lets you read any
file created by any application on any computer. Text files, however, must often be translated when they are
moved between operating systems because of the variations in how operating systems view end-of-line
characters within text files. 

• Three types of internal files — random, record, and byte — permit the more efficient random access of
records within the files. With random access you can jump directly to any part of the file, rather than having
to work through the file from start to finish. Text and stream files permit only sequential access — the items
in the file must be retrieved in exactly the same order in which they were stored.

119Files for Data Input and Output



Internal files come in four types: stream, random, record, and byte files, all of which are explained below. Ran-
dom and record files are organized by records. A record is a storage location of fixed-length within a file. All the
records within a file are numbered so that you can move easily to any record in the file with a SET RECORD state-
ment. The exact structures of random and record files are explained below. 

As noted above, you use WRITE and READ statements with internal files. The exact usage of these statements
varies depending on the type of file, as described below.

The OPEN, CLOSE, ERASE, and UNSAVE statements work for internal files just as they do for text files.
Remember, however, that the default organization for a newly created file is text, so you must specify the type of
file when you are creating a new internal file. The SET and ASK statements have several additional forms that
are described with the different file types below. 

Stream Files
A stream file is simply a sequence of values. These values must be read back in the same order in which they were
written to the file. For example:

OPEN #1: NAME “VALUES.STR”, CREATE NEW, ORG STREAM
WRITE #1: Pi, Exp(1), “This is a string.”, 3.14
...
SET #1: POINTER BEGIN
READ #1: a, b, c$
READ #1: d
! At this point, a  is exactly equal to PI
! b  is exactly equal to EXP(1)
! c$ is the string “This is a string.”
! d  is exactly equal to 3.14

Notice that the WRITE and READ statements need not have the same number of variables — there is no concept
of a line of data as in text files or a record as in random and record files. The one requirement is that the type
(numeric or string) of a variable in the READ statement must match the type of the next value in the file. If the
type is wrong, an error occurs. 

Although it is up to the programmer to keep track of the type and purpose of the values in a stream file, you can
“peek” at the next value’s type with an ASK DATUM statement. For example:

ASK #1: DATUM type$
SELECT CASE type$
CASE “NUMERIC”

READ #1: n
CASE “STRING”

READ #1: s$
CASE else

! type$ = “NONE” if at the end of the file
! type$ = “UNKNOWN” if can’t tell

END SELECT

Random Files
Random files are composed of records. All the records within a single file have the same maximum length which is
called the record size of that file.

Each record in a random file may contain any number of string and/or numeric values, provided that the cumula-
tive length of the items (and their associated “bookkeeping” as explained below) does not exceed the file’s record
size. In fact, different records within the same file may contain different numbers and types of items.

Any record whose actual length is less than the record size of the file will be automatically “padded” to the proper
record size before being written to the file. This padding will be ignored when the values are subsequently
retrieved from the file. Thus, you need not worry about padding records yourself.

120 True BASIC Language System



Although True BASIC will automatically move the file pointer to the next record each time a record is read, allow-
ing you to easily process a random file from beginning to end, you can also move the file pointer to any existing
record within the file arbitrarily. The record to which the file pointer currently points may be retrieved and/or
overwritten as necessary.

Before you can write records to a new or empty random file, you must first set the file’s record size. You may do this
using a RECSIZE option in the OPEN statement, as in:

OPEN #1: NAME “NEWDATA.RDM”, ORG RANDOM, RECSIZE 50, CREATE NEW

or by using a SET RECSIZE statement after the file has been opened, as in:
OPEN #1: NAME “NEWDATA.RDM”, ORG RANDOM, CREATE NEW
SET #1: RECSIZE 50

Note, however, that you may set or change the record size only for a new or empty file — if the file contains any
records you must erase it (with the ERASE statement) before you can change the record size.

If a file already exists and contains one or more records, it already has a record size which you cannot change with-
out first erasing the file. You may use the ASK RECSIZE statement to find out the record size of a file as follows:

OPEN #1: NAME “DATA”, ORG RANDOM, CREATE OLD
ASK #1: RECSIZE rsize

Here, the record size of the file named DATA would be assigned to rsize.

If you attempt to write more bytes to a random file record than its defined record size, an error results. The record
size must be large enough to hold both the data that will be stored in each record and some additional “bookkeep-
ing” information. This bookkeeping information keeps track of the kinds of information in each record (remember
that random files allow an arbitrary number of values of arbitrary types within each record) and indicates the end
of the record. Although you need not worry about this information when using the file, it does require storage
space, and you must account for it when you set the record size for a new random file (or if you need to figure out
how much you can write to new records in an existing random file).

A string item stored in a random file record will occupy one byte for each character in the string plus four bytes of
bookkeeping information. On the other hand, a numeric value stored in a random file record will always occupy
exactly nine bytes — eight bytes for the internal representation of the number and one byte for bookkeeping. In
addition, you must always allow one byte in the record size for the end-of-record marker.

As an example, consider a situation in which you plan on storing two strings and three numbers in each record.
First, you need to know the maximum length of the strings that you will store. Let’s assume that the first string
will never be longer than 30 characters and the second string will never exceed 14 characters. Thus, you need to
reserve 30 + 4 bytes for the first string and its bookkeeping information and 14 + 4 bytes for the second string and
its bookkeeping information. Each of the three numeric values will occupy 8 + 1 bytes with its bookkeeping infor-
mation. And don’t forget to reserve 1 byte for the end-of-record marker. By adding all of these requirements
together, you know the proper record size for this random file is 34 + 18 + 9 + 9 + 9 + 1 = 90.

If the records in the random file will contain varying numbers and types of items, calculate the length based on the
longest record you will need. If you attempt to write more bytes to a random file record than its defined record size,
an error results. 
———————————————–––————————————————————————
[ ! ] Note: True BASIC does not know how you arrived at a random file’s record size; it simply checks to be

sure total size of the record does not exceed the established record size. You might exceed a record size
because you attempted to write more items than you had planned on, or because a string in the record
is longer than you planned. True BASIC won’t know the difference; it will simply report that the record
size was exceeded. You may want to use the DECLARE STRING statement to define a maximum
length for string variables used in random file records. This lets True BASIC provide more specific
diagnostics should a problem arise.

——————————————————–––—————————————————————

121Files for Data Input and Output



Each READ and WRITE statement reads or writes one complete record in a random file. Because individual
records may contain different numbers and types of values, the pattern of the READ statement must mirror the
pattern of the WRITE statement that produced the record; otherwise, an error will occur. In the following exam-
ple, each record contains three values: a string value, a numeric value, and another string value:

! A new RANDOM file
OPEN #1: NAME “STUFF”, CREATE NEW, ORG RANDOM, RECSIZE 100
...
WRITE #1: name$, age, occupation$

Later on, perhaps in a different program, you can retrieve that information, as follows:
! File already exists
OPEN #1: NAME “STUFF”, ORG RANDOM
...
! True BASIC figures out the RECSIZE by looking at the file.
! CREATE option not needed, or use CREATE old.
...
! The READ statement must mirror the earlier WRITE
READ #1: person$, a, occ$

The READ statement typically reads all the values in the record, and the variable types must match the value
types in the record. However, if the record contains many items and you want only the first few, you may use a
SKIP REST clause in the READ statement  as follows:

READ #1: person$, a, SKIP REST

The SKIP REST clause instructs True BASIC to ignore the remaining values in the record.

Remember that the records within a random file need not have the same shape — they may have different numbers
and types of values of varying lengths (as long as they don’t exceed the record size). For example, a random file that
contains a student’s grade record might contain different information in the first few records:

OPEN #5: NAME “SMYTHE”, ORG RANDOM, ACCESS INPUT
READ #5: last$, first$, middle$, class ! First record
READ #5: street_address$ ! Second record
READ #5: city$, state$, zip$ ! Third record

PRINT “Grade Report for “; first$ & last$; “.  Class of”; class 
DO WHILE MORE #5

READ #5: course$, grade, credits ! Remaining records
PRINT course$; tab(20); grade, credits; “credits”

LOOP
...

Random files are so called because they permit random access. That is, you can access any particular record
regardless of the order in which records were created. The records are automatically numbered starting at 1. The
file pointer normally moves to the next record after a record has been read or written — remember that each READ
or WRITE statement reads or writes an entire record in a random file. But you may also jump around to arbitrary
records within a file using the SET POINTER and SET RECORD statements:

SET #3: POINTER SAME ! Go back to the record just read or written
SET #3: POINTER NEXT ! Skip the current record
SET #3: RECORD r ! Go to record number r

You may also use the keyword RESET as follows:
RESET #3: SAME ! Go back to the record just read or written
RESET #3: NEXT ! Skip the current record
RESET #3: RECORD r ! Go to record number r

Clearly, the last option is the most powerful one. You may find the current file pointer position, or the number of
the current record, with the ASK RECORD statement as follows:

ASK #3: RECORD r

122 True BASIC Language System



As an example, consider a simple computer-based dictionary. Suppose that one random file contains a list of words
and another random file contains the corresponding definitions in the same order. If you open these two files as #1
and #2, respectively, you could look up words as follows:

DO
INPUT PROMPT “Word: “: w$
CALL Find (#1, w$, n)           ! Word in record n
IF n = 0 then

PRINT “Word not found”
ELSE

SET #2: RECORD n             ! Find definition
READ #2: def$
PRINT def$

END IF
LOOP

The program-defined subroutine Find searches file #1 for the word and returns its record number (or 0 if it finds
no word). 

SUB Find (#9, word$, rec)
RESET #9: 1 ! Start at beginning of file
ASK #9: FILESIZE last_rec ! How many records?
FOR r = 1 to last_rec

READ #9: next$ ! Examine each record
IF next$ = word$ then EXIT FOR

NEXT r
IF r > last_rec then LET rec = 0 else LET rec = r

END SUM

If the word is found, the program  jumps to the same record number in file #2 and reads the definition. This is not
possible with text files.

Changing an existing record in a random file is just as easy. Simply jump to the record and use a WRITE state-
ment. You can add to the end of the file by first using:

SET #3: POINTER END

You may also use the MAT READ and MAT WRITE statements to read or write an entire array from or to a ran-
dom file. With random files, the MAT WRITE statement puts all the array elements in the same record, provided
the record is long enough. You may then recover the elements with a MAT READ statement — or with a READ
statement that includes a variable for each element.

Record Files
Record files are like random files, except that you can place only one value — numeric or string — in a record.
Although you will often find that a random file is better suited for a particular task, record files may be used if you
are storing a single item per record.

When used with a record file, a WRITE statement stores each value in a separate record. And a MAT WRITE state-
ment will use as many records as there are elements in the array. For example, the WRITE statement in:

!  A new RECORD file
OPEN #2: NAME “STUFF1”, CREATE NEW, ORG RECORD, RECSIZE 50
...
WRITE #2: name$, age, occupation$

will use three records to store the three quantities. Later, you may retrieve these values with:
READ #2: person$, a, occ$

or with:
READ #2: person$
READ #2: a
READ #2: occ$

123Files for Data Input and Output



The READ statement need not mirror the WRITE statement, but the variable type — numeric or string — must
be correct.
In contrast to a random file, calculating the proper record size for a record file is easy. Each record in a record file
contains four bytes of bookkeeping information. However, since the size of this information is the same for all
records, you do not need to account for it in the record size (as you would for a random file). Thus, the record size
of a record file need only reflect the length of a number (which is 8 bytes) or the length of the longest string value
you expect to store in a single record. Remember that you may freely mix numeric and string values in a single
record file, so the record size must reflect the length of the longest value you plan to store in a record.
————————————————–––———————————————————————
[ ! ] Note: The bytes actually included in the record size are different for random and record files. For ran-

dom files, the record size must include the extra, bookkeeping bytes along with the data bytes. For
record files, however, the record size need include only the length of the data item to be stored. The
bookkeeping bytes are there, but you don’t need to account for them.

—————————————————–––——————————————————————
In all other respects, record files are like random files. They permit random access, and you may use the same SET
and ASK statements to move around and find out information about them.

Byte Files
A byte file is not a special kind of file but rather a way of looking at a file. When a file is viewed as a byte file, it is
considered simply as a sequence of bytes with no special format. That is, True BASIC does not make any assump-
tions about a byte file, and it will not perform any of the “housekeeping” tasks that it performs for other files (other
than advancing the file pointer).
You may view any True BASIC file as a byte file by specifying the ORG BYTE option in the OPEN statement used
to open that file. Indeed, you may view any file as a byte file, including compiled True BASIC programs, files cre-
ated by other applications, or files created on another type of computer or under a different operating system.
As with other internal files, you use READ and WRITE statements to access byte files. The number of bytes read
by a single READ statement depends on the type of variable being read. 
A READ statement used to access a byte file may have only one variable, which is normally a string variable, since
the contents of the file may be any sequence of bytes. Although byte files do not recognize records, True BASIC
uses the current record size to decide how many bytes to read to a string variable. 
You may set the record size using a RECSIZE clause in the OPEN statement, as you would for random or record
files, or you may use a SET RECSIZE statement. Similarly, you may use an ASK RECSIZE statement to find the
current record size of a byte file, as you would for random or record files. Because byte files are reading an arbi-
trary number of bytes, not actual records, you may use the SET RECSIZE statement to change the record size of
a byte file as many times as necessary.
Alternatively, you may specify the number of bytes to be read to a specific string variable by including a BYTES
clause in the READ statement. For example:

READ #7, BYTES 32: y$

would read the next 32 bytes in the file associated with channel #7 into the string variable y$.

This method of overruling the file’s record size within an individual READ statement is commonly used with byte
files, since you may need to read strings of different lengths from a single file. Often, you might want to read an
entire file to a single string, as follows:

ASK #7: FILESIZE fs
READ #7, BYTES fs: y$

If you use a READ statement with a numeric variable, the next eight bytes in the file will be read as a numeric
value stored in the IEEE eight-byte format. When a numeric value is read, the file’s record size is ignored. Like-
wise, the BYTES clause is not allowed in a READ statement that specifies a numeric variable. 

124 True BASIC Language System



If the file pointer is near the end of the file and the number of bytes remaining is less than the current record size,
a READ statement simply reads all the remaining bytes. If the pointer is at the end of the file, however, a READ
statement causes an error.

The WRITE statement may also be used with string or numeric values. With a string value, it writes as many bytes as
there are characters in the string. Numeric values are written to byte files in the IEEE eight-byte format.
———————————————————–––————————————————————
[ ! ] Note:  The IEEE eight-byte representation used to store numeric values in a byte, random, or record

file is identical to the IEEE eight-byte representation produced by the NUM$ built-in function (see
Chapter 18). This means that numbers may be read from a byte file as eight-byte string values and con-
verted to numeric values using the NUM function. This may be a useful alternative to reading those
values directly into numeric variables.

——————————————————————–––—————————————————
Within a byte file, each byte is numbered as if it were a separate record (regardless of the current “record size”)
beginning with 1 at the first byte. Thus, the SET and ASK statements that require or return a record number
actually refer to a byte number. For example, the statement:

SET #3: RECORD 120

when applied to a byte file, moves the file pointer to byte number 120. A program may read any consecutive
sequence of bytes, and it may overwrite any such portion of the file. You may also use the WRITE statement to add
to the end of the file, provided that the file pointer is at the end of the file.

The following examples illustrate some instances when byte files are helpful. The first is a routine that will copy
any file, no matter what its format or content:

SUB FileCopy(from$, to$) ! Copy any file
OPEN #3: NAME from$, ORG BYTE ! Open two files
OPEN #4: NAME to$, CREATE NEWOLD, ORG BYTE
ERASE #4

SET #3: RECSIZE 1024 ! Copy in 1K pieces
DO WHILE MORE #3

READ #3: x$
WRITE #4: x$

LOOP
END SUB

This procedure uses 1024 bytes (1K) as a convenient unit to read and write at one time. (A record size that is a
power of two may allow your program to run faster.) If the file length is not a multiple of this, the last READ will
result in a shorter string x$, but it will cause no error. The new file will have precisely the same content as the old
one.

You may also use byte files to search a file for non-printing characters. Since True BASIC reads all bytes, includ-
ing those such as a line feed, each byte can be identified by its character code. (See the ORD and CHR$ functions
in Chapter 8 “Built-in Functions.”) You could therefore extract the text from any type of file by examining each
byte and keeping only the printing characters, as follows:

SUB Text_extract (from$, to$)
OPEN #3: NAME from$, ORG BYTE ! Open two files
OPEN #4: NAME to$, CREATE NEWOLD, ORG TEXT
ERASE #4

SET #3: RECSIZE 1 ! One byte at a time
DO WHILE MORE #3

READ #3: x$
IF 32<= Ord(x$) and Ord (x$) <=127 then ! Standard printing characters

PRINT #4: x$;
END IF

125Files for Data Input and Output



LOOP
END SUB

Note that this example is presented in the simplest form possible. There is plenty of room for improvement. For
instance, you might read larger sequences of bytes and build up an output string in memory, sending it to the file
only when it reaches a certain length. Each file access takes time, and the fewer times your program accesses a file,
the more quickly it will run.

As an illustration of how byte files can store any type of information, consider how you might store a screen image,
such as a complex diagram. The BOX KEEP statement stores the image displayed within a specified area on the
screen into a string variable, which you can later display with the BOX SHOW statement (as described in Chap-
ter 13 “Graphics”). If you need to save these strings for later display, you can store them in byte files, as in the fol-
lowing program fragment:

SET WINDOW 0,1,0,1
BOX KEEP 0,1,0,1 in keep$
OPEN #5: NAME “Image”, CREATE NEW, ORG BYTE
WRITE #5: keep$

Another program fragment may then retrieve and display the image as follows: 
OPEN #5: NAME “Image”, ORG BYTE
ASK #5: FILESIZE fs ! Number of bytes in file?
READ #5, BYTES fs: keep$ ! Read entire file to string
SET WINDOW 0,1,0,1
BOX SHOW keep$ at 0,0

Byte files in combination with the built-in PACKB subroutine and the built-in UNPACKB function provide an
efficient means of packing information to conserve storage space. As you have seen, numeric values stored in
internal files always occupy eight bytes — whether the value is 0 or 3.7836126523e287. Often, however, your pro-
grams need to store only integers within a specific range. Eight bytes is generally much more storage than is nec-
essary for integers, so storing many integers into an internal file can use much more disk space than would other-
wise be required.

One way to eliminate this waste is to “pack” the integer values into string values, using the PACKB subroutine,
before storing them to the file. The PACKB subroutine allows you to represent an integer value as a specific series of
bits within a string variable. For instance, the following program fragment writes a list of integers into a byte file. It
assumes that each integer fits into 16 bits (integers from 0 to 65,535) and there are n of them in the array list:

LET x$ = “”
LET j = 1

FOR i = 1 to n
CALL Packb(x$,j,16,list(i))
LET j = j+16

NEXT i

WRITE #1: x$

Each integer is packed into x$ using the PACKB subroutine. Once all the numbers have been packed into x$, x$
is written to the byte file.
Rather than maintaining the variable j as the starting bit position within the string x$, you may find it simpler
to use the following trick:

CALL Packb(x$,Maxnum,16,list(i))

If the starting bit position provided to the PACKB subroutine is beyond the end of the string value, the resulting
series of bits will begin next to the last bit in the current string value. In other words, by specifying a ridiculously
large value as the starting bit position, you pack the integer value in list(i) into the 16 bits immediately follow-
ing the end of the current value of x$. This eliminates the need for the variable j to keep track of the bit position.

126 True BASIC Language System



You could recover the resulting list from the byte file using the UNPACKB function as follows:
ASK #1: FILESIZE fs
READ #1, BYTES fs: x$
LET j = 1
FOR i = 1 to Len(x$)/2

LET list(i) = Unpackb(x$,j,16)
LET j = j+16

NEXT i

The first two lines are the standard way of reading an entire byte file into the string. The first statement discov-
ers how many bytes are in the file, and the second reads them all with a single READ statement.

You would save storage and gain speed by packing each number into two bytes (16 bits). Such packing is particu-
larly important for storing large amounts of information. For example, if you have one million “yes/no” replies,
they can be packed into one million bits, or 125,000 bytes. A byte file is the only reasonable way of storing such
information.

Sending Textual Output to a Printer
You may use a printer as you would a text file opened with the ACCESS OUTPUT option. That is, you may send
output to a printer by opening a channel to it and using a PRINT statement with that channel number, but you
may not use any form of INPUT statement with that channel for obvious reasons.

You open a channel to the printer with a special form of the OPEN statement, without any options, as follows:

OPEN #7: PRINTER

After the above statement has been executed, channel #7 will be associated with the printer. Of course, the printer
must be turned on, placed on-line, and properly connected to the computer so that True BASIC is able to use it. If
a printer is not available, True BASIC will generally generate an error.

If the current operating environment has access to more than one printer, True BASIC opens the channel to the
printer that the operating environment identifies as the default choice. Refer to the documentation for your oper-
ating environment for more information.

Once you have associated a printer with a channel number, you may send textual output to it with the PRINT
statement as follows:

OPEN #1: PRINTER
FOR i = 1 to 100

PRINT #1: i ! Prints to temporary spool file
NEXT i
CLOSE #1 ! Spool file sent to printer
END

The OPEN statement associates the specified channel with a special file called a spool file. The spool file is a
temporary file that True BASIC creates automatically on the disk. When you send output to the printer channel,
that output is stored in the spool file, which continues to accumulate output until the printer channel is closed.
Once the printer channel has been closed, True BASIC sends the contents of the complete spool file to the printer
and deletes the spool file from the disk. (The channel is closed by a CLOSE statement or when the program ends.)

A temporary spool file is used because of the prevalence of page-oriented and networked printers. Page-oriented
printers, such as most laser and ink-jet printers, print their output one page at a time, rather than one line at a
time, like most dot-matrix printers. Page-oriented printers often do not behave gracefully when they are sent sin-
gle lines of text at odd intervals. Networked printers often handle the demands of several users at once, and as
such they do not cooperate when one program attempts to claim sole ownership for a significant time. By storing
your output temporarily in a spool file, True BASIC can send the entire output as a single document, avoiding
problems with page-oriented and networked printers.

127Files for Data Input and Output



As with a text file, True BASIC opens a printer with a default margin of 80 characters and a default zonewidth of 16
characters. As with a text file, you may access these settings with the ASK MARGIN, SET MARGIN, ASK
ZONEWIDTH, and SET ZONEWIDTH statements. Beware, however, that most printers have a physical limitation
on the width of the lines that they can print, and setting the margin larger than this value may not have any effect.

Basic Directory Operations
True BASIC statements such as OPEN, READ, PRINT, SET, ASK, and so on open and access files. For dealing
with directories, True BASIC provides the built-in subroutine SYSTEM. This subroutine lets a program find out
the current directory, change it, create and remove directories, rename files, and get information on the contents
of a directory and possibly all its subdirectories. 

The SYSTEM subroutine, however, is complex and not easy to use. Thus True BASIC also includes the ExecLib
library of subroutines that provide easier methods of performing directory operations. This section describes the
use of the ExecLib library of subroutines; for information on the built-in SYSTEM subroutine, see Chapter 18.

To use these convenience routines, you must include a library statement in your program, such as:
LIBRARY “C:\TBSilver\TBLIBS\ExecLib.Trc”   !Use appropriate path name

The ExecLib library contains six subroutines that let your programs find out the current directory, change to a new
directory, create a new directory, and find out about the contents of a directory including all its subdirectories if
desired. A seventh subroutine lets you to rename a file. (Use the True BASIC statement UNSAVE to delete a file.)

Identifying and Changing Directories
The Exec_AskDir and Exec_ChDir subroutines provide the same functionality as the ASK DIRECTORY and
SET DIRECTORY statements. For example:

CALL Exec_AskDir (dir$)

returns the path name of the current directory in the string variable dir$.

Similarly, the Exec_ChDir subroutine:
CALL Exec_ChDir (newdir$)

will change the current directory to the one specified by the contents of newdir$. (This should be equivalent to
using the CD command on most systems.) If  the argument does not specify a valid directory, an error occurs.

As with the SET DIRECTORY statement, when the program terminates the current directory returns to what it
had been before the run began. 

Creating and Deleting Directories
The Exec_MkDir subroutine lets your programs create new directories. For example:

CALL Exec_MkDir (newdir$)

creates a new directory in a location determined by the pathname conventions. If the new directory name contains
a path name that starts at root level, the new directory is placed with respect to that root directory. If the new
directory path name does not start at root level, the new directory will be placed in the current directory. If  the
argument does not specify a valid directory name, an error occurs.

The Exec_RmDir subroutine removes the named directory:
CALL Exec_RmDir (dir$)

Some systems may require that the directory be empty before allowing it to be removed. You could use the
Exec_ReadDir routine described below along with the UNSAVE statement to get the names for all the files in a
given directory and delete them.

If the argument does not specify a valid directory, an error occurs.

128 True BASIC Language System



Finding Out About Files in a Directory
The Exec_ReadDir and Exec_ClimbDir subroutines provide list of names and statistics about the files saved
within a directory. Exec_ReadDir provides information on the files directly saved in the current directory, while
Exec_ClimbDir provides information on the files in the designated directory along with those in subdirectories
within that directory. 

Calls to the routines take the following formats:
CALL Exec_ReadDir (template$, name$(), size(), dlm$(), tlm$(), type$(), vname$)
CALL Exec_ClimbDir (dir$, template$, name$(), size(), dlm$(), tlm$(), type$())

For the template$ argument, you may pass a string to select a subset of files (such as “*.TRU”). Specify an
empty string if you do not wish to limit the search. For Exec_ClimbDir, you must specify the topmost directory
to search in the dir$ argument; Exec_ReadDir searches the current directory.

Most of the information is returned in a series of one-dimensional arrays as follows:

name$() the names of the files (and possibly directories) in the current or specified directory (for
Exec_ReadDir the names are simple names of files in the current directory; for
Exec_ClimbDir the names are returned as full path names)

size() the sizes of the files in bytes

dlm$() the date last modified, in the True BASIC DATE$ function format “YYYYMMDD” where
“YYYY” is the four-digit year number, “MM” is the two-digit month number, and “DD”
is the two-digit day number

tlm$() the time last modified, in the True BASIC TIME$ function format “HH:MM:SS” where
“HH” is the two-digit 24-hour number, “MM” is the two-digit minute number, and “SS”
is the two-digit second number

type$() the type or access permissions given as a four-character string of the form:
“drwx”

where the first character is “d” if the entity is a directory and “-” if it is a file; the second
character is “r” if reading the file or directory is permitted and “-” otherwise; the third
character is “w” if writing or appending to the file or directory is permitted and “-” oth-
erwise; and the fourth character is “x” if the file is directly executable and “-” if not
(directories are not executable)

Renaming Files
You can change the name of existing files with the Exec_Rename routine:

CALL Exec_Rename (oldname$, newname$)

The above statement will rename the file specified in oldname$, giving it the name specified in newname$. If
either oldname$ doesn’t exist or newname$ is not valid, an error occurs.

An Example
The following example shows how you could use some of the ExecLib subroutines to selectively delete or rename
files in a given directory:

LIBRARY “C:\TBSilver\TBLIBS\ExecLib.TRC”   ! Use appropriate path name
DIM name$(1), size(1), dlm$(1), tlm$(1), type$(1)
DIM dirnames$(1)

DO
MAT REDIM dirnames$ (100)
INPUT PROMPT “Give full path name for directory to be examined”: dir$

129Files for Data Input and Output



CALL Exec_ChDir (dir$) ! Change to directory to be removed
CALL Exec_ReadDir (“”, name$(), size(), dlm$(), tlm$(), type$(), vname$)

FOR i = 1 to Ubound(name$)
IF type$(i)[1:1] = “-” then ! A file

PRINT name$(i), size(i), dlm$(i), tlm$(i)
INPUT PROMPT “Rename (r), delete (d), or continue(c)?”: action$
LET action$ = lcase$(action$[1:1])
SELECT CASE action$
CASE “r” ! Rename it

INPUT PROMPT “New name? “: newname$
CALL Exec_Rename (name$(i), newname$)

CASE “d”
UNSAVE name$(i) ! Remove it

CASE ELSE
END SELECT

ELSE ! A directory
LET num_dirs = num_dirs + 1
LET dirnames$(num_dirs) = name$(i) ! Store the name

END IF
NEXT i

IF num_dirs > 0 then ! Subdirectories were found
MAT REDIM dirnames$(num_dirs)
LET num_dirs = 0 ! Reset directory counter
PRINT “The following subdirectories were found within the directory:”
MAT PRINT dirnames$

END IF

INPUT PROMPT “Examine other directories (y or n)?”: more$
IF lcase$(more$[1:1]) = “y” then let flag = 1 ! Repeat loop

LOOP WHILE flag = 1

END

130 True BASIC Language System



CHAPTER

13
Graphics

One of the many advantages to programming in True BASIC is the power and simplicity of its graphics capabili-
ties. Using True BASIC’s various tools, you can easily create complex graphical images to enhance your programs.
And unlike those produced by many other programming languages, the graphics you create with True BASIC pro-
grams will look the same regardless of the operating environment you use.

True BASIC’s PLOT statements draw points, lines, curves, and filled regions. You can use any combination of col-
ors your computer provides, and you may freely mix printing and graphics. You define the coordinate system for
the graphic statements, and you can create several regions or “logical windows” within the physical output area
for graphical or text elements. The user can supply coordinate input to your program as it is running. BOX state-
ments can speed up many graphics operations and animate your drawings. Pictures are subroutines that let you
define graphical components that you may combine and transform to create complex drawing.
This chapter introduces all the above elements of True BASIC’s graphics statements. It introduces physical win-
dows and logical windows, and describes the coordinate systems available with True BASIC. See Chapter 14
“Interface Elements” for details on creating and manipulating physical windows and on the True Controls library
of subroutines for creating graphic and other objects such as menus, scroll bars, radio buttons, and check boxes.

Windows and Coordinate Systems
True BASIC uses two kinds of windows — physical and logical windows — and three coordinate systems — pixel
coordinates, screen coordinates, and user coordinates.
For most of your work with True BASIC graphical statements, you will use user coordinates. Graphical state-
ments place elements in the current display area based on user coordinates. You define the limits of these coordi-
nates with the SET WINDOW statement described below in the section on “User Coordinates.” For quick, simple
graphical output, all you need to do is define the limits of the user coordinates and then use the appropriate graph-
ics statements to draw images within those coordinates. In this simple case, True BASIC uses the full content area
of the output window to display output in the user-coordinate range you define (or, more technically, True BASIC
fits your user-coordinate system into the default logical window that occupies the entire default physical window).
If you are new to graphic programming, you can begin by reading the section on user coordinates below and then
skipping ahead to “Plotting Points and Lines,” returning later to the explanations below.
You can further control the graphical display area, however, by defining specific window areas to display different
ranges of user-coordinates. You do this by creating one or more logical windows within the default physical
window — the standard output window — or by creating additional physical windows for output, which could
in turn have multiple logical windows. The next two sections define physical and logical windows and show how to
use screen coordinates to create logical windows within a physical window. 
You create additional physical windows — and may also position user-interface objects within physical windows
— with pixel coordinates. Pixel coordinates are introduced below. Chapter 14 “Interface Elements” describes
how to create and manipulate physical windows.

Physical Windows vs. Logical Windows 
A physical window in True BASIC is the type of window your operating system uses. These windows occupy a
distinct area of the screen and often have features such as title bars, borders, and scroll bars that  easily identify
them as windows. 

131



When you run a program that produces screen output, True BASIC automatically creates a physical window to dis-
play that output. This window is called the default  physical window, and it is easily visible on the screen.

What you can’t easily see, however, is that True BASIC also creates another window within the default physical
window. This second window has no visually identifying features, such as a title or border. This type of window is
a logical window. The default logical window fills the entire content area of the default physical window; your
user-coordinate system fills this area if you do not define a specific logical window. (The content area of a physi-
cal window is the region that may contain output; it does not include the title bar and scroll bars.) While your com-
puter’s operating system does most of the management of physical windows, True BASIC has exclusive control of
logical windows.

True BASIC uses logical windows to partition a physical window. Logical windows serve two important functions:
(1) they provide a framework for defining user-coordinate systems, and (2) they define a “clipping region” for
graphical output. As described below, you can create several logical windows within a physical window and direct
different output elements to different logical windows.

Chapter 14 “Interface Elements” describes how you can use the True Controls library of routines to create and
maintain numerous physical windows. In this chapter, however, we assume that you are working with only the
default physical window, although you may have several logical windows within that physical window.

————————–––———————————————————————————————
[ ! ] Note: Each logical window must exist within a physical window. Although it is possible to use the

built-in Object routine (see Chapter 19 “Object Subroutine”) to create a physical window that does not
contain a logical window, it is not possible to define a logical window without a physical window. This
chapter defines all logical windows within the default physical window.

————————————–––———————————————————————————

Creating Logical Windows with Screen Coordinates
As noted above, if you do not specifically create a logical window, your output will use the default logical window,
which fills the content area of the default physical window. Although you can accomplish a lot using only the
default logical window, you may sometimes want to define additional logical windows.

You may define any rectangular region of a physical window’s content area as a logical window. The OPEN statement
with the SCREEN keyword creates a logical window within the current physical window, as follows:

OPEN #1: SCREEN left, right, bottom, top

The OPEN statement associates the defined area of the physical window with a specified channel number. Chan-
nel numbers always consist of a pound sign (#) followed by a number from 1 to 999 (or a numeric expression that
evaluates to such a value). Channel #0 is reserved for the default logical window, which is always open. After you’ve
opened a logical window, you must always refer to it by its associated channel number. 

The four numeric values following the keyword SCREEN define an area of the physical window. They use screen
coordinates to represent the positions of the left, right, bottom, and top edges of the logical window within the
physical window. Screen coordinates are used exclusively for positioning logical windows. In this coordinate sys-
tem the point (0, 0) is always in the lower, left corner of the physical window’s content region. The upper, right cor-
ner is always the point (1,1). Thus, the x-axis (horizontal axis) of the physical window ranges from 0 (at the left
end) to 1 (at the right end), and the y-axis (vertical axis) ranges from 0 (at the bottom) to 1 (at the top). 

You may define any region of the physical window as a logical window by giving the locations of its edges as val-
ues between 0 and 1, inclusive, in an OPEN statement. For instance, the example:

OPEN #7: SCREEN .5, 1, 0, .3

opens a logical window that occupies the lower right corner of the content area of the physical window and associ-
ates this logical window with channel #7. 

132 True BASIC Language System



True BASIC Screen Coordinates
——————————————————————————————————————

——————————————————————————————————————

The CLOSE statement closes channels associated with logical windows (or files or printers) For instance, the
statement:

CLOSE #7

would close the logical window associated with channel #7.
You may not use a channel number that is already open to open a logical window, but you may reuse channel num-
bers after they have been closed. Also, True BASIC does not allow more than 25 open channels at any one time (not
counting #0 which is always the default logical window). Thus, when your program no longer needs a logical win-
dow, it should close it to make that channel available for reuse. (Note that files and printers also use channel num-
bers, see Chapter 12 “Files for Data Input and Output.” A channel number may be associated with only one open
item; that channel must be closed before it can be reused for another item.)
Following an OPEN statement, the logical window just created will be the current logical window where True
BASIC will send subsequent output (either textual or graphical). Only one logical window can be the current log-
ical window at any one time. To change the current logical window, use the WINDOW statement. For instance, to
switch to the logical window associated with channel #7, use:

WINDOW #7

Or, if you have opened four logical windows using channels #1 through #4, the following code:
FOR n = 1 to 4 ! Window number

WINDOW #n ! Switch window
PRINT “Window”; n

NEXT n

will label each of the logical windows. 

True BASIC remembers each logical window’s currently selected options (as described below); when the program
switches to a logical window, all options defined for that window are available.
The default logical window is always associated with channel #0 and cannot be closed. Therefore, you can always
return to this window with the statement:

WINDOW #0

If you need to find out the screen coordinates that define the location of the current logical window, you can use the
ASK SCREEN statement:

ASK SCREEN left, right, bottom, top

This assigns the screen coordinates of the current logical window to left, right, bottom, and top.

Screen Coordinates

1

.3

0
.5

WINDOW #7

0 1

133Graphics



User Coordinates
Each logical window has a user-coordinate system used by True BASIC’s various plotting statements to position
output within the logical window. This coordinate system is defined by a range of values along the horizontal edge
or x-axis of the window combined with the range of values along the vertical edge or y-axis of the window. Most
graphical operations described in this chapter use user coordinates. You can define any point within the logical
window simply by specifying its position in relation to both axes. A point’s position along the x-axis is its x-coor-
dinate, and its position along the y-axis is its y-coordinate. Thus, any point may be identified by its x- and y-coor-
dinates.
When a logical window is first opened, it has a default user-coordinate system in which the x-axis ranges from
0 (on the left) to 1 (on the right) and the y-axis ranges from 0 (at the bottom) to 1 (at the top). Thus, by default, the
user-coordinate point (0, 0) is the lower, left corner of a logical window, and the point (1,1) is the upper, right cor-
ner of the window.
You may change a logical window’s user-coordinate system to anything you wish with the SET WINDOW state-
ment. For example:

SET WINDOW 0, 2*pi, -1, 1

specifies that the values along the x-axis range from 0 (on the left) to 2π (on the right) and the values along the y-
axis range from –1 (at the bottom) to 1 (at the top). This user-coordinate system would be suitable for plotting a
sine curve. If you wanted to graph population data (in millions) between 1900 and 1990, you might use the follow-
ing coordinates:

SET WINDOW 1890, 2000, -30, 300

Notice how these coordinates define an area slightly larger than the graph itself, allowing room for labels. 

Remember that each logical window you create has its own user-coordinate system. Thus, if you open several dif-
ferent windows, you may want to specifically set their user-coordinate ranges:

OPEN #1: SCREEN .5, 1, 0, .4               ! Lower right portion
SET WINDOW -10, 10, -10, 10                ! Define coordinate system

OPEN #2: SCREEN .5, 1, .5, 1               ! Upper right portion
SET WINDOW -1, 11, -5, 100                 ! Define coordinate system

You will usually find that your code will be easier to understand if you place the SET WINDOW statement imme-
diately after the OPEN statement. However, True BASIC does not require this; you may use a SET WINDOW
statement at any time to change the user coordinates of the current logical window.

You can find the current user-coordinate ranges of the current logical window with the ASK WINDOW statement:
ASK WINDOW left, right, bottom, top

This example would assign the user coordinates of the current logical window to left, right, bottom, and
top.

User coordinates provide great power and flexibility. You may specify any axes range you wish including ranges
from larger to smaller values. In fact, the only limitation of the SET WINDOW statement is that the values of the
left and right ends of the x-axis may not be equal, nor may the values of the top and bottom ends of the y-axis. You
will find that most graphical applications are easy to implement when you can choose a coordinate system suited
to your needs.

The user-coordinate system adapts itself as the size or shape of the logical window changes. Regardless of the size
or shape of the logical window, its user-coordinate range will remain the same — units along the axes are stretched
or condensed so that the defined ranges always fill the current logical window. This greatly simplifies graphical pro-
gramming in varied environments, since programs can draw equivalent images in logical windows of any size and
shape on any computer without changes to the source code. This is a significant advantage over the third type of
coordinate system available within True BASIC — pixel coordinates.

134 True BASIC Language System



Pixel Coordinates
Each physical window has a pixel-coordinate system in addition to the screen-coordinate system used to define log-
ical windows.

The word “pixel” is an abbreviation of the phrase “picture element,” and it refers to the units that form images on
the computer screen. A computer screen is divided into a very fine grid of a very large number of rectangles. By
changing the color of some of these rectangles, the computer displays “pictures” on the screen, thus the rectangles
are called picture elements or pixels.

A pixel-coordinate system is, therefore, another way of identifying points within the content area of a physical
window. Each point has two pixel coordinates. The first represents the point’s location as a number of pixels from
the left edge of the window, and the second represents the point’s location as a number of pixels from the top edge
of the window. (Note that pixel coordinates start from the top edge, while screen coordinates and user coordinates
begin at the bottom edge.)

Everything displayed on a computer screen is a pattern of pixels of various colors, but not all computer screens dis-
play the same number of pixels. The number of horizontal and vertical pixels determines the screen’s resolution.
Pixel-coordinate ranges therefore vary depending upon the resolution of the current computer hardware, the com-
puter’s operating environment, and the size of the physical window in relation to the full screen. 

Because they can vary so easily, pixel-coordinate systems are less desirable than user-coordinate systems for most
types of graphics. True BASIC graphical statements described in this chapter automatically translate user coor-
dinates into pixel coordinates, thus you need not worry about pixel coordinates when using them. Most of the inter-
face objects described in Chapter 14 “Interface Elements” also let you use user coordinates if you wish, but there
are times when you might wish to use pixel coordinates directly.

You may also define a user-coordinate system to mimic pixel coordinates. To do so use the ASK PIXELS state-
ment, which reports the number of pixels within the current logical window in the horizontal and vertical direc-
tions, along with the SET WINDOW statement. For example:

ASK PIXELS hpix, vpix
SET WINDOW 0, hpix-1, vpix-1, 0

Notice that the vpix value sets the bottom range of user coordinates. In pixel coordinates “bottom” is always
greater than “top” because pixels are counted from the top edge.

Aspect Ratios
You may be disappointed when you ask True BASIC to draw a circle or a square; a square may look like a rectan-
gle, and a circle may look like an ellipse (or oval). Getting square squares and round circles can be tricky as it
involves adjusting the aspect ratio of the current logical window. 

The aspect ratio of a window compares the distance of a horizontal line segment to an equivalent vertical line seg-
ment — in user-coordinate units. When a window’s aspect ratio is 1, equivalent horizontal and vertical lines will
appear to be the same length, and as a result squares will look like squares and circles will look like circles. 

Since most computers today have square pixels, you can adjust the aspect ratio of a window by matching the x to
y ratios for pixel and user coordinates. For the current logical window for example, the following code would set up
a user-coordinate system with the origin (0,0) in the center of the window and with an aspect ratio of 1:

ASK PIXELS hpix, vpix
LET pratio = hpix/vpix ! Find x to y ratio for pixels
LET vrange = 20
LET hrange = 20 * pratio ! x to y ratio for user coordinates will

! = pixel ratio
SET WINDOW -(hrange/2), (hrange/2), -(vrange/2), (vrange/2)

135Graphics



Plotting Points and Lines
The PLOT POINTS and PLOT LINES statements let you draw points or lines on the screen. For example, the
following statement plots the corners of an isosceles triangle:

PLOT POINTS: 1,1; 3,1; 2,2

And the following draws the sides of the triangle:
PLOT LINES: 1,1; 3,1; 2,2; 1,1

In the PLOT LINES statement the first point must be repeated at the end so that the last point connects to the
original one. Notice that both statements have a colon after the keywords, before the list of points.
If the statement is quite long, you can divide it into more than one statement. But for PLOT LINES, each state-
ment other than the last must end with a semicolon to indicate that the lines should be connected:

PLOT LINES: 1,1; 3,1;
PLOT LINES: 2,2; 1,1

The following program draws fifty randomly chosen points:
SET WINDOW 0, 1, 0, 1 ! All points between 0 and 1 for each axis
FOR n = 1 to 50

PLOT POINTS: Rnd, Rnd ! Random point
NEXT n

END

Replacing the PLOT POINTS statement with:
PLOT LINES: Rnd, Rnd; ! Random lines

will produce a random zig-zag pattern.

You may use the PLOT statement as an abbreviation for either the PLOT POINTS or PLOT LINES statement.
If you are plotting unconnected points, however, you must place each coordinate-pair on a separate PLOT state-
ment. For example, to draw the points of a triangle you would need three statements:

PLOT 1,1
PLOT 3,1
PLOT 2,2

A semicolon between or after coordinate pairs on a PLOT statement connects the points with lines. Thus, a trian-
gle could be drawn with the statement:

PLOT 1,1; 3,1; 2,2; 1,1

Similarly, the random points in the loop above could be drawn with:
FOR n = 1 to 50

PLOT Rnd, Rnd ! Random point
NEXT n

and the random lines with:
FOR n = 1 to 50

PLOT Rnd, Rnd; ! Random lines
NEXT n

Notice that there is no colon in a PLOT statement. 

Although, True BASIC can draw only straight lines between two points, you can plot a curved line as a series of sev-
eral short lines. As an example, look at the following code segment that prints a table of the sine function:

FOR x = 0 to 2*Pi step .1 ! Use built-in functions Pi and Sin
PRINT x, Sin(x)

NEXT x

Just changing the PRINT statement to a PLOT statement will plot the corresponding points (in a suitable user-
coordinate system). And adding a semicolon at the end of the PLOT statement will plot the sine curve:

136 True BASIC Language System



SET WINDOW 0, 2*Pi, -1, 1
FOR x = 0 to 2*Pi step .1

PLOT x, Sin(x); ! Plot sine curve
NEXT x
PLOT ! Stop connecting points

END

A PLOT statement with no coordinate pair and no punctuation, sometimes called a vacuous PLOT statement,
starts a new line or curve. This is analogous to a PRINT statement with nothing after it. Thus, the above program
uses a vacuous PLOT statement after the NEXT statement in case it later plots another point or line. Without a
vacuous PLOT, the last point of the sine curve would be connected to the next point plotted. While it is not essen-
tial in this example, it is a good habit to use vacuous PLOT statements to avoid stray lines when expanding or
maintaining your programs. 
In the previous example, the entire curve will be visible. If, however, the user coordinates did not include the entire
range, the curve would be clipped at the logical window boundary. That is, only the part of the curve that lies
within the window is drawn. For example, with the user coordinates:

SET WINDOW 0, 2*Pi, 0, 1

only the top half of the curve would be visible. No error results; the entire curve is “drawn,” but that portion out-
side the bounds of the current logical window is not shown. 
Note that all plotting is performed using the current color, as explained later in this chapter.
If you want to plot many points, it may be convenient to compute the coordinates first and store them in an array.
The array must be two-dimensional, with one row for each point and exactly two columns. The first column con-
tains the x-coordinates and the second contains the corresponding y-coordinates. The statements MAT PLOT
POINTS and MAT PLOT LINES work like the corresponding PLOT statements, plotting points or lines con-
tained in the array named with the statement. 
For example, the following program plots a sine curve by first storing the values in an array and then using MAT
PLOT LINES to plot the points in the array: 

SET WINDOW 0, 2*Pi, -1, 1
DIM sincurve (100,2)

FOR x = 0 to 2*Pi step .1
LET point = point + 1
LET sincurve (point,1) = x ! Store values in array
LET sincurve (point,2) = Sin(x)

NEXT x

MAT redim sincurve(point,2) ! Remove any uncomputed points
MAT PLOT LINES: sincurve ! Plot values in the array

END

Plotting Areas
The PLOT AREA statement draws the outline of a region (which may be quite complex) and colors its interior in
the current foreground color. It works very much like the PLOT LINES statement, but, since the region must be
enclosed, it automatically connects the last point to the first. Thus:

PLOT AREA: 1,1; 3,1; 2,2

will draw a triangle and fill it in. If the boundaries of the region cross each other, it is not obvious which points are
on the inside. True BASIC uses a standard mathematical solution of this problem. 
You can also color an area with the FLOOD statement. After you have drawn the boundaries of a region, you may
color a contiguous piece of it with the statement:

FLOOD x, y

137Graphics



Flooding uses the current foreground color starting from the point x, y and continuing out to the boundaries,
which are identified by any color different from the original color of the point x, y. You may color different areas
by using several FLOOD statements. To color the exterior, use a coordinate point outside the region. 
———————————–––————————————————————————————
[ ! ] Note: If the color on the screen is a dithered color, FLOOD will not work correctly. Colors need to be

solid (realizing them if necessary) for FLOOD to work correctly. 
———————————————————–––————————————————————

As mentioned above for plotting points, you can store and plot coordinates in two-dimensional arrays. The first
column of the array must contain the x-coordinates and the second, the corresponding y-coordinates. The MAT
PLOT AREA statement works like the PLOT AREA statement for each coordinate pair in the array. The fol-
lowing program produces the picture shown below:

DIM points(201, 2)
SET WINDOW -1, 1, -1, 1

FOR t = 0 to 2 step .01 ! Compute points
LET c = c+1 ! Count points
LET points(c,1) = Sin(3*t*Pi) ! x-coordinate
LET points(c,2) = Cos(5*t*Pi) ! y-coordinate

NEXT t

MAT PLOT AREA: points ! Draw and fill in

END

MAT PLOT AREA Example
——————————————————————————————————————

——————————————————————————————————————
See the section below on “Box Statements and Animation” for additional statements that can quickly draw or fill
simple shapes.

Mixing Text and Graphics
Logical windows may contain text as well as graphics. In fact, they are often used exclusively for text. To print text
to a logical window, you may use the standard PRINT statement or the more flexible PLOT TEXT statement.
Output from a PRINT statement goes to the current logical window. Each logical window maintains its own text cur-
sor position, margin, and zone width. Thus, the SET CURSOR, SET MARGIN, and SET ZONEWIDTH state-

138 True BASIC Language System



ments (plus their associated ASK statements and the ASK MAX CURSOR statement) apply to the current logical
window. As you switch between logical windows, subsequent PRINT statements in each window will send output to
that window’s current text cursor position. (See Chapter 3 “Output Statements” for information on these statements.)

When the text cursor reaches the bottom of a logical window, the contents of that window scroll up to make room
for a new line, and the topmost line is lost. Text, like graphics, may be clipped at logical window boundaries if the
margin is greater than the width of the logical window. Lines that are too wide to fit within the current margin will
be wrapped to the next line; since True BASIC sets an appropriate margin for any logical windows you create, text
will normally be wrapped at the window boundary. However, if you reset to a wider margin, that part of a text line
that extends beyond the window boundary will be clipped. 
———————————————————–––————————————————————
[ ! ] Note: Operating environments with graphical user interfaces generally do not support automatic text

scrolling as efficiently as the text-only environments prevalent during much of True BASIC’s evolution.
Reliance on True BASIC’s automatic text scrolling may not produce fully satisfactory results. If you
encounter such a situation, you may be able to produce more pleasing results by handling the scrolling of
text yourself (see Chapter 14 “Interface Elements”) or avoiding it altogether.

—————————————————————–––——————————————————
Despite its usefulness for many simple tasks, the PRINT statement is limited to specific cursor locations within
a logical window. Thus, you may prefer the PLOT TEXT statement when combining text with graphics.

The PLOT TEXT statement is more convenient because it positions text output using the graphical user-coordi-
nate system. For example, the statement:

PLOT TEXT, AT x, y: “Sine curve”

places the text label “Sine curve” at the coordinate point x, y. 

PLOT TEXT can print only string values, but you can easily convert numbers into strings using the STR$ or
USING$ functions (see Chapter 8 “Built-in Functions”). For example:

PLOT TEXT, AT 1990, y: Str$(y)

or
PLOT TEXT, AT x, y: Using$(“##.##”, y)

The PLOT TEXT statement normally places the lower-left corner of the text at the point defined by x, y. How-
ever, you can use the SET TEXT JUSTIFY statement to control the alignment of the text at the defined point.
The general form of the SET TEXT JUSTIFY statement is:

SET TEXT JUSTIFY horiz$, vert$

For horiz$ you may use one of the values “LEFT”, “CENTER”, or “RIGHT” to indicate a point along the length
of the text; for vert$ you indicate a point in the height of the text as “TOP”, “HALF”, “BASE”, or “BOTTOM”.
The “bottom” of the text is the lowest point (or descender) of any character, while the “base” of the text refers to its
baseline, or the line along the lowest points of uppercase characters. 

SET JUSTIFY  Values
——————————————————————————————————————

——————————————————————————————————————
For example, if you want to center the lowest point of the text at a specified point, you should use:

SET TEXT JUSTIFY “center”, “bottom”

before using the PLOT TEXT statement. 

left center right

Justify That Text!half
bottom base

top

139Graphics



The text alignment established by a SET TEXT JUSTIFY statement remains in effect for all subsequent PLOT
TEXT statements until another SET TEXT JUSTIFY statement is encountered. The SET TEXT JUSTIFY
statement controls the alignment of PLOT TEXT output only; it has no effect on the alignment of PRINT state-
ment output.

The statement:
SET TEXT JUSTIFY “left”, “base”

returns to the default alignment that True BASIC uses, and the statement:
ASK TEXT JUSTIFY horiz$, vert$

lets your program find the current text alignment.

Consider an example. The following program draws the values of the array profit as a bar chart and labels the
years. It centers the label at the specified point and uses the STR$ function to convert numeric values to string.
(The SET COLOR statement is described below.)

SET WINDOW 1975, 1989, -10, 100
SET COLOR “GREEN”
PLOT 1975,0; 1989,0 ! Axis

SET TEXT JUSTIFY “LEFT”, “HALF” ! Position label
FOR y = 1975 to 1988

SET COLOR “YELLOW”
BOX AREA y, y+.5, 0, profit(y) ! Bar
SET COLOR “red”
PLOT TEXT, AT y+.25, 1: Str$(y) ! Label

NEXT y

END

Whether you use text, graphics, or a combination of both, you can clear the contents of a logical window with the
CLEAR statement:

CLEAR

The CLEAR statement erases the contents of the current logical window, filling it with the current background
color and repositioning the window’s text cursor in the upper-left corner. The window’s margin, zone width, beam
state (whether or not a line will be drawn to the next PLOT point), and graphics cursor position are not changed.

Using Colors
True BASIC lets you use any color available in your computer’s operating environment. At any given time, you
may work with  two colors — a foreground color and a background color.

The foreground color is used for objects drawn on the screen including points, lines, and text. By changing the
foreground color between plotting or print statements you can produce multi-colored output. The background
color is used behind text produced by the PRINT statement and when the window is cleared.

The SET COLOR statement establishes the foreground color.  There are two forms of this statement; one takes a
string and the other takes a number. When used with a string, as in:

SET COLOR “RED”

the SET COLOR statement sets the current foreground color to the  named color After the above statement, all
drawing and printing will be in red until a new SET COLOR statement is executed.

The available color names are:
RED MAGENTA YELLOW

GREEN BLUE CYAN
BROWN WHITE BLACK

BACKGROUND

140 True BASIC Language System



The value of a string expression used with the SET COLOR statement must evaluate to one of these names; oth-
erwise an error occurs. If your computer does not provide all these colors, True BASIC will use another color. For
example, red may be used in place of magenta, or vice versa. 

Although there are only ten color names, most computers can display many more colors. The second form of the
SET COLOR statement uses a numeric value to specify the foreground color, as follows:

SET COLOR 12

The default foreground color is color number -1 (black); the default background color is -2 (white). True BASIC also
initially defines color numbers 0 through 15; the rest are set to black. Your computer, however, may likely be able
to produce many more colors. The ASK MAX COLOR statement will tell you how many colors your computer can
simultaneously display. See the next section on “Making Custom Colors” to learn how to define additional color
numbers.

You may also specify color numbers as string values. Thus, the following two statements are equivalent:
SET COLOR “1”
SET COLOR 1

You can find out the current foreground color with the ASK COLOR statement. It too has a string form and a
numeric form, as follows:

ASK COLOR cname$
ASK COLOR cnumber

True BASIC assigns the name or number of the current foreground color to the specified variable. If you ask for a
string variable and the current color is not one of the official color names, True BASIC assigns a null string to the
variable.

The color numbers that correspond to color names vary among computer operating environments. You can use the
ASK COLOR statement to find out the color number assigned to a particular color name as follows:

SET COLOR “RED”
ASK COLOR red

These statements first set the current color to “RED” and then assign the corresponding color number to the vari-
able red.

The SET BACK (or SET BACKGROUND COLOR) statement establishes the background color. As with the
SET COLOR statement, it may take a string or numeric value. The same color names and rules for the string
expression apply to the SET BACK statement as for the SET COLOR statement. 
The specified background color will be used to surround subsequent printed text and to clear regions of the screen
until a new SET BACK statement is executed. Any existing background is not affected, however, until it is cleared
or printed on.
You can find out the current background color with the ASK BACK (or ASK BACKGROUND COLOR) statement,
which like ASK COLOR has both string and numeric forms:

ASK BACK bname$
ASK BACK bnumber

If you ask for a string variable and the current color is not one of the official color names, True BASIC assigns a
null string to the variable.
The color name “BACKGROUND” represents the current background color. For example, the statement:

SET COLOR “BACKGROUND”

sets the current foreground color to match the current background color. By drawing or redrawing an image in the
current background color, you can easily erase or cut a hole in a previously drawn image.
You may simultaneously change current color and background color as follows: 

SET COLOR “BLUE/WHITE”

141Graphics



for drawing or printing in blue on a white background.

To better understand the use of colors, consider the following program that draws blue axes and a red curve on a
yellow background:

SET WINDOW -1, 10, -3, 3

SET BACK “YELLOW”
CLEAR                           ! Re-paint background with new color

SET COLOR “BLUE”
PLOT 0,0; 10,0                  ! x-axis
PLOT 0,-3; 0,3                  ! y-axis

SET COLOR “RED”
FOR x = .1 to 10 step .1        ! Draw curve

PLOT x, Log(x);
NEXT x

END

The CLEAR statement is needed to erase the entire logical window and re-draw it in the new current background
color. Without the CLEAR statement the axes and curve would be drawn on the default background color.

Making Custom Colors
Your computer can probably display many more colors than the 16 color numbers (0 through 15) initially defined
by True BASIC. The ASK MAX COLOR statement:

ASK MAX COLOR m

will assign to m the number of colors your computer can display simultaneously. You can use the SET COLOR
MIX statement to define any available color number.

A computer screen displays colors by directing beams from “color guns” at the phosphor coating on the screen. The
nature, intensity, and combination of these beams determine the precise color they produce. There are three such
color guns — red, blue, and green — and all can be directed at any single pixel on the screen. By controlling the
intensity of the beams from each color gun, you can control the colors displayed on the screen.

The SET COLOR MIX statement gives you control of these beam intensities, as follows:

SET COLOR MIX (colornum) red, green, blue

For colornum, you specify a number for the color you want to create. You may choose any number between 0 and
the value returned by the ASK MAX COLOR statement. Note, however, that a single color number may repre-
sent only one color at a time; when you associate it with a new color, any existing color is replaced.

You define the color for colornum by specifying the intensity levels of the red, green, and blue color guns.
The intensity levels can vary between 0 and 1, where 0 is off and 1 is full intensity. Thus,

SET COLOR MIX (14) 0, 0, 0

associates pure black with color number 14 (since all the color guns are off), and
SET COLOR MIX (13) 1, 1, 1

associates pure white with color number 13 (since all the color guns are at full intensity). Likewise, you can use
values between 0 and 1 to create different colors:

SET COLOR MIX (2) 1, 1/3, 0 ! Color 2 is orange
SET COLOR MIX (5) 0, 0, 1 ! Color 5 is bright blue

By varying intensity values, you can create any color your current operating environment can display. If your sys-
tem cannot display the exact color intensities you specify, True BASIC uses the color closest to the defined mix.
Thus, very small changes in the values of red, green, and bluemay not produce different colors. 

142 True BASIC Language System



True BASIC selects a color mix for each legal color number, including (if possible) the nine colors that have names.
To find out the current mix for a color number, use the ASK COLOR MIX statement:

ASK COLOR MIX (colornum) red, green, blue

This places the color intensities for color number colornum into red, green, and blue.
If you mix your own colors, we advise that you avoid the lower numbers or use color numbers (and not color names)
throughout your program. When you use a color name, True BASIC establishes a new color mix for its corre-
sponding color number. Thus, if you have established a custom color and then use a color name that happens to
correspond to that same color number, your custom color will be replaced by the color name.

BOX Statements and Animation
You can draw simple shapes quickly and animate your drawings with BOX statements. Each BOX statement
operates on a rectangular region of the screen called its bounding rectangle. This bounding rectangle is speci-
fied as four values in user coordinates representing its left, right, bottom, and top edges:

BOX LINES left, right, bottom, top ! Draw rectangle
BOX AREA left, right, bottom, top ! Draw filled rectangle
BOX CLEAR left, right, bottom, top ! Erase rectangle
BOX CIRCLE left, right, bottom, top ! Inscribe an ellipse within rectangle
BOX ELLIPSE left, right, bottom, top ! Inscribe an ellipse within rectangle
BOX DISK left, right, bottom, top ! Inscribe a filled ellipse within rectangle

The BOX LINES statement draws the outline of its bounding rectangle in the current foreground color. The BOX
AREA statement fills its bounding rectangle with the current foreground color. The BOX CLEAR statement fills
its bounding rectangle with the current background color, effectively erasing its contents. The BOX CIRCLE
statement (which is identical to BOX ELLIPSE) draws the outline of the circle (if the bounding rectangle is a
square) or ellipse (if it is not) inscribed within its bounding rectangle. The BOX DISK statement fills the circle or
ellipse inscribed within its bounding rectangle with the current foreground color.
While many of these BOX statements can be reproduced using PLOT, PLOT AREA, or FLOOD statements, the
BOX statements execute faster and are easier to use. For example, the following program draws six rectangles, each
inside the previous one, and each in a different color. If the logical window is square, the result will be six squares. 

SET WINDOW -6, 6, -6, 6
FOR n = 6 to 1 step -1

SET COLOR n
BOX AREA -n, n, -n, n

NEXT n

GET KEY k
END

BOX AREA Example
——————————————————————————————————————

——————————————————————————————————————

143Graphics



You can use BOX LINES to easily “frame” a window:
ASK WINDOW left, right, bottom, top     ! Get user coordinates
BOX LINES left, right, bottom, top      ! Draw “frame” around window

Note that the same four numbers are used, in the same order. The next series of statements draws a circle (or
ellipse) in one color and fills it with a different color:

SET COLOR “RED”
BOX CIRCLE 1, 3, 6, 8
SET COLOR “GREEN”
FLOOD 2, 7

The FLOOD statement uses a point in the middle of the figure to color the area. If you want the outline and the
interior to be the same color, the BOX DISK statement is faster.

Saving and Showing Screen Images
The BOX KEEP and BOX SHOW statements let you store and redisplay rectangular regions of the screen. The
BOX KEEP statement “memorizes” the contents of its bounding rectangle, storing the image in an image string.
The BOX SHOW statement displays a stored image string (in its original shape and size) at any location in the
window. You can produce animation by alternating BOX SHOW and BOX CLEAR statements to move a draw-
ing or series of drawings across the screen.

For example, suppose that your program has drawn a picture of a dog that you want to display again later in the
program. You can use the BOX KEEP statement:

BOX KEEP 2,4,7,9 IN dog$

to save the rectangular area containing the dog picture in the string variable dog$. You can then redisplay this
image using the BOX SHOW statement. The statement:

BOX SHOW dog$ AT 5, 8

would redisplay the image stored in dog$ with its lower, left corner at the point (5, 8). The displayed image will
be the same size and shape as the rectangular region saved by the BOX KEEP statement.

If you combine the BOX KEEP and BOX SHOW statements with the BOX CLEAR statement, you can simulate
movement on the screen. As an example, consider the following program, which shoots an arrow across the screen: 

SET WINDOW 0, 10, 0, 20

PLOT 0,9; 1,9 ! Draw arrow
PLOT .6,8; 1,9; .6,10
PAUSE 1
BOX KEEP 0, 1, 8, 10 IN arrow$ ! Memorize it

LET x = 0
FOR move = 1 to 50 ! Move in small steps

PAUSE 0.1 ! Slow it down
BOX CLEAR x, x+1, 8, 10 ! Erase old
LET x = x + .2
BOX SHOW arrow$ AT x,8 ! Draw at new position

NEXT move

END

You could create more complex animation with several slightly different image strings. For example if you had
images of a dog with its legs in different positions, you could save each as a separate image. You could then have
the dog walk across the screen by showing and clearing each image in rapid sequence.

You can store BOX KEEP images in byte files for use by other programs. For example, you could write the
arrow$ image to a file as follows:

144 True BASIC Language System



OPEN #8: name “arrow.tru”, org byte, create newold
ERASE #8  ! Be sure file is empty
WRITE #8: arrow$
CLOSE #8

Another program could then read and display that image as follows:
OPEN #4: name “arrow.tru”, org byte
ASK #4: FILESIZE fs ! Find number of bytes in file
READ #4, BYTES fs: image$ ! Read entire file
CLOSE #4
BOX SHOW image$ AT 0,.5

For more information on byte files, see Chapter 12 “Files for Data Input and Output.”

BOX SHOW USING Effects
The BOX SHOW statement may also take the following extended form:

BOX SHOW image$ AT x, y USING option

where option may be any value from 0 to 15, inclusive. Each value of option produces a different result in
displaying the designated image. The nature of this result depends both on the contents of the image string being
displayed and the current contents of the rectangular region on the screen. These options can produce reverse
images and spectacular color effects.

The following table summarizes the 16 available options, which are explained below. The first column shows the
option, and the others show the resulting bit-value, depending on the bit in image$ and the corresponding bit
currently displayed on the screen.

Numeric BOX SHOW Options
——————————————————————————————————————

Bit in BOX SHOW string: 0 0 1 1
Bit on screen: 0 1 0 1

————————————————————————————————
0 0 0 0 0
1 (AND) 0 0 0 1
2 0 0 1 0

U 3 0 0 1 1
S 4 0 1 0 0
I 5 0 1 0 1
N 6 (XOR) 0 1 1 0
G 7 (OR) 0 1 1 1

8 1 0 0 0
C 9 1 0 0 1
O 10 1 0 1 0
D 11 1 0 1 1
E 12 1 1 0 0

13 1 1 0 1
14 1 1 1 0
15 1 1 1 1

——————————————————————————————————————
Three of these options represent common logical operations and have names. You can use AND instead of 1, OR
instead of 7, and XOR instead of 6. 

The interpretation is simplest if only one color is available and therefore the “color” of a pixel is represented by one
bit, 0 or 1, off or on. Under the AND option, a bit is 1 if it is 1 in image$ and also 1 on the screen. The common

145Graphics



part of the two images is displayed. Under the OR option a bit is 1 if either bit was 1, therefore a combination of the
two images is displayed. The XOR (exclusive or) option equals 1 if image$ or the screen had a 1 in this position,
but not both; it produces a combination of the non-overlapping regions of the images.

USING 3 is equivalent to a BOX SHOW statement without any option (i.e. the BOX SHOW string bit takes prece-
dence over what was on the screen), while USING 0 is the same as BOX CLEAR. USING 12 ignores the screen
but displays a reverse image of the show string. For example, if it was black-on-white, it is shown white-on-black.

If more than one color is available, the color value of each pixel is coded by more than one bit. The options still
apply, combining corresponding bits of the color codes. Working out the effect of each option is trickier. For exam-
ple, if there are 16 colors, a four-bit code is used. Say that image$ has color five for one pixel (coded 0101) while
the screen has color six (0110). Then the AND option produces color four (0100), the OR option produces color seven
(0111), the XOR option produces color three (0011), and option 12 produces color ten (1010). Some experimentation
with the options is recommended when working with colors.

Using Pictures
True BASIC provides special subroutines for graphics, called pictures. For instance, if you want to create several
hexagons, you could define a picture and simply draw that picture when needed rather than repeat the PLOT
statements each time. Pictures are more flexible than either subroutines or BOX KEEP images because you can
transform them geometrically. When you draw a picture you can rotate it, change its scale, tilt it, or move it any-
where on the screen. 

PICTURE structures are defined just like subroutines, except that they begin with a PICTURE keyword and end
with an END PICTURE statement. A picture has a name, may have parameters, may be internal or external, and
may be placed in a library file.

A simple example is a picture that draws axes for the current logical window:
PICTURE Axes

ASK WINDOW left, right, bottom, top ! Find user-coordinate range
PLOT left,0; right,0 ! x-axis
PLOT 0,bottom; 0,top ! y-axis

END PICTURE

You invoke a picture with a DRAW statement:
DRAW Axes

The EXIT PICTURE statement corresponds to the EXIT SUB statement and immediately returns control to the
line following the DRAW statement. 
Pictures may include most valid True BASIC statements, including DRAW statements to invoke other pictures.
However, a picture cannot open a logical window or set user coordinates — this must be done in the invoking pro-
gram. Pictures can use WINDOW statements to switch to existing windows, and you can pass channel numbers
to pictures as parameters.
Here’s a picture that uses a parameter to draw a regular polygon with s sides inscribed in a unit circle. The poly-
gon is centered about the point (0,0).

PICTURE Polygon(s) ! Polygon of s sides
OPTION ANGLE DEGREES ! Use degrees instead of radians
FOR i = 0 to s ! Run through vertices

LET a = 360*i/s ! Angle
PLOT Cos(a), Sin(a);

NEXT i
PLOT

END PICTURE

The parameter s indicates the number of sides. If the above picture is in a library file, the main program could use:
SET WINDOW -1, 1, -1, 1

146 True BASIC Language System



FOR n = 3 to 9 step 2
SET COLOR n
DRAW Polygon(n)

NEXT n

to draw odd-sided polygons with three to nine sides, each in a different color.

Output of the Ploygon Picture
——————————————————————————————————————

——————————————————————————————————————

Transformations
The important difference between subroutines and pictures is that you can transform pictures when you invoke
them. Transformations are options applied to the picture to change its appearance. True BASIC’s built-in trans-
formations let you resize, move, tilt, and rotate pictures. 

For example, the statement:
DRAW Polygon(4) with Rotate(pi/4) * Shift(1,2)

uses the polygon picture defined above to draw a rotated square (or rectangle) that is centered about the point
(1,2). First the DRAW statement constructs a square centered on the origin as defined by the picture. Before it
draws the image, however, it applies the transformations to rotate the square counterclockwise by an angle of Pi/4
(45 degrees) around the origin and then shift the rotated square one unit horizontally and two units vertically, so
that its center is at (1, 2). 
——————————————–––—————————————————————————
[ ! ] Note: While the external picture uses degrees, its OPTION ANGLE statement has no effect on the

main program. Unless otherwise specified, the main program measures in radians. See Chapter 8 “Built-
in Functions” for information on specifying degrees or radians with the OPTION ANGLE statement.

————————————————–––———————————————————————
Multiple transformations — which must be separated by an asterisk — are applied from left to right. Thus, the
square above is rotated before it is shifted. Pictures are always rotated about the origin (0,0) which happens to be
the square’s center. Thus, the square remains centered on the origin until it is shifted. Had the square been shifted
first, the result would have been different. The shift would move the center of the square to (1, 2). Then, rotation
about the origin would move the square away from its shifted position (as if it were riding on the hand of a clock
moving backwards).

147Graphics



Effects of  Multiple Transformations
——————————————————————————————————————
DRAW polygon(4) DRAW polygon(4) with DRAW polygon(4) with 

Rotate(pi/4) * Shift(1,2) Shift(1,2) * Rotate(pi/4)

——————————————————————————————————————

True BASIC defines four transformations that you can use with pictures:
Picture Transformations

——————————————————————————————————————
Transformation Effect
SHIFT(a,b) Move by a horizontally and by b vertically
SCALE(a,b) Change scale, multiplying horizontal coordinates by a,

and vertical coordinates by b; if a = b, then you may
specify SCALE(a)

ROTATE(t) Rotate around origin counterclockwise by an angle t
SHEAR(t) Lean vertical lines forward (clockwise) by an angle t

——————————————————————————————————————
In the SHIFT and SCALE transformations, all calculations use user coordinates. In the ROTATE and SHEAR
transformations, angles are normally measured in radians, but you may change that with an OPTION ANGLE
statement. 

—————————–––——————————————————————————————
[ ! ] Note: Transformations are applied only to the various forms of the PLOT statement within a picture;

they are not applied to BOX statements.
—————————————————————–––——————————————————

As mentioned above, a picture may include DRAW statements to call other pictures. For example, a picture that
draws a house may repeatedly call a picture that draws a window applying different transformations each time to
place different-sized windows in various locations. The main program, in turn, might apply a transformation to
the house picture. Any transformation applied to the house picture will also affect the window pictures it invokes,
maintaining the integrity of the house as a whole. For example you could build a neighborhood of houses by scal-
ing and shifting the houses. For an illustration of this, see the HOUSES.TRU program in the TBDEMOS  direc-
tory installed with True BASIC.

Constructing Your Own Transformations
This section gives technical details on how transformations work and shows how you can construct additional
transformations.
Transformations may be represented by a four-by-four matrix. For example:

 1 0 0 0 
 0 1 0 0 

Shift (3,5) =  0 0 1 0 
 3 5 0 1 

148 True BASIC Language System



When this transformation is applied to a picture, each plotted point (x, y) is represented by the four-element
vector (x, y, 0, 1), which is multiplied on the right by the transformation matrix. The shift yields the result (x + 3,
y + 5, 0, 1) and the point is changed into (x + 3, y + 5). With repeated transformations, several multiplications are
carried out. Thus, the asterisk separating transformations actually represents matrix multiplication.
True BASIC will accept any four-by-four matrix as a transformation. Thus, you may define your own transforma-
tion as a four-by-four matrix and use this matrix as a transformation. For example, you may introduce a reflection
around a 45 degree line:

DIM Reflect(4,4) ! Reflection transformation
MAT READ Reflect
DATA 0, 1, 0, 0
DATA 1, 0, 0, 0
DATA 0, 0, 1, 0
DATA 0, 0, 0, 1

DRAW Polygon(5) with Reflect ! Pentagon reflected

The third and fourth components of (x, y, 0, 1) are currently not used.

Graphical Input
True BASIC provides two simple methods for obtaining graphical input — the GET MOUSE and GET POINT
statements.
The GET MOUSE statement returns the current position of the mouse pointer and the state of the leftmost mouse
button. The GET POINT statement, on the other hand, pauses the program and waits for the user to press the left
mouse button; it then returns the position at which the click occurred. Both statements return the position of the
mouse pointer in the user coordinates of the current logical window. The mouse pointer must be within the cur-
rent physical window, but it need not be in the current logical window. Points outside the logical window are
returned in appropriate user coordinates as if the coordinate range were extended beyond the window. As usual,
however, any lines or points drawn to coordinates outside the user-coordinate range will be clipped at the window
edge and not shown.
The following program uses the GET POINT statement to draw a figure connecting points selected by the user:

DO
GET POINT x,y
PLOT x,y;
IF key input then GET KEY k

LOOP UNTIL k = 27                   ! Use escape key to exit
END

There is no special prompt to indicate the program is waiting for GET POINT input. You may therefore wish to
print instructions to the user before using GET POINT.

The GET MOUSE statement requires three numeric variables:
GET MOUSE x, y, s

The current position of the mouse pointer is returned in x and y and the status of the left mouse button in s. The
possible values for s are:

0 No button down
1 Button is down
2 Button clicked at this point
3 Button released at this point
4 Button shift-clicked at this point

149Graphics



Thus, the above example could use the GET MOUSE statement as follows:
DO

GET MOUSE x, y, s
IF s = 2 then PLOT x,y;
IF key input then GET KEY k

LOOP UNTIL k = 27                   ! Use escape key to exit
END

Note, that omitting the IF test before the PLOT statement produces a program that draws a curve following every
movement of your mouse (as if s = 0).

————————————————————–––———————————————————
[ ! ] Note: The TC_Event routine, described in Chapter 14 “Interface Elements,” provides more sophisti-

cated mouse-handling capabilities. The GET MOUSE and GET POINT statements are primarily for
compatibility with earlier versions of True BASIC, and for simpler programs.

————————————————————–––———————————————————

Drawing Charts and Graphs
There are certain graphing tasks that many programmers face fairly often. For some of these common tasks, True
BASIC includes subroutines that simplify the display of a wide array of charts and graphs.

These routines are not built into the language, but rather are stored in separate library files (see Chapter 11
“Libraries and Modules”). Thus, you must name the library file in a LIBRARY statement before you can invoke
the subroutines.

The charting and graphing routines are in the library files:

BGLib.TRC for pie charts, bar charts, and histograms

SGLib.TRC for plotting data and function values

SGFunc.TRC for plotting values of functions that you define

which are stored in the TBLIBS subdirectory when you install True BASIC. Remember that the LIBRARY state-
ments must use the appropriate “path name” to indicate the location of the library files for the computer you will
use to run your program; see “The True BASIC Environment” chapter in the introductory section for information
on the correct formats.

See Chapter 23 “Additional Library Routines” for descriptions of the subroutines in these libraries.

150 True BASIC Language System



CHAPTER

14
Interface Elements

Graphical user interfaces, such as Windows, OS/2, and Macintosh, use menus, buttons, windows, and dialog boxes
to make applications easier to use. With True BASIC, you can create and control such objects in your own pro-
grams. The easiest way to do this is with the True Controls and True Dials libraries of subroutines provided with
the language.
True Controls is a library of subroutines that let you manage windows, menus, graphical objects, buttons, edit
areas, and other interface elements from your True BASIC programs. True Dials is a similar library of routines
that let you create dialog boxes as part of your programs. This chapter explains how you can create user-interface
elements using the routines from these two libraries.
The routines described in this chapter are relatively easy to use, allow control of all user-interface elements, and,
in most instances, will meet all of your needs. (Advanced users might want to gain further control of interface ele-
ments through direct use of the built-in subroutines OBJECT and TBD. All of the user-interface “objects” are ulti-
mately controlled by these two extremely powerful and complex subroutines. The OBJECT subroutine is used by
all the True Controls routines, while True Dials routines  call the TBD routine to create and display all dialog
boxes and return the user’s response. Advanced programmers who wish to use the OBJECT and TBD routines
directly should refer to the reference sections (see Chapters 19 and 21). Examining the source code of TRUEC-
TRL.TRU in the TBLIBS folder should help.)
The example programs ARCHERY2.TRU, DAYCALC.TRU, PISTON.TRU, and SURVIVE.TRU (in the
TBDEMOS directory) provide a good overview of how the convenience routines described in this chapter may be
used to enhance programs. The TBDEMOS directory also contains several programs that illustrate the individual
objects; those programs have names that begin with DEM.

User Interface Objects and Controls
The True Controls routines let you create and control the following objects or controls:

Window Physical window
Menu Pop-down selections for a window’s menu bar
Push button Push button with text
Radio group Several radio buttons, only one of which can be on, with text
Check box Text with check box that may be checked on or off
Group box Box with or without a title
Static text One-line piece of text that cannot be edited
Edit field One-line text input region that can be edited
List box A (scrollable) selection list of items
List button Button with a pop-down selection list
List edit button Edit field with a pop-down selection list
Graphics Several types of graphics objects
Scroll bar Horizontal or vertical scroll bar
Text editor Fully-scrollable text-edit object

151



Some of the items, such as the graphics and windows, are objects, while others, such as check boxes, buttons, text
editors, and radio groups, are controls. For convenience, we may refer to both types as objects, since there is no
distinction in how you use the True Controls routines to handle objects or controls.

Dialog boxes are the only control objects not handled by True Controls routines. They are handled by routines in
the True Dials library as described later in this chapter. Dialog-box routines are in a separate library because they
return information to the program differently than the objects handled by the True Controls routines. Otherwise,
dialog boxes are similar to other interface objects.

Program Structure with Interface Elements
By programming with the interface-element routines you can greatly enhance the appearance and “user-friendli-
ness” of your programs. Along with these enhancements, however, you as the programmer must accept the
responsibility for processing all the events that may occur as the user responds to the controls and objects in your
program. To do this correctly, you may need to re-think the structure of your programs. The two versions of the
Archery program (ARCHERY.TRU and ARCHERY2.TRU in the TBDEMOS directory) illustrate the difference in
approach needed for work with interface elements. 

In programs that don’t use interface routines, input statements may typically be scattered about various program
structures. In the original ARCHERY.TRU program, the main loop asks if the player wishes another game and
responds appropriately, while the MakeShot subroutine gets the user input for angle and velocity. In both
instances, the program pauses until there is a user response. Thus, the program could “spend a lot of time” in the
MakeShot subroutine. This works fine for that version of the program, because the user has no opportunity for any
other input until a shot is completed and control returns to the main loop. The limited order of events is clearly
defined in the main loop, as follows: 

DO
CALL MakeScene ! Draws the scene
CALL PlayGame ! Calls MakeShot to get velocity and angle input

! and draw resulting shots until success
PRINT “Play another (y or n)?”;
GET KEY key
PRINT

LOOP while key = Ord(“y”) or key = Ord(“Y”)

When you program with interface controls and objects, however, you present the user with a greater possibility of
responses and your program must be ready to process those responses or “events” as soon as possible. Such pro-
grams generally work best with a main “event processor” loop to handle all potential user input. The main event
loop may call subroutines to carry out an appropriate action, but those subroutines should not themselves process
input. Thus, control can return immediately to the main event loop and prevent events from piling up. 

In ARCHERY2.TRU, control objects let the user input velocity or angle, fire a shot, call for a new game scene, or quit
the game. These objects are always available; the user need not use them in any particular order. To prevent the pro-
gram from waiting in one subroutine, say for a new velocity and angle, when the user may be indicating a different
action, such as firing a shot or getting a new game scene, all event handling is placed in the main loop. The subrou-
tines carry out the same actions as before, but they do so with input obtained in the event loop, as follows:

DO ! Main event loop
LET x1, x2 = 0
CALL TC_Event (0, event$, window, x1, x2) ! Get next event
IF event$ = “KEYPRESS” and x1 = 27 then EXIT DO ! Escape will stop program
IF x2 = quit then ! Quit button pressed

EXIT DO
ELSE IF x2 = fire and event$ = “CONTROL DESELECTED” then

CALL MakeShot        ! Fire shot with current angle & velocity
ELSE IF x2 = newgame and event$ = “CONTROL DESELECTED” then

CALL MakeScene ! Draw new scene
END IF

152 True BASIC Language System



CALL TC_Sbar_GetPosition (angleset, angle)  ! Get current angle setting
LET angle = 90 - angle
IF angle <> currentangle then

LET currentangle = angle
CALL TC_SetText (angledial, Str$(currentangle))

END IF

CALL TC_SBar_GetPosition (speedset, speed)  ! Get current velocity setting
IF speed <> currentspeed then

LET currentspeed = speed
CALL TC_SetText (speeddial, Str$(currentspeed))

END IF
LOOP

This loop continually looks at the latest user event via the TC_Event routine and carries out the appropriate
action, if any. Control always returns immediately to this main loop. The loop also updates the values for the cur-
rent angle and velocity variables; MakeShot uses those same variables. The TC_ subroutines used above are all
explained in this chapter. 

For additional examples of event processors, examine the DAYCALC.TRU, MATHQUIZ.TRU, PISTON.TRU, and
SURVIVE.TRU programs in the TBDEMOS directory. These programs all use True Controls routines, illustrat-
ing variations in how a program may be structured to handle events.

Routines Common to all True Controls
Using the True Controls Library
Unlike the underlying and complex OBJECT routine, the True Controls routines are not built-in to the True BASIC lan-
guage. Instead, they are contained in a library called TRUECTRL.TRC. To use any of the routines you must identify the
library at the beginning of your program. For example, with OS/2 and Windows, the statement:

LIBRARY “c:\TBSilver\TBLibs\TrueCtrl.trc”       ! Or appropriate path name

uses the compiled library. With the Macintosh, you would use something like the following (substituting the
appropriate disk and folder names):

LIBRARY “harddisk:TrueBasicSilver:TBLibs:TrueCtrl.trc”

———————————————————————–––————————————————
[ ! ] Note: The language includes both the compiled (.TRC) and source-code versions (.TRU) of the TrueC-

trl library so that you may examine the routines to learn more about how they work and how they use
the built-in OBJECT routine. However, your programs will start faster if you always use the compiled
version of any library routines. 

———————————————————————–––————————————————
You must also call an initiating routine before you respond to events in an event loop:

CALL TC_Init

This routine tells True BASIC that your program will be handling the “events” that occur when a user clicks on a
push button, makes a menu selection, or otherwise uses one of the objects you create.

When you are finished using the True Controls routines, you should call the “close-down” routine, as follows:
CALL TC_Cleanup

This routine ensures that True BASIC will resume handling any “events” that may occur rather than passing
them to your program.

For easy identification, all of the True Controls routines have names that begin with “TC_”. Names of general pur-
pose routines give the “method” or function of the routine after the “TC_”, such as TC_Init and TC_Cleanup,
above, or TC_Show and TC_Event, described in the next sections. Names of routines specific to a particular

153Interface Elements



object first identify the object and then the function, such as TC_Win_Create, TC_Menu_Set,
TC_Menu_SetCheck, TC_PushBtn_Create, etc.
The True Controls routines share many public variables, which are all initialized the first time any one of the rou-
tines uses any one of the variables. You should therefore be careful not to assign spurious values to those public
variables. For the names of the public variables used by the True Controls routines, see the module CONSTANTS
located at the end of the file TRUECTRL.TRU (in the directory TBLIBS).

Creating Objects
To create an object and display it on the screen, you generally follow three steps. Each of these steps is explained
more fully as the individual objects are described later in the chapter.

1. Create the object. Separate routines are available for each object type; these are described in the appropri-
ate sections below. True BASIC assigns an ID number to each object that you create; you then use that ID
number to identify an object in other True Controls routines. Windows are assigned IDs from 1 to 99 (the
default physical window is always numbered 0),  menus have IDs from 10001 to 14999, groups (such as radio
button groups) have IDs from 15001 and up, while all other controls and objects are assigned IDs from 101
to 9999. All objects and controls, except for windows, are always placed in a physical window, so you must
first create a physical window or use the default physical window.

2. Specify additional attributes of the object, if necessary. There are specific routines for many of the
objects. For example, for a select list box you need to supply the list of names using TC_SetList:
CALL TC_SetList (slbid, list$()))

3. Show the object. A window is not shown automatically; you must use the TC_Show routine to display it:
CALL TC_Show (id)

All other objects are automatically shown when they are created, as long as the window that contains
them is visible. If you are creating several objects within a window, you may wish to create the objects
before you explicitly show the window so that all objects are revealed at once.

You can also change the default so that, even if the containing window is shown, an object is not shown
until you specifically use TC_Show for it. To change the default, use:
CALL TC_Show_Default (flag)

If flag is set to 0, no new objects or controls are shown until you use TC_Show for the specific object. If
flag has the value 1 (or any non-zero value), all new objects and controls are shown when created as long
as the containing window is visible (this is the default setting for flag). 
(You can hide an object or a window and all the objects it contains at any time with the TC_Erase routine,
as explained below in “Erasing and Showing Objects.” Note that an erased object or control still exists and
may be shown again later.)

Handling Events — Getting Input from Objects
After you’ve created control objects, such as menus, buttons, and check boxes, you must also make them do some-
thing — your program must be able to get appropriate input from the objects. The TC_Event routine gets that
input for your program.

Each time a user makes some response to your program, such as selecting a menu item, clicking on a push button,
or pressing a key, True BASIC stores that action in an event queue.  Each action is added to the queue in the order
in which it occurs. A call to the TC_Event routine from a program returns the first event in the event queue; any
additional events stay in the queue until subsequent calls to TC_Event. 

A call to TC_Event requires five arguments:
CALL TC_Event (timer, event$, window, x1, x2)

The first argument, timer, indicates how long the routine should wait for an event. If there are any events in the
event queue, the routine always takes the first event and returns immediately. Otherwise, the routine waits for

154 True BASIC Language System



an event up to the number of seconds specified by timer before returning. If there are no events in the queue and
nothing happens during the timer interval (the user has made no response), the routine returns an empty string
to event$.

If an event has taken place, the remaining three arguments return information about the event. Window returns
the physical window ID, and x1 and x2 return values specific to the event type. These items are described in the
sections for the individual controls and are summarized in a table in the “True Controls Events Summary” section
later in this chapter.

The recommended way to handle events is within a loop that continually calls TC_Event and includes a decision
structure to carry out the appropriate action. The TC_Event timerwould be set to 0, since the loop will contin-
ually check the queue until an event takes place.

The TC_Event routine also performs the following functions in response to certain events:
• It provides automatic handling for scroll bars either connected to text edit controls or if the event returned

is an action in the scroll bar of a text edit object, the routine carries out the appropriate action on the
screen. 

• It toggles check boxes and radio buttons.
• It converts x1 and x2 into menu and item numbers for menu events.

————————————————————–––———————————————————
[ ! ] Note: After your program calls TC_Init so that it may use True Controls routines, the program must use

the TC_Event routine to handle all user actions until you “turn off” event handling with a call to
TC_Cleanup. If the user closes or hides a window by clicking in the window’s close box (upper left corner),
the program must handle the “HIDE” event — perhaps by terminating the program then or later re-showing
the window so the user may terminate the program some other way. Take care to provide adequate “escape
routes” when you program with True Controls routines.

——————————————————–––—————————————————————
Erasing and Showing Objects
You can erase or hide any True Controls object, with the TC_Erase routine:

CALL TC_Erase (wid)

This makes the object “invisible”; it cannot be seen on the desktop even if there are no overlapping windows. When
a window is invisible, any controls it contains are also invisible. You must use the TC_Show routine to make the
window, and any objects it contains, visible.

Individual controls may also be erased (hidden) and shown with the TC_Erase and TC_Show routines. However,
if the window is invisible, that status overrides the visible status of any control contained within it. Thus, you can
erase (hide) controls within a visible window, but you cannot show controls in an erased (hidden) window. 

Note that erasing any True Controls object does not destroy the object; it is merely hidden from view. An erased
window still exists, output may be sent to it, and it may be shown again. When you are done with an object (except
a menu) or with a window and all its associated objects, you should permanently remove it with the TC_Free rou-
tine described in the next section on “Removing and Freeing Objects.”

Removing and Freeing Objects
When you are finished using an object or a window and the objects contained within it, you can destroy that object
or window with the TC_Free routine:

CALL TC_Free (id)

When this routine is used with a window ID, it frees the window and all objects and controls associated with it. If
TC_Free is used with the ID for another type of object, other than a menu, it frees the object but not the contain-
ing window. If you wish to free a menu, use TC_Menu_Free as described in the sections on “Creating and Using
Window Menus.” 

155Interface Elements



In “freeing” an object, the routine first hides the object and then frees the memory associated with it. Freeing a
window automatically frees its menu and controls contained in it. Once an object has been freed it no longer exists
and it cannot be shown or manipulated.
—————————–––——————————————————————————————
[ ! ] Note: TC_Erase simply hides an object but does not destroy it; an erased object may be used and later

shown again with TC_Show. TC_Free completely destroys an object so that it no longer exists.
————————————–––———————————————————————————

Physical Windows and Coordinate Systems
As introduced in Chapter 13 “Graphics,” True BASIC uses two kinds of windows: (1) physical windows, which
are typical of your computer’s operating system and usually have a visible border that may include title bars,
menus, and scroll bars, and (2) logical windows, which are invisible partitions in a physical window providing a
framework for user-coordinate systems and a clipping region for graphical output. 

Physical windows are one of the user-interface elements you can create and control with True Controls routines.
All of the other True Controls objects are placed within a specific physical window. You may use the default phys-
ical window, which always has the window ID of 0 (zero), or you may create additional physical windows using the
TC_Win_Create routine as described later in this chapter. 

In using True Controls routines, you must keep in mind the distinctions between physical windows and logical
windows. These may be summarized as follows:

• The position of physical windows is defined by screen coordinates. referring to the full screen. Other
True Controls objects are placed within physical windows according to the current user coordinates, as
from SET WINDOW or ASK WINDOW. Logical windows are placed within physical windows with screen
coordinates as described in Chapter 13; positions within logical windows are always defined by user
coordinates. 

• True Controls routines follow the usual True BASIC order of specifying coordinates (that is, left,
right, bottom, top).

• True Controls objects are placed in the current target physical window, which is the physical window des-
ignated to receive output from PRINT statements, etc. To switch output to another physical window, you
must use the routine TC_Win_Target or TC_Win_Switch (which also moves the window to the front).
Regular True BASIC statements such as PRINT and the graphics statements (PLOT LINES, BOX
AREA, etc.) are placed in the current logical window. The current logical window is either the default log-
ical window that fills the current target physical window or a defined logical window you have opened
(with an OPEN statement) and specified with a WINDOW statement. For more details about switching
between physical and logical windows, see the section below on “Creating and Using Physical Windows.”

You place most True Controls objects on the screen or within a window by specifying a set of rectangular coordinates
with the CALL to the appropriate routine. These coordinates have the order left, right, bottom, top, as in
regular True BASIC statements. In the calling sequences described in this chapter, they are designated:

xl, xr, yb, yt

—————————————————————–––——————————————————
[ ! ] Note: The True Controls routine that creates a physical window always creates a logical window that

fills that physical window, just as there is always a default logical window for the default physical win-
dow. The default user coordinates of this logical window are 0, 1, 0, 1 as in the default logical window. 

———————————————————–––————————————————————

156 True BASIC Language System



—————————————————————–––——————————————————
[ ! ] Note: It is possible to place windows on the screen and objects and controls within windows using pix-

els coordinates. This approach is not discussed in this chapter.
———————————————————————–––————————————————

Creating and Using Physical Windows
All True Controls objects, except windows, must be placed in a specific physical window, so you must first create
and define a physical window or use the default physical window (window ID 0).

Even if you intend to use only the default physical window for object creation, you must make it visible on the
screen with a call to TC_Show as follows: 

CALL TC_Show (0)

If you do not explicitly show the default window, it will be shown automatically with the first PRINT or PLOT
statement (CLEAR does not show the window), but it is not shown automatically when a control object is created
within it. You may wish to create objects within the window before you show the window (and the objects it con-
tains), but you must explicitly show the window at some point.

To create a new physical window, use the TC_Win_Create routine in the format:
CALL TC_Win_Create (wid, options$, xl, xr, yb, yt)

For this routine, widmust be a numeric variable; True BASIC will assign the window object’s ID to that variable.
Options$ is a string variable or expression for setting certain aspects of the window. Separate multiple values
in options$ by spaces or vertical bars “|”. If options$ contains the word “TITLE” (case does not matter),
the window will be created with a title bar. If options$ contains the word “CLOSE”, the window will include
a close box; if it contains the word “SIZE”, the window will have a resize box. To create a window with a vertical
scroll bar, include “VSCROLL” in options$; for a horizontal scroll bar, use “HSCROLL”. For information on
controlling the action of scroll bars attached to windows, see the section “Creating and Using Scroll Bars” later in
this chapter.
For additional details on the options available for window creation, see the description of TC_Win_Create in Chap-
ter 22 “Interface Library Routines.” The options include: different border types, parent versus child windows, and
immune versus nonimmune windows.
As noted earlier, xl, xr, yb, ytmust be numeric expressions giving the left, right, bottom, and top locations of the
window on the full screen in screen coordinates. Screen coordinates are always between 0 and 1, and left < right and
bottom < top. True Controls will adjust screen coordinates that are out-of-range, and will also make sure that all
portions of the window are visible. (Use pixel coordinates if you have other requirements.)
You can set or change a title to a window with the TC_Win_SetTitle routine:

CALL TC_Win_SetTitle (wid, title$)

For example, if you wish to create a physical window that nearly fills the full screen and contains a close box, a
resize box, and a title, you could do the following:

LIBRARY “c:\TBSilver\TBLIBS\TrueCtrl.trc” ! Use appropriate path
CALL TC_Init ! Initialize

CALL TC_GetScreenSize (ls, rs, bs, ts)
CALL TC_Win_Create (wid, “close size title”, .1, .9, .1, .9)
CALL TC_Win_SetTitle (wid, “New Window”)

CALL TC_Show (wid) ! Display the window

The coordinates in the TC_Win_Create routine define the user-accessible area for the window; borders, title
bars, and menu bars (if any) are placed outside that area. The user-accessible area is sometimes called the client
area. Thus, all the elements of a window created with full-screen coordinates would not be visible. 0.1 should be

157Interface Elements



ample to allow room for all elements, but you may wish to experiment if you want to use the full screen. (Note: if
you do not add menus to your window, on certain platforms that space will be added to the client area.)

When you use TC_Win_Create to create a new physical window, the routine automatically opens a logical win-
dow to fill the content area of that physical window. The logical window is given the default user coordinates of
0,1,0,1. (This is similar to the default logical window, channel #0, that fills the default physical window and has
user coordinates 0,1,0,1.)

Creating (and showing) a physical window makes it the active, target window. The active physical window is
always in front of any others on the screen, and its title bar will appear differently than those of other windows;
the active physical window will never be partially or completely hidden from view. The target physical window
is where subsequent output and other objects will be placed; it is not necessarily active or even visible. (Creating
but not showing a physical window makes it the target window, but does not make the window active because it is
not visible.)

Shown, Active, and Target Windows
Physical windows may be shown (visible) or they may be erased (invisible or hidden). When one or more physical
windows are shown on the screen, one window is the active physical window. If the windows are overlapped, the
active window is always on top; it is never partially or completely hidden from view. The active window also has a
title bar with a different appearance than those of other windows; thus even if windows are tiled (more than one
window is “in front” and not overlapping any others), the active window is easy to identify. (It may occasionally
happen that being “in front” and having an “active” title bar will not occur together.) On the Macintosh, it is nec-
essary that a window be active for its menu to appear in the menu bar position at the top of the screen.

The target physical window is the one that contains the logical window to which subsequent output will be sent.
Although it may be the same as the active physical window, it doesn’t need to be active or even visible. In fact, a
common technique is for a program to fill a hidden window with output and then make it visible.

As noted above, windows must be explicitly shown (made visible) after they are created with the TC_Show rou-
tine:

CALL TC_Show (wid)

As with all True Controls objects, visible windows may be erased (hidden) with the TC_Erase routine:
CALL TC_Erase (wid)

Erased windows may later be shown again with TC_Show. As with any True Controls object, erasing a window
merely removes it from view; the window still exists, it may be made the target window, and it may later be shown
and made active. 

Many physical windows may be shown simultaneously (though some may be fully or partially hidden behind other
windows), but at any one time there can be only one active window and only one target window. A program can
switch among physical windows with the following routines:

CALL TC_Win_Target (wid)       ! To receive output
CALL TC_Win_Active (wid)       ! Move to the front, if visible
CALL TC_Win_Switch (wid)       ! Makes target and, if visible, active

Calling TC_Win_Switch makes the identified window both the target window and, assuming the window is visible,
the active window. TC_Win_Target and TC_Win_Switch also automatically issue a WINDOW statement so that
subsequent program output is sent to the logical window that fills the target physical window.

Only a shown window may be made active. If a window has not yet been shown after it is created or if it has been
erased (hidden), TC_Win_Active has no effect and TC_Win_Switch makes the window the target but does not
show it or make it active. TC_Show merely makes a window visible and capable of becoming active; it does not
make a window active or the target. Any window, whether shown or erased, may be made the target window.

158 True BASIC Language System



A shown window may be made active by several means:
• When a program first creates and shows a window with the TC_Show routine, that window becomes

active. 
• The TC_Win_Switch routine makes the designated window both the active and target window, as

noted above. 
• The TC_Win_Active routine designates a new active window, but does not change the target window,

as noted above.
• If a TC_Erase routine erases the active window, another visible window becomes the new active win-

dow.
• Using the mouse, the user may click in any visible window to make it active. Similarly, if the user moves

or resizes a window on the screen (see below), that window becomes the active window.

A window can become the target window for output as follows:
• The most recently created window is the target (only one window may be a target at any one time). 
• The TC_Win_Switch routine makes the designated window the target as well as the active window, if

visible, as noted above.
• The TC_Win_Target routine specifies a new target window as noted above, although it does not make

that window active or even visible.
• A WINDOW statement, which directs output to a specific logical window, also selects the appropriate

physical window as the target for subsequent output, but that physical window does not automatically
become active or shown if it is currently erased (hidden). (Generally, if you want to redirect the pro-
gram’s output and insure that it is shown, you should first call the TC_Show and TC_Win_Switch rou-
tines to make the appropriate physical window the active target. Then, if you want a logical window
within that physical window other than the default logical window, you can use a WINDOW statement.)

Note that the target window is controlled exclusively by the program — there is no way the user can directly
change the target window — whereas the active window may be changed either by the program or by the user
clicking in it.
—————————————–––——————————————————————————
[ ! ] Note: In the default physical window, the default logical window is always available as channel #0;

you can switch among that and other logical windows with the WINDOW statement. That is not the
case for additional physical windows you create. Although TC_Win_Create automatically creates a
logical window to fill any new physical window, that logical window channel is not known outside of
True Controls; thus you cannot use a WINDOW statement to direct output to such windows.
TC_Win_Switch does that for you, sending subsequent output to the logical window that fills the
physical window you designate, and that may be adequate in most cases.

——————————————————–––—————————————————————

Placing Objects Within Physical Windows
To place another object in a physical window, you must specify the location of that object. This is normally done in
the user coordinates of the current logical window contained in the physical window. 
To find the user coordinates of a logical window, use:

WINDOW #3
ASK WINDOW left, right, bottom, top

To find the user coordinates of an unnumbered logical window that fills a certain physical window, or the logical
window that fills the default physical window, use

CALL TC_Win_Switch (the_physical_window)
ASK WINDOW left, right, bottom, top

(Examples of placing objects in windows are shown in the sections on the various objects below; see Chapter 13 for
more on logical windows and user coordinates.)

159Interface Elements



Redrawing and Resizing Windows
As noted above, physical windows may become partially or fully hidden from view, either by an overlapping active
window or by being made invisible with the TC_Erase routine. When such a window is re-shown or made active,
True BASIC by default redraws the contents of the window; such windows are called immune. 

This redrawing of a window may not be a problem in many cases, but it does use memory. If you do not want a win-
dow to be immune, use the option “NONIMMUNE” when you create it with TC_Win_Create.

See Chapter 19 on the OBJECT routine for more information about immune and non-immune windows.

The size of a window may be changed either by the program or by the user.  The TC_SetRect routine lets your pro-
gram change the size of a physical window (or of any other object or control) as follows:

CALL TC_SetRectUsers (wid, xl, xr, yb, yt)

When you resize a window, any existing contents of the window do not change. If you make the window larger,
there will be unused portions of the window; if you make the window smaller, existing contents will be clipped. The
full contents of the window are still there, however; making the window larger will show them. When you resize a
control or graphical object, you must make sure to be in the correct logical window. This can be done using a WIN-
DOW statement, or, if the logical window is part of a physical window, using TC_Win_Switch.

Note, however, that user coordinates are readjusted to fit the new window size. Thus, any subsequent output that
relies on user coordinates (such as PLOT or BOX or other graphics statements) will be fit to the new window size.

Keep in mind that a user may resize an active window at any time and such a resize has the same effect on exist-
ing and subsequent output as the TC_SetRectUsers routine. The TC_Event routine returns such “SIZE”
events, so you could include an appropriate decision structure in your program if the user resizes a window. 

Changing Window Attributes
You can add or change attributes to physical windows with several TC_Win routines or with the general TC_Set
routine. You can also add menus to windows with the TC_Menu routines described in the next section.
You can set or change the title on a window with:

CALL TC_Win_SetTitle (wid, title$)

where title$ contains the new string. If the window is currently visible, the title is changed dynamically. You
can also find out the current title of a window with the routine:

CALL TC_Win_GetTitle (wid, title$)

This returns the current title of window wid in the variable title$.
You can change the shape of the text cursor in a window with the TC_Win_SetCursor routine:

CALL TC_Win_SetCursor (wid, shape$)

sets the cursor to the shape given in the string variable shape$. Allowable shapes may vary with the computer
being used, but they include “ARROW”, “IBEAM”, “PLUS”, “CROSS”, or “WAIT” symbols. 
You can control the font used in a window with the TC_Win_SetFont routine:

CALL TC_Win_SetFont (wid, fontname$, fontsize, fontstyle$)

The available fonts and styles will vary with the operating system, but some common fonts can be found on all sys-
tems. Fontname$ values common to all systems are:

“FIXED” “HELVETICA” “TIMES” “SYSTEM”

You can find out what fonts are available on the current system with the TC_FontsAvailable routine.
CALL TC_FontsAvailable (fonts$)

All currently available font names are returned in the string argument fonts$, separated by vertical bars.

160 True BASIC Language System



Available fontstyle$ values are:
“PLAIN” “BOLD” “ITALIC” “BOLD ITALIC”

The fontsizemust be a numeric value in points.  The default font is 10 points, “FIXED”, and “PLAIN”.

Three routines let you control the shape and appearance of graphics, lines, and filled objects that are drawn in the
window by regular True BASIC statements, such as PLOT, etc. These are explained later in this chapter in the
section on “Pens, Brushes, and Drawmodes for Windows & Graphical Objects.”

The following example creates a nonimmune window with a title bar, close box, and resize box. It will be as large
as possible on the screen.

LIBRARY “c:\TBVSilver\TBLIBS\TrueCtrl.trc”   ! Use appropriate path name
CALL TC_Init ! Initialize 

LET options$ = “close size title nonimmune”
CALL TC_Win_Create (wid, options$, 0, 1, 0, 1)
CALL TC_Win_SetTitle (wid, “My New Window”)
CALL TC_Win_SetFont (wid, “helvetica”, 12, “plain”) ! Change font
CALL TC_Show (wid) ! Show the window

Checking for Valid Windows
As described earlier, you can destroy a window (and the objects within it) when you are finished with:

CALL TC_Free (wid)

When this routine is used with a window ID, it frees the window and all objects and controls associated with it. The
routine first hides the window and then frees the memory associated with it and all associated objects. Once a win-
dow has been freed it no longer exists and it cannot be shown or manipulated. Also, its ID number becomes invalid
and may be reused later.
You can check that a certain window is valid (i.e., has been created but not “freed”) with the routine:

CALL TC_Win_Valid (wid)

If the window with identifier wid is not open, the routine generates an error with the message:
Illegal window number: ###  (711)

See Chapter 16 on “Handling Errors” for information on handling errors within your programs.

Creating and Using Window Menus
The TC_Menu routines let you add menus to any of your physical windows. To create a menu, you must first cre-
ate a two-dimensional array to contain the text for the menus. The rows represent menus, and the columns con-
tain the items for each menu. The lower bounds for menu array columns must be zero. The first item (0) in each
row is the menu title.  
—————————————–––——————————————————————————
M Note: On a Macintosh, the menu for the active window always appears on the menu bar at the top of the

screen, not attached to the window, but the menu is created and controlled just as with other systems.
——————————————————–––—————————————————————

So, to create two menus containing up to three choices plus the menu title, you might create an array such as the
following (this is similar to the menu in the MATHQUIZ.TRU program in the TBDEMOS directory):

DIM menu$ (1:2, 0:3)   ! 2 menus and 4 items (title plus up to 3 choices)
MAT READ menu$
DATA Main, Next Problem, @, Quit@Q ! Menu 1
DATA Level, Beginner, Intermediate, Advanced ! Menu 2

You can include special characters along with the menu text to place lines between menu items or indicate a key
that may be used as a menu shortcut. An ampersand (@) as a separate item places a line before the next menu item.
A menu item followed immediately by an @ and one of the characters from the item designates that character as a

161Interface Elements



keyboard equivalent and causes that character to be underlined in the menu item. Keystroke equivalents are
shortcuts for menu items. (In Windows and OS/2, the character must be one of the letters in the text of the menu
item.) The menu created by the DATA statements above is illustrated below.
A menu item may also be followed by two ampersands (@@) to signal the start of a hierarchical menu — where
another menu is associated with that menu. See the section below on hierarchical menus.
Once an array is dimensioned and initialized, you must call the TC_Menu_Set routine to pass the menu$ array
to create the menu in the desired window:

CALL TC_Menu_Set (wid, menu$)

After you have created the menu, you can add check marks to individual items. In the menu example above, the
last menu offers three choices of levels: Beginner, Intermediate, and Advanced. To set up the program to show that
one level is selected at the beginning, you can use TC_Menu_SetCheck to add a check to an item:

CALL TC_Menu_SetCheck (wid, menu, item, flag)

Wid is the ID for the window that contains the menu. The array subscripts for the menu item to be checked are
indicated by menu (row) and item (column). If flag equals 1 (or any value other than 0), the item is checked; if
flag equals 0, any existing check is removed. By default when you create a menu with TC_Menu_Set, no items
are checked, but a space for a check is reserved to the left of each item.
As an example, the following program segment sets up the default physical window with a new title and a menu
for a simple arithmetic quiz program:

! Arithmetic Quiz

LIBRARY “c:\TBSilver\TBLIBS\TrueCtrl.trc” ! or appropriate path name

DIM menu$ (2, 0:3)    ! 2 menus and 4 items (title plus up to 3 choices)
MAT READ menu$
DATA Main, Next Problem, @, Quit@Q
DATA Level, Beginner, Intermediate, Advanced

CALL TC_Init ! Initialize

CALL TC_Win_SetTitle (0, “Arithmetic Quiz”) ! Change window title
CALL TC_Menu_Set (0, menu$) ! Set the menu
CALL TC_Menu_SetCheck (0, 2, 1, 1)  ! Check menu$(2,1)
CALL TC_Show (0) ! Make the default window visible
...

The above statements would change the title of the default output window to “Arithmetic Quiz” and create
the following menus (the Info menu is ignored on Windows and OS2):

Getting Input from Menus
So far, of course, this menu won’t do anything; the program won’t respond when you select a menu item. You need
to create an event processing routine that looks for mouse clicks on menu choices (or keyboard equivalents) and
carries out the appropriate action, such as presenting the next problem, ending the program, or resetting the dif-
ficulty level (and resetting the check mark in the third menu). 

You could do this with a DO structure that includes a call to TC_Event:
CALL TC_Event (timer, event$, window, x1, x2)

162 True BASIC Language System



The timer can be set to 0 so that the loop does not wait but takes the first event (if any) in the event list. The event
type will be returned as event$. The window ID in which the event occurs will be returned as window; in this
case window will be returned as 0 since the program uses only the default physical window. If the event$ is
“MENU”, x1 and x2 return the subscripts corresponding to the original menu$ array: x1will contain the num-
ber or subscript of the menu selected and x2 will contain the number or subscript of the item selected. The fol-
lowing lines show just such a loop that might occur at the end of the main program:

! Difficulty levels:  beginner = 5, intermediate = 11, advanced = 20
LET difficulty = 5             ! Default difficulty is beginner
LET cur_check = 1              ! Current menu item checked

DO
CALL TC_Event (0, event$, window, x1, x2)

IF event$ = “MENU” then
LET menu = x1
LET item = x2

IF menu = 1 then ! Main menu
IF item = 1 then CALL NextProblem (difficulty, answer, response)
IF item = 3 then EXIT DO ! Quit is 3rd item (2nd is separator)

ELSEIF menu = 2 then ! Level menu
CALL TC_Menu_SetCheck (0, 2, cur_check, 0) ! Remove current check
IF item = 1 then 

LET difficulty = 5 ! Beginner
CALL TC_Menu_SetCheck (0, 2, 1, 1) ! Add check to first item
LET cur_check = 1

ELSEIF item = 2 then
LET difficulty = 11 ! Intermediate
CALL TC_Menu_SetCheck (0, 2, 2, 1) ! Add check to 2nd item
LET cur_check = 2

ELSEIF item = 3 then
LET difficulty = 20 ! Advanced
CALL TC_Menu_SetCheck (0, 2, 3, 1) ! Add check to 3rd item
LET cur_check = 3

END IF
END IF

END IF
LOOP

CALL TC_Cleanup
END

Note that other events may be occurring (and be returned from the event queue), but this loop ignores all except
“MENU” events. Also, the DO and LOOP statements contain no tests to end the loop, but the Quit choice in the
Main menu leads to an EXIT DO, which exits the loop, calls TC_Cleanup, and ends the program.

All that remains to be done to make this a workable program is to write a NextProblem subroutine to present
a random arithmetic problem in the window, using the value of difficulty to determine how hard the prob-
lem will be. 

Creating Hierarchical Menus
In a hierarchical menu, one or more menu items may in turn be menus themselves. For example, an Options
menu might provide the choices: Pen Style and Color. Each of these in turn could offer additional choices.

You establish hierarchical menus as follows. A trailing double ampersand (@@) indicates that an item is the start
of a hierarchical menu; a single ampersand (@) before a menu header, which must match a hierarchical menu item,
indicates the menu choices for a hierarchical menu. Consider the following example:

163Interface Elements



LIBRARY “c:\TBSilver\TBLIBS\TrueCtrl.trc” ! or appropriate path name

DIM menu$ (6, 0:3)   ! 6 menus and 4 items (title plus up to 3 choices)
MAT READ menu$
DATA File, Open, Close, Quit ! Menu 1
DATA Edit, Cut@T, Copy@C, Paste@P ! Menu 2
DATA Options, Pen Style@@, Color@@, “” ! Menu 3
DATA @Pen Style, Solid, Dashed, Dotted ! Menu 4
DATA @Color, Red@@, White, Blue, ! Menu 5
DATA @Red, Light Red, Dark Red, “” ! Menu 6

CALL TC_Init ! Initialize TC routines

CALL TC_Win_Switch (0)
CALL TC_Menu_Set (0, menu$) ! Set the menu

Here the Options menu (menu 3) contains two hierarchical menus: Pen Style and Color. Menus 4 and 5 define the
hierarchical menus for those items. Note that the Color menu, in turn, contains a second level hierarchical item
for Red, which is defined in Menu 6. When this menu is created and the user selects the Color item under Options,
the menus will open appropriately as follows:

Notice also that menus 3 and 6 use empty quotes to indicate that there are fewer items in those menus.

Command Key Equivalents
All platforms provide command key equivalents for menu selection. (The terms “accelerator keys”, “command
keys” and “alt mode keys” are often used.) In the above example the ampersand and character following a menu
choice (for example: Cut@T) indicates such a key.  Different platforms have different conventions. On Windows
and OS/2, the specified letter must appear in the menu text itself; that letter will be underlined when the menu
shows. (On these platforms, one can select a particular menu by holding down the Alt key while pressing the key
of the underlined letter. Then, press the key of the underlined letter in the menu item itself.) On the Macintosh,
the letter defines a command key combinations.  (On this platform, one can select a particular menu item, regard-
less of which menu it is in, by holding down the command key while pressing the letter key indicated.)

See TC_Menu_Set in Chapter 22 for additional information, including ways to have the menu text correspond to
the conventions of particular platforms; that is, where one would use “Exit” on Windows or OS/2, one would used
“Quit” on the Macintosh.

Disabling & Editing Menu Items
Just as you can check certain items in a menu, you can disable — or gray out — certain items with
TC_Menu_SetEnable:

CALL TC_Menu_SetEnable (wid, menu, item, flag)

The arguments are the same as those for TC_Menu_SetCheck. If flag is 0, the item is disabled or grayed out;
for any other value, the item is enabled or visible. If item is 0, then the entire menu can be disabled or enabled.
By default when you create a menu with TC_Menu_Set all items are enabled. You may find the current state of
a given menu item with the TC_Menu_GetEnable routine:

CALL TC_Menu_getEnable (wid, menu, item, flag)

164 True BASIC Language System



Other routines let you change, add, or delete menu items. You can change the text for a menu item with
TC_Menu_SetText:

CALL TC_Menu_SetText (wid, menu, item, text$)

Similarly, you can find out the current text for a menu item with TC_Menu_GetText:
CALL TC_Menu_GetText (wid, menu, item, text$)

Use caution when adding or deleting menu items as this can cause confusion with the array subscripts used to
identify menu items returned by events. TC_Menu_AddItem lets you add an item at the end of a menu with spec-
ified text$:

CALL TC_Menu_AddItem (wid, menu, text$)    

The wid and menu arguments identify the menu as in the routines above. The array subscripts used to identify
menu items are automatically updated.

Similarly, TC_Menu_DelItem deletes a menu item from the window and menu specified:
CALL TC_Menu_DelItem (wid, menu, item)

You can delete the last item in a menu without serious confusion about how subscripts identify menu items. But,
if you wish to delete an item in the middle of a menu, it would be better to delete the entire structure (with
TC_Menu_Free) and then rebuild it.

You may also add or delete a menu at the end of the current menu structure, using the routines:
CALL TC_Menu_AddMenu (wid, menu$())

and
CALL TC_Menu_DelMenu (wid)

TC_Menu_AddMenu adds an entirely new menu onto the end of the current menu structure. The new menu is
given in the list menu$(), where item 0 must contain the menu header. Note that these two routines work only
on the end of the current menu structure. They are most helpful for adding a special menu that may later be
deleted.

Removing Menus
When you no longer need a menu in a window, it is a good idea to delete it and free the memory associated with it.
You can do this with the TC_Menu_Free routine:

CALL TC_Menu_Free (wid)

Creating and Using Push Buttons
Push buttons are buttons containing text that the user can click on to indicate a certain action. To see an example
of a simple push button, you can examine and run the DEMPUSH.TRU program in the TBDEMOS directory.

As another example, consider the arithmetic quiz being set up in the previous section. If this program presents a
problem to the user and gives them a space to enter an answer, you might want to have a push button that the user
can click to have the computer check the answer.

The routine that creates a push button is:
CALL TC_PushBtn_Create (cid, text$, xl, xr, yb, yt)

where cid returns the control ID for the button, text$ is the text that will appear in the button, and the remain-
ing arguments give the left, right, bottom, and top corners of the button in pixel coordinates for the current phys-
ical window. 

As an example, you could place a push button in the bottom left of the window with the following statements.
Remember that the default user coordinates are 0, 1, 0, 1 (unless you change them with a SET WINDOW state-
ment as described in Chapter 13 on “Using Graphics”).

165Interface Elements



LIBRARY “c:\TBSilver\TBLIBS\TrueCtrl.trc” ! or appropriate path name
CALL TC_Init ! Initialize TC routines
CALL TC_Show (0) ! Show default window

CALL TC_PushBtn_Create (pbid, “Check my answer”, .1, .4, .1, -99999)

The value of -99999 passed as one of the locations for the push button signals that you want to use the default but-
ton height.

The above code merely puts the push button in the window; it cannot do anything yet. To process input from a push
button, you would need to test for event$ of “CONTROL DESELECTED” returned from the TC_Event rou-
tine. For example, you could add an additional test to the DO loop that checks for menu input as follows:

DO
CALL TC_Event (0, event$, 0, x1, x2)

IF event$ = “MENU” then
<code as shown in earlier section; the Main menu includes choices 
to present a problem or end the loop>

ELSEIF event$ = “CONTROL DESELECTED” then
IF x2 = pbid then CALL Check_Answer (answer, response)
! ignore x1

END IF
LOOP

CALL TC_Cleanup
END

“CONTROL DESELECTED” for a push button means that the user has clicked and released on it. (In the case of a
push button, a “CONTROL SELECT” event always precedes a “CONTROL DESELECTED” event, but the “CON-
TROL SELECT” event is not returned until the object is deselected. Thus, the program can ignore the “CONTROL
SELECT” event and simply test for the appropriate “CONTROL DESELECTED” event.)

For these events, the value returned by x2 is the ID number for the control that was selected or deselected; x1 is
not used and can be ignored. Thus, if event$ equals “CONTROL DESELECTED” and x2 equals the ID for the
push button (stored in pbid in this example), the user has clicked on the push button and the decision structure
will carry out the appropriate action (here, checking the user’s response).

Creating and Using Groups of Radio Buttons
Another way to offer users a choice of options is to provide a group of radio buttons, in which one button (and only
one button) is always checked or selected. For example, in the MathQuiz program, radio buttons could provide the
user with a choice of addition, subtraction, multiplication, or division problems. (The DEMRADIO.TRU program
in the TBDEMOS directory also provides a simple example of radio buttons.)

The format for the TC_RadioGroup_Create routine is:
CALL TC_RadioGroup_Create (rid, text$(), xl, xr, yb, yt)

The text for each button should be passed in the text$() array, whose lower bound must be 1. The ID of the
group as a whole is returned in rid. Initially, none of the buttons is on. If you wish to set one of the buttons to be
“on”, use the TC_RadioGroup_Set routine:

CALL TC_RadioGroup_Set (rid, button)

For example, to add a group of four radio buttons to the lower-right corner of the MathQuiz window, you could add
the following statements:

DIM radio_text$ (4)           ! 4 buttons

MAT READ radio_text$
DATA Addition, Subtraction, Multiplication, Division

166 True BASIC Language System



...
CALL TC_RadioGroup_Create (radio_id, radio_text$(), .6, .9, .1, .4)
CALL TC_RadioGroup_Set (radio_id, 1)
LET operation$ = radio_text$(1)

These statements indicate the first radio button (Addition) as the “on” button initially. The variable operation$
is a new parameter to be passed to a NextProblem subroutine that would present an appropriate type of problem.

The above statements create a set of radio buttons but those buttons cannot do anything yet. To test for input from
the buttons, you would test for event$ of “CONTROL DESELECTED” returned from the TC_Event routine.
When event$ is “CONTROL DESELECTED”, x2 returns the ID for the radio button group (as noted above, you
can ignore x1 for any “CONTROL DESELECTED” event).

Your program can find out the currently “on” radio button at any time with the TC_RadioGroup_On routine:
CALL TC_RadioGroup_On (rid, button)

The first argument must be the ID for the radio group as a whole, the second argument returns the ordinal num-
ber of  the button that is currently on. For example, you might add the following test to the DO loop in the Math-
Quiz program:

DO
CALL TC_Event (0, event$, 0, x1, x2)

IF event$ = “MENU” then ! Menu item selected

<code to CALL NextProblem or EXIT DO as shown in menu section above,
adding operation$ parameter to CALL to NextProblem:>

CALL NextProblem (difficulty, operation$, answer, response)

ELSEIF event$ = “CONTROL DESELECTED” then ! Control item selected

IF x2 = pbid then CALL Check_Answer (answer, response)  ! Push button
! ignore x1

ELSE ! Radio button
CALL TC_RadioGroup_On (radio_id, on)
LET operation$ = radio_text$(on)

END IF

END IF
LOOP
CALL TC_Cleanup
END

If the user clicks a radio button, the above statements reset the value of operation$ so that the proper value
is passed to the subroutine NextProblem (not shown) that will present a problem. The program need not reset the
radio buttons as TC_Event does that automatically. (Remember that no more than one radio button can be “on”.) 

As with push buttons, a “CONTROL DESELECTED” event is always preceded by a “CONTROL SELECT” event,
which is not returned until the object is deselected. Thus, the program need be concerned only with the deselection
of the object.

Creating and Using Check Boxes
Check-box objects let you create one or more choices similar to radio buttons. Unlike radio buttons however, in
which only one button in the group can be “on”, each check box is a separate object and any one may or may not be
checked “on” independently of any other check box. To see an example of a check box, you can examine and run the
DEMCHECK.TRU program in the TBDEMOS directory.

167Interface Elements



The TC_CheckBox_Create routine is:
CALL TC_Checkbox_Create (cid, text$, xl, xr, yb, yt)

You supply the text to go with the check box as text$. To indicate if a box is to be checked or not, use the sepa-
rate routine TC_Checkbox_Set:

CALL TC_Checkbox_Set (cid, status)

If status is 0, the box is not checked; if it is 1 (or any non-zero value), the box is drawn with an X in it. 

For example, suppose you want to give the user the option of receiving warnings about something (such as mis-
spelled words, numbers outside a certain range, etc.) and you provide three ways of giving warnings. The follow-
ing statements would create three check boxes, corresponding to three warning methods. Initially, no box is
checked, indicating that no warnings are desired:

LIBRARY “c:\TBSilver\TBLIBS\TrueCtrl.trc”     ! or appropriate path name
CALL TC_Init ! Initialize TC routines
CALL TC_Show (0) ! Show default window

DIM check_id (3), check_text$ (3), warn_flag (3)

MAT READ check_text$
DATA “Sound”, “Flashing bar”, “Message on screen”
MAT warn_flag = 0 ! All warnings turned off initially

FOR i = 1 to 3
CALL TC_Checkbox_Create (check_id(i), check_text$(i), .6, .8, 4+.3*i, -99999)

NEXT i

The user could then check one or more of the boxes indicating how they wish to receive warnings. The program
may test for a “CONTROL DESELECTED” event on a check box, but more importantly, it needs to find out the new
status of the box (checked or not).

In addition to returning “CONTROL SELECT” and “CONTROL DESELECTED” events for check boxes,
TC_Event automatically changes the status of the check box. If the box was not checked before the event,
TC_Event adds a check and changes the status of the box to 1; if the box had been checked, the check is removed
and the status is changed to 0. TC_Event does not return the status, however; to find that you must use the
TC_CheckBox_Get routine, as follows:

CALL TC_Checkbox_Get (cid, status)

In some cases, a program may not need to test for a check-box event, as long as it checks the status of appropriate
check boxes before carrying out related tasks. More commonly, however, a program would check the status of the
boxes and set appropriate flags as part of an event processor. For example:

DO

CALL TC_Event (0, event$, window, x1, x2)

IF event$ = “CONTROL DESELECTED” then
FOR i = 1 to 3

IF x2 = check_id (i) then ! If a check box, ...
CALL TC_CheckBox_Get (x2, status) ! Get new status
LET warn_flag (i) = status ! Reset flag

END IF
NEXT i

END IF

<additional event processor code>

LOOP

168 True BASIC Language System



Similarly, a program can change the status of a check box at any time with the TC_Checkbox_Set routine:
CALL TC_Checkbox_Set (cid, status)

passing the desired status, 0 or 1, along with the appropriate ID number.

Putting a Box Around a Group of Objects
The TC_Groupbox_Create routine puts a box around a group of objects such as radio buttons or related check
boxes. The format for the routine is:

CALL TC_Groupbox_Create (cid, title$, xl, xr, yb, yt)

The second argument, title$, lets you place a title on the box; if title$ is an empty string then no title is
added. Thus, to place a simple box around the radio button group above, you could insert this statement before you
create the radio button group:

CALL TC_Groupbox_Create (box_id, “”, .6, .8, .5, .8)

If you wish to put a title on the box, you could do so as follows:
CALL TC_Groupbox_Create (box_id, “Select Problem Type”, .6, .8, .5, .8)

Since the group box may be opaque, it must be shown before other controls that it may contain.

No events are returned for group boxes; group boxes merely organize other control objects, .

The DEMGROUP.TRU program in the TBDEMOS directory provides an example of a simple group box.

Adding Titles or Other Static Text Boxes
The group box routine can put a title on a group box. Another routine lets you place a title anywhere in a window,
either as part of another object or by itself. The TC_SText_Create routine creates an object that contains one line
of text. This text cannot be edited by the user; it is called static text. Your program, however, can change the text
in a static text box using the TC_SetText routine as described below. (Edit fields, list edit buttons, and text edi-
tor objects — all described in this chapter — can be edited by the user.)

You create a one-line static text object as follows:
CALL TC_SText_Create (cid, text$, xl, xr, yb, yt)

You supply the text for the object in text$. If the defined area is too small, the text is truncated. 

By default, the text is left-justified in the defined area. If you wish otherwise, you may use the TC_Set-
TextJustify routine, but it must be invoked before the control is shown the first time:

CALL TC_SetTextJustify (cid, justify$)

In justify$, you can specify “CENTER”, “RIGHT”, or “LEFT” to indicate how the text is to be placed in
the area defined by xl, xr, yb, and yt. (Note: text justification may not work on all systems.)

Alternatively, you can extend the text in the create statement with an appropriate justifer, For example:
CALL TC_SText_Create (cid, text$ & "|center", ...)

can be used.
Thus, you could add a title to the check boxes created earlier, with or without a group box, as follows:

...
DIM check_id (3), check_text$ (3), warn_flag (3)

MAT READ check_text$
DATA “Sound”, “Flashing bar”, “Message on screen”
MAT warn_flag = 0 ! All warnings turned off initially
LET check_title$ = “Select Warning Type”

CALL TC_Groupbox_Create (box_id, “”, .6, .8, .4, .85)

169Interface Elements



FOR i = 1 to 3
CALL TC_Checkbox_Create (check_id(i), check_text$(i), .6, .8, .4+.1*i, -99999)

NEXT i

CALL TC_SText_Create (title_id, check_title$ & "|center", .62, .78, .9, -99999)
CALL TC_SetTextJustify (title_id, “CENTER”)

The bottom of the static text box is placed above and slightly inside the edges of the first check box. The final value
of -99999 indicates that the default height for static text should be used.

If you do not want a box around the check boxes and their title, you could omit the call to TC_Groupbox_Create.

Although users will not be able to edit or select static text items, a program can change the text in a static text
object at any time with the TC_SetText routine:

CALL TC_SetText (cid, text$)

where cid is the ID for the static text object and text$ is the new text for that object. For example, you could
change the static text object created above as follows:

CALL TC_SetText (title_id, “Warning Method”)

If that object is shown on the screen, the text will be updated immediately.

Creating and Using an Edit Field for Text Entry
If you wish to have a single-line field where the user can enter text, you can create an edit field. You can also spec-
ify a format for the text to be entered in an edit field. You create an edit field with the TC_Edit_Create routine:

CALL TC_Edit_Create (cid, text$, xl, xr, yb, yt)

The routine returns the field’s ID in cid; you specify the initial text to appear in the field as text$. If you wish
to indicate a desired format for that text, use the routine TC_Edit_SetFormat:

CALL TC_Edit_SetFormat (cid, format$)

Here, format$ specifies a format for the text to be entered in an edit field; see the table below. You can check
that the text conforms to the format at any time by calling

CALL TC_Edit_CheckField (cid, errormess$)

If all is okay, errormess$ will be the null string; otherwise, errormess$ will contain a descriptive error
message.

For example, if you wanted to create fields for the user to enter a name, phone number, and amount owed, you
could create edit fields as follows:

LIBRARY “c:\TBSilver\TBLIBS\TrueCtrl.trc”     ! or appropriate path name
CALL TC_Init                       ! Initialize TC routines
CALL TC_Show (0)                   ! Show default window

LET xl = .2
LET xr = .6
LET yb = .8
CALL TC_Edit_Create (name_id, “First Last”, xl, xr, yb, -99999)
CALL TC_Edit_Create (phone_id, “(000) 000-0000”, xl, xr, yb-.1, -99999)
CALL TC_Edit_SetFormat (phone_id, “phone”)
CALL TC_Edit_Create (balance_id, “000.00”, xl, xr, yb-.2, -99999)
CALL TC_Edit_SetFormat (balance_id, “number”)

The format string “PHONE” allows any of the telephone-number formats shown below; “NUMBER” allows any real
number.  The table below shows other edit-field format strings that are allowed; case does not matter.

170 True BASIC Language System



Edit Field Format$ Strings
——————————————————————————————————————

format$ string Allowable texts (examples)
“number” 123.456  (any real number)
“integer” 123 (no decimal point)
“range 123 456” any integer in specified range
“frange 12.3 45.6” any real number in specified range
“zip” 19096 or 19096-1234
“phone” 222-2222

222-222-2222
(222) 222-2222

“ss” 123-45-6789
“date” MM-DD-YY

DD MMM YY
DD MMM YYYY
MMM_DD_YYYY
YYYYMMDD

“length 12” any number having the specified number of characters
“format *****” customized format string as indicated by any combination of the fol-

lowing codes in place of the *s:
A = any character
9 = any digit
X = any letter
? = any character at all
(other characters are literals)

list a, b, c (must be one of these)
——————————————————————————————————————

Although you can check the contents of an edit field at any time, you should probably wait until the user has moved
on. When TC_Event and returns a “CONTROL DESELECTED” event for the field (the field ID is returned as x2,)
the user has finished using the edit field and has selected something else. You can then find out the text entered
in the field with a call to TC_Edit_GetText:

CALL TC_Edit_GetText (cid, text$)

You can also check the contents against the format with TC_Edit_CheckField.

Thus, you could get input from the edit fields created above with the following code:
DO

CALL TC_Event (0, event$, window, x1, x2)

IF event$ = “CONTROL DESELECTED” then
CALL TC_Edit_CheckField (x2, error$)
IF error$ <> “” then

CALL TD_Warn (error$, “Accept|Correct”, 1, r)
IF r = 1 then ! “Accept” button pressed

CALL TC_Edit_GetText (x2, text$)
IF x2 = name_id then 

LET name$ = text$
ELSEIF x2 = phone_id

LET phone$ = text$
ELSEIF x2 = balance_id

LET amount_due = Val(text$) ! Convert to numeric value
END IF

171Interface Elements



ELSE
CALL TC_Select (x2)

END IF
END IF

END IF
...
LOOP until event$ = “KEYPRESS” and x1 = 27 ! Escape key ends the loop

(A description of TD_Warn appears later in this chapter.) Notice that the contents of the edit field are always
returned as a string value, text$. You may wish to convert to some other form, such as a numeric value or indi-
vidual values for month, day, and year.

Your program can reset the text or format for an edit field at any time with the two routines:
CALL TC_Edit_SetText (cid, text$)
CALL TC_Edit_SetFormat (cid, format$)

The new text is shown in the edit field immediately if that object is visible.

For another way to let the user enter a selection, see the list edit button described in the next section.

Creating and Using Selection Lists
There are three types of controls that let you create a list of items the user may select from. A list box is a box show-
ing the items in a list; if the list of items it too long for the size of the list box, a scroll bar is automatically added and
handled by True Controls. List buttons appear on the screen as a single button with an arrow to the right of the but-
ton text. When the user selects the arrow, the list pops down (possibly with a scroll bar) and remains in view until the
user selects an item from the list. List edit buttons are similar to list buttons, but the main difference is that the
user may enter a choice not given in the pop-down list. List buttons and list edit buttons allow only single selections,
while list boxes may be set to allow for multiple selections on some operating systems.

List Boxes (ListBox)
To see an example of a list box, you can examine and run the DEMLISTS.TRU program in the TBDEMOS direc-
tory.

The format for the TC_ListBox_Create routine is:
CALL TC_ListBox_Create (cid, mode$, xl, xr, yb, yt)

Cid returns a single ID number that identifies the list box as a whole. The second argument allows you to set the
selection mode. Possible values are:

SINGLE Only single selections are allowed (default)
MULTIPLE Multiple selections are allowed
READONLY The list may be read but not selected

If the mode is not recognized or is the null string, the default (SINGLE) mode will be used. Multiple selections may
not be available on all operating systems.

The contents of the list box may be set using the subroutine TC_SetList:
CALL TC_SetList (cid, list$())

The array slist$ contains the text for the items in the list. Its lowest subscript must be <= 1. If the list is too
long for the space defined by yb and yt, a scroll bar is added and handled automatically. For example, the fol-
lowing statements create a list box containing 10 items, although the box cannot display them all:

LIBRARY “c:\TBSilver\TBLIBS\TrueCtrl.trc”    ! or appropriate path name
CALL TC_Init ! Initialize TC routines
CALL TC_Show (0) ! Show default window

DIM list$ (10), selection (0) ! Selection array 

172 True BASIC Language System



MAT READ list$
DATA apple, banana, cranberry, dandelion, eggplant
DATA forsythia, hyacinth, iris, jasmine, kiwi

CALL TC_ListBox_Create (list_id, “SINGLE”, .6, .8, .3, .5)
CALL TC_SetList (list_id, list$())

Events returned for list boxes are “CONTROL SINGLE” or “CONTROL DOUBLE” depending on whether the user
selects an item with a single click or double click of the mouse button. A “CONTROL DOUBLE” is always preceded
by a “CONTROL SINGLE” event. For these event types, TC_Event returns the control ID as x2 (x1 can be
ignored). To find out what item or items have been selected, you must use the TC_ListBox_Get routine, as fol-
lows:

CALL TC_ListBox_Get (cid, selection()) 

For the designated list box ID, the routine returns one or more numbers in the array selection(). The
returned numbers correspond to positions in the list — or list-text array subscripts — of any item the user selected.
For example, if the user selects “dandelion” from the above list, the selection() array would contain the sin-
gle value 4. (On some operating systems, the user can select only one item.)

First, here’s a sample section of an event handler that would detect an event in a list box and find out what had
been selected:

DO
CALL TC_Event (0, event$, window, x1, x2)

IF event$ = “CONTROL SINGLE” or event$ = “CONTROL DOUBLE” and x2 = list_id then
CALL TC_ListBox_Get (list_id, selection()) ! Get selected item #
LET plant$ = list$(selection(LBOUND(selection))) ! Get name

END IF
...

LOOP

A program can redefine the items in a list box at any time with the TC_SetList routine:
CALL TC_SetList (cid, slist$())

For example, you could redefine the list box above to contain a list of animals with the code:
DIM animals$ (7)
MAT READ animals$
DATA aardvark, buffalo, cow, dog, elephant, flamingo, giraffe

CALL TC_SetList (list_id, animals$())

All previous items in the list box are removed and replaced by the new array of items; the number of items need
not be the same. If the box is showing, the list items are changed immediately.

A program can also pre-select one of the items in a list box with the TC_ListBox_Set routine:
CALL TC_ListBox_Set (cid, selection)

The value of selection must be in the range from 1 to the number of items in the list. For example, the following
statement would preselect “dog” in the list above:

CALL TC_ListBox_Set (list_id, 4)

Multiple selections, where allowed, are usually made by clicking on several items while holding down the shift key,
then using a double click when finished. In this case the event handler would be interested only in the event type
“CONTROL DOUBLE”, and the array returned by TC_ListBox_Get would contain multiple items. (See Chap-
ter 19 on the Object Subroutine for more details.)

DO
CALL TC_Event (0, event$, window, x1, x2)

173Interface Elements



IF event$ = “CONTROL DOUBLE” and x2 = list_id then    
CALL TC_ListBox_Get (list_id, selection()) ! Get selected item nos.
LET plants$ = “”
FOR i = 1 to UBOUND(selection)

LET plants$ = plants$ & list$(selection(i)) & “ “ ! Get
corresponding names

NEXT i
END IF
...

LOOP

List Buttons (ListBtn)
A list button also lets the user select from a list of items, but it initially appears on the screen as a single button
with a down arrow. The currently selected item is shown in the button.

When the user clicks on the down arrow, the rest of the list pops down from the button. When the user clicks on an
item in the list to select it, that item replaces the selected text in the button and the pop-down list disappears.

To create a list button, use the TC_ListBtn_Create routine with a string array to pass the items for the list:
CALL TC_ListBtn_Create (cid, list$(), xl, xr, yb, yt)

The first item in the list appears initially in the list button. For example, the following code creates the list button
shown above:

LIBRARY “c:\TBSilver\TBLIBS\TrueCtrl.trc”      ! or appropriate path name
CALL TC_Init                       ! Initialize TC routines
CALL TC_Show (0)                   ! Show default window

DIM list$ (10)
MAT READ list$
DATA apple, banana, cranberry, dandelion, eggplant
DATA forsythia, hyacinth, iris, jasmine, kiwi

CALL TC_ListBtn_Create (listbtn_id, list$, .6, .8, .4, .6)

The last two arguments determine the space available for the pop-down list when you select the list button. If
there is not enough room for all the items in the list, a scroll bar is added and handled automatically.

The only event returned for a list button is “CONTROL SINGLE”, with the control ID returned as x2 (x1 can
be ignored). To find out what item or items have been selected, you must use the TC_ListBtn_Get routine, as fol-
lows:

CALL TC_ListBtn_Get (cid, selection)

The item’s position in the list — its subscript in the list$() array — is returned by selection. Thus, the
following code could handle events in the list button created above:

DO
CALL TC_Event (0, event$, window, x1, x2)

IF event$ = “CONTROL SINGLE” and x2 = listbtn_id then    
CALL TC_ListBtn_Get (listbtn_id, selection)! Get selected item #
LET plant$ = list$ (selection) ! Get corresponding name

END IF
...

LOOP

To see an example of a list button, you can examine and run the DEMLISTB.TRU program in the TBDEMOS
directory installed with TB Silver.

174 True BASIC Language System



List Edit Buttons (ListEdit)
List edit buttons are similar to list buttons in appearance, but the user may either select an item from the pop-
down list or enter a new item in the button. (There is a slight difference in appearance, as list edit buttons have a
box around the button text.)  To see an example of a list edit button, you can examine and run the DEMLISTE.TRU
program in the TBDEMOS directory.

List edit buttons are created by the TC_ListEdit_Create routine:
CALL TC_ListEdit_Create (cid, list$(), xl, xr, yb, yt)

The list$() array supplies the items for the pop-down list, and the list$(0) string supplies the item to
appear initially in the button itself. For example, the following code establishes a list edit button:

LIBRARY “c:\TBSilver\TBLIBS\TrueCtrl.trc”     ! or appropriate path name
CALL TC_Init ! Initialize TC routines
CALL TC_Show (0) ! Show default window

DIM list$ (0:10)
MAT READ list$
DATA Plants ! Title for the button
DATA apple, banana, cranberry, dandelion, eggplant
DATA forsythia, hyacinth, iris, jasmine, kiwi

CALL TC_ListEdit_Create (listedit_id, list$(), .6, .8, .2, .4)

When the user selects an item not already in the button field, that item moves up to the button field, where it may
be edited. When done editing, the user deselects the button by clicking in an area outside the button. A “CONTROL
DESELECTED” event is then returned with the list edit button’s ID. 

Thus, to handle list edit button events, the program would first test for a “CONTROL DESELECTED” event for
the button and then use the TC_ListEdit_Get routine to get the new text in the button:

CALL TC_ListEdit_Get (cid, text$)

The following code segment shows an event handler for the list edit button created above:

DO
CALL TC_Event (0, event$, window, x1, x2)

IF event$ = “CONTROL DESELECTED” and x2 = listedit_id then
CALL TC_ListEdit_Get (x2, text$)
LET plant$ = text$

END IF
...

LOOP

You can change the list by using TC_SetList, just as with a list button. But here the 0-th element will be used as
the new text for the button itself.

Creating and Using Scroll Bars
As noted in the earlier section on “Creating and Using Physical Windows”, you may add vertical or horizontal
scroll bars to windows by including “VSCROLL” or “HSCROLL” as options$ in the call to the TC_Win_Create
routine. You may also place horizontal or vertical scroll bars in any window or object with the routine
TC_SBar_Create:

CALL TC_SBar_Create (cid, type$, xl, xr, yb, yt)

For a vertical scroll bar type$ should be “VSCROLL”, and for a horizontal scroll bar it should be “HSCROLL”.
The scroll bar is placed at the indicated location. 

175Interface Elements



Three similar sets of routines let you control the range the scroll bar will cover and the action of the scroll bar and
its slider “thumb”. Which set you use depends on how you created the scroll bar:

Scroll Bar Routines
——————————————————————————————————————

TC_SBar_Create TC_Win_Create TC_Win_Create
type$ = VSCROLL or HSCROLL option$ = VSCROLL     option$ = HSCROLL    

TC_SBar_SetRange TC_WinVSBar_SetRange TC_WinHSBar_SetRange
TC_SBar_GetRange TC_WinVSBar_GetRange TC_WinHSBar_GetRange
TC_SBar_SetPosition TC_WinVSBar_SetPosition TC_WinHSBar_SetPosition
TC_SBar_GetPosition TC_WinVSBar_GetPosition TC_WinHSBar_GetPosition
TC_SBar_SetIncrements TC_WinVSBar_SetIncrements TC_WinHSBar_SetIncrements
TC_SBar_GetIncrements TC_WinVSBar_GetIncrements TC_WinHSBar_GetIncrements

——————————————————————————————————————
The rest of this section describes the TC_SBar routines for separate scroll bars created with the TC_SBar_Cre-
ate routine. The TC_WinVSBar and TC_WinHSBar routines are used in the same way, except that events for
window-associated scroll bars are identified by the window id number.

Two routines let you indicate the beginning and end of the range the scroll bar will cover, as well as the “page incre-
ment” or range that will be scrolled per “page” when the user clicks on the bar above or below the scroll slider or
“thumb”:

CALL TC_SBar_SetRange (cid, srange, erange, prop)
CALL TC_SBar_SetIncrements (cid, single, page)

When the slider is at the left or top, its position is equal to srange; when the slider is at the right or bottom, its posi-
tion is equal to erange minus prop. On operating systems that let you control the size of the scroll slider, prop
determines the proportional size of the slider as related to the range of the scroll bar. The single value indicates
how far the screen should be scrolled when the user clicks the up or down arrow at either end of the scroll bar; the
page value indicates how far the screen should be scrolled when the user clicks above or below the scroll slider.

By default, the scroll slider is initially set to the srange position, but another routine lets you reset a slider’s
position within the scroll-bar range at any time:

CALL TC_SBar_SetPosition (cid, position)

The position is always set (or reported in GetPosition) for the top of the slider. Thus, if the slider is moved to the
very end of the scroll bar, the position will be the value of erangeminus the value of prop.

The DEMVSBAR.TRU program in TBDEMOS provides a simple illustration of a vertical scroll bar. The following
code fragments from the ARCERHY2.TRU program in TBDEMOS shows how that program defines the scroll bars
that let the user define the angle and velocity of each shot:

! Archery2
LIBRARY “..\TBLibs\TrueCtrl.trc”
...
CALL TC_Init ! Initialize for True Controls
...
CALL TC_Show (0) ! Show the default output window
...
! Create speed-setting scroll bar and related controls.

CALL TC_SText_Create (st1, “Force”, .42, -20, -38, -99999)
CALL TC_SText_Create (speed0, “0”, -12, -5, -38, -99999)
CALL TC_SText_Create (speed200, “200”, 170, -185, -38, -99999)
CALL TC_SText_Create (speeddial, “0”, -42, -20, -99999, -40)
CALL TC_SBar_Create (speedset, “HSCROLL”, -12, 185, -99999, -40)

176 True BASIC Language System



! Create angle-setting scroll bar and related controls.

CALL TC_SText_Create (st3, “Angle”, 160, 180, -99999, 98)
CALL TC_SText_Create (angledial, “0”, 185, 194, -99999, 98)
CALL TC_SText_Create (angle90, “90”, 170, 180, -99999, 88)
CALL TC_SBar_Create (angleset, “VSCROLL”, 185, -99999, -26, 88)
CALL TC_SText_Create (angle0, “0”, 170, 180, -26, -99999)
...
! Set the scroll bar parameters and increments.

CALL TC_SBar_SetRange (angleset, 0, 100, 10)! Range from 0 to 90 (100-10)
CALL TC_SBar_SetIncrements (angleset, 1, 10)! Slider “page” by 10
CALL TC_SBar_SetPosition (angleset, 90) ! Initial slider position = 90
CALL TC_SBar_SetRange (speedset, 0, 210, 10)! Range from 0 to 200 (210-10)
CALL TC_SBar_SetIncrements (speedset, 1, 10)! Slider “page” by 10
CALL TC_SBar_SetPosition (speedset, 0) ! Initial slider position = 0
...

When initially created, the scroll-bar sliders are placed at the left end or top of the scroll bar, which is position 0 in
the scroll-bar range. Because the ARCHERY2 program inverts the vertical scroll bar, a TC_Sbar_SetPosition
routine resets the slider to the bottom of the range, or 90 (which is inverted to 0). Each time the user clicks in the
bar outside the slider, the scroll position is changed by 10 (the value set for the page increment for both scroll bars). 

A program can also find out the scroll-bar ranges, page increments, and slider position at any time, with the rou-
tines:

CALL TC_SBar_GetRange (cid, srange, erange, prop)
CALL TC_SBar_GetIncrements (cid, single, page)
CALL TC_SBar_GetPosition (cid, position)

When the user clicks on the scroll bar or arrows associated with it, or moves the slider, TC_Event carries out all
adjustments to the scroll bar automatically and returns the event type . The x2 value returns the ID number for
the control; x1 is ignored. Because TC_Event carries out most adjustments automatically, a program often needs
only to find out the new position of the scroll bar to do something appropriate within the window. The main event
loop in the ARCHERY2.TRU program handles scroll-bar events with two calls to TC_SBar_GetPosition: 

CALL TC_SBar_GetPosition (angleset, angle) ! Vertical scroll bar
LET angle = 90 - angle
IF angle <> currentangle then

LET currentangle = angle
CALL TC_SetText (angledial, Str$(currentangle))

END IF

CALL TC_SBar_GetPosition (speedset, speed) ! Horizontal scroll bar
IF speed <> currentspeed then

LET currentspeed = speed
CALL TC_SetText (speeddial, Str$(currentspeed))

END IF

Each time through the loop, the slider position is updated, resetting the value for angle and speed of the shot; the
current settings are used elsewhere in the game as needed.

The events that may be returned by scroll bars are as follows. Keep in mind, however, that you may not need to
use these directly much of the time.

177Interface Elements



Events Returned by Scroll Bars
————————————————————————–––——————————————
“PAGEDOWN” user has clicked on the bar below the slider; position advances by value of the page

increment
“PAGEUP” user has clicked on the bar above the slider; position decreases by value of the page

increment
“DOWN” user has clicked the arrow at the bottom of the scroll bar; position advances by one
“UP” user has clicked the arrow at the top of the scroll bar; position decreases by one
“VSCROLL” user is in process of moving the scroll-bar slider
“END VSCROLL” user has finished moving the scroll-bar slider; position is final location of slider
“PAGERIGHT” user has clicked on the bar to the right of the slider; position advances by value of the

page increment
“PAGELEFT” user has clicked on the bar to the left of the slider; position decreases by value of the page

increment
“RIGHT” user has clicked the arrow at the right of the scroll bar; position advances by one
“LEFT” user has clicked the arrow at the left of the scroll bar; position decreases by one
“HSCROLL” user is in process of moving the scroll-bar slider
“END HSCROLL” user has finished moving the scroll-bar slider; position is final location of slider

——————————————————–––————————————————————

Creating Graphics Objects
True BASIC’s graphics statements described in Chapter 13 provide one method for producing graphical elements.
You may also produce such objects via True Controls routines. The main routine that creates a graphics object is:

CALL TC_Graph_Create (gid, type$, xl, xr, yb, yt)

As usual, cid returns the ID number for the object. For the argument type$ you may pass any of the strings
listed below. The arguments xl, xr, yb, and yt are applied differently depending on the object type:

Graphics Object Types
—————————————————————————–––—————————————

Type$ How coordinates are used
“RECTANGLE”, “CIRCLE”, “ARC”, “PIE”, “ROUNDRECT” define rectangular area
“ALINE”, “LINE” define start x, end x, start y, end y
“POLYGON”, “POLYLINE” ignored (except for scaling)
“IMAGE” define rectangular area; may distort

————————————————————–––——————————————————
Graphical objects are not controls; they return no events. They simply provide another way for your programs to
create graphical output. They are displayed in their own “layer”, which is “above” ordinary True BASIC printed
and plotted output. They may also be layered underneath any and all real controls, such as push buttons, although
this property is not consistent across all platforms.

RECTANGLE, CIRCLE, ARC, PIE, and ROUNDRECT
For the first five object types, the arguments xl, xr, yb, and ytmust define the left, right, bottom, and top of a rec-
tangle. A “RECTANGLE” is drawn to fill the defined area; the other object types in this group are fit within that rec-
tangle.  For example, a “CIRCLE” is placed within the defined rectangular area with the edges of the circle touching
each side of the area. Thus, a “CIRCLE”may appear as an ellipse if the coordinates do not define a square rectangle.
Additional routines further define the appearance and placements of arcs, pies, and rounded rectangles.
A “ROUNDRECT” is a rectangle with curved corners. The sides of a “ROUNDRECT” are drawn just as a similarly
defined “RECTANGLE” would be, except that the corners are curved. The size of the arcs in the corners may be

178 True BASIC Language System



defined with the TC_Graph_SetRoundRect routine:
CALL TC_Graph_SetRoundRect (gid, ovalwidth, ovalheight)

The ovalwidth and ovalheight arguments define the size of an oval whose four quadrants will form the cor-
ners of the rectangle. Thus, the larger the values for ovalwidth and ovalheight, the more rounded the cor-
ners of the rectangle. A “ROUNDRECT” drawn with no call to TC_Graph_SetRoundRect will have square cor-
ners (the ovalwidth and ovalheight each equal 0).
An “ARC” and a “PIE” are segments of circles drawn within the defined rectangular area. An “ARC” is a seg-
ment of a circle, and a “PIE” is an arc with lines from the ends of the arc to the center. The size of the “ARC” or
the “PIE” segment is defined with the TC_Graph_SetArc routine:

CALL TC_Graph_SetArc (gid, starta, stopa)

The starta and stopa arguments define two angles, in degrees. The arc is defined as the portion of the cir-
cumference of the circle (defined by the rectangular area in by TC_Graph_Create) that starts at starta and
ends at stopa, proceeding counterclockwise. The angle 0 is the positive x-axis.
To see examples of a arcs and pies, you can examine and run the DEMARC.TRU and DEMPIE.TRU programs in
the TBDEMOS directory installed with Silver Edition.

ALINE and LINE (Arrows and Lines)
The next two object types — “ALINE” and “LINE”— draw an arrow or a plain line. For them, the arguments
xl, xr, yb, and yt indicate that the line or arrow should begin at the point defined by the first x and y coordi-
nates (xl and yb) and end at the point defined by the second x and y coordinates (xr and yt). The following
example draws a line that slants down and to the right:

CALL TC_Graph_Create (cid, “LINE”, .2, .8, .7, .3)

The line will be drawn from the coordinate point (.2,.7) to the coordinate point (.8,.3).

Lines with arrowheads are similarly created.
CALL TC_Graph_Create (cid, “ALINE”, .2, .8, .7, .3)

The TC_Graph_SetAline routine then is used to define which end will have an arrowhead:
CALL TC_Graph_SetAline (gid, start, end)

If the value of start is non-zero, an arrowhead is placed at the beginning of the line; if start equals zero, there
is no arrowhead at the start of the line. Similarly, a non-zero value for end places an arrowhead at the end of the
line. An “ALINE” drawn with no call to TC_Graph_SetAline will have no arrowheads.

The following example creates an arrow and places an arrowhead at the lower, right end of the line.
CALL TC_Graph_Create (cid, “ALINE”, .2, .8, .7, .3)
CALL TC_Graph_SetAline (cid, 0, 1)

POLYGON and POLYLINE
For the remaining two object types — “POLYGON” and “POLYLINE” — the coordinates passed by the
TC_Graph_Create routine have no meaning (unless the object is scaled with TC_Graph_Scale described below).
The placement of these objects are defined by an array that is passed by the TC_Graph_SetPoly routine:

CALL TC_Graph_SetPoly (gid, pts(,))

The array pts must be a two-dimensional numeric array, with each row containing an x-y coordinate pair. The
“POLYLINE” or “POLYGON” will be drawn connecting the points in the array in the order in which they are
given. With a “POLYGON” object, a line is also drawn from the last point defined to the first, enclosing the polygon. 

The following segment of the DEMPOLY.TRU program in TBDEMOS creates a star-shaped polygon:
LIBRARY “c:\TBSilver\tblibs\TrueCtrl.TRC” ! or appropriate path name
CALL TC_Init

179Interface Elements



SET WINDOW -3, 3, -2, 2 ! Define user coordinates
CALL TC_Show (0) ! Show default window
...
! Generate points for a star
DIM start (10,2)
OPTION ANGLE degrees
LET i, r = 1
LET short = Cos(72) / Cos(36)
FOR a = 90 to 414 step 36

LET star (i, 1) = r * Cos(a)               ! x-coordinate
LET star (i, 2) = r * Sin(a)               ! y-coordinate
LET i = i + 1
IF r = 1 then LET r = short else LET r = 1

NEXT a

CALL TC_Graph_Create (poly1, “POLYLINE”, 0, 1, 0, 1)
CALL TC_Graph_SetPoly (poly1, star(,))
...

To see the star shape created by the above code, run the DEMPOLY.TRU program in the TBDEMOS directory.

Images
You may be familiar with BOX KEEP and BOX SHOW, which are described in Chapter 13. These instructions per-
mit extraction of a portion of the True BASIC output screen into a string, called a “box keep string”, and later redis-
playing it at perhaps a different location. The box keep string keeps the image in pixel format; thus, the resolution
is dependent on the resolution of the screen. Furthermore, the box keep string format is different for different plat-
forms.

True BASIC also offers a way to display images in the image layer as a graphics object. The image layer is above
the plotting layer (used by box keep) on most platforms. True BASIC also provides a way to convert between
images and box keep strings.

Images as stored in files may be any one of several types: JPEG, BMP, and PICT (Macintosh only).

True BASIC provides two subroutines for converting between an image as stored in a file and a box keep string.
CALL Read_Image (imagetype$, boxkeepstring$, filename$)
CALL Write_Image (imagetype$, boxkeepstring$, filename$)

The first subroutine reads an image from a file, converting it into a box keep string in the local platform format,
and stores the result in boxkeepstring$. Permissible image types are: “JPEG”,
“MS BMP”, “OS/2 BMP”, and “PICT”, the last one being valid only for the Macintosh. The type must be spec-
ified exactly as shown, although you may use lowercase or mixed case letters. If you don’t know the image type,
leave that argument a null string; True BASIC will do its best to determine the image type from the contents of
the file.

The second subroutine does the reverse; it takes a box keep string, converts it to an image file format, and stores
the result in a file. Here you must specify the image type, but type “JPEG” is not allowed.

Once in a box keep string, an image may be displayed using the BOX SHOW statement. Or, you can grab part or
all of the contents of a window using a BOX KEEP statement, and then save it in a file in an image format.

Three subroutines allow you to deal with the image layer:
CALL TC_Graph_SetImageFromFile (gid, filename$, filetype$, adjustflag)
CALL TC_Graph_SetImageFromBox (gid, boxkeepstring$)
CALL TC_Graph_GetImageToBox (gid, boxkeepstring$)

The first subroutine allows you to display a graphics image in the image layer. Of course, the graphics object must
have been created using TC_Graph_Create, which also defined the id number gid. The filetype$ must be one of

180 True BASIC Language System



“JPEG”, “MS BMP”, “OS/2 BMP”, and “PICT”, the last one being valid only for the Macintosh. If you don’t
know the file type, use a null string; True BASIC will do its best to determine the image type from the contents of
the file.

The value of adjustflag tells the subroutine whether you want the image displayed in the rectangle you previously
defined (in which case it may be distorted,) in a rectangle of the same size as the image and centered at the center
of the rectangle you defined in TC_Graph_Create, or in a rectangle the same size as the image and centered in the
center of the logical window.

adjustflag = -1 ! center it in the window, keep original size
adjustflag = +1 ! center it in the rectangle, but keep original size
adjustflag = 0 ! use the rectangle, scaling image if necessary

If you are displaying a startup logo, you’ll probably want to have adjustflag = -1, as that will center the logo and
display it without scaling.

The second subroutine allows you to display the contents of a box keep string as an image in the image layer. No
provision is made here for adjusting the size of the image to fit the rectangle defined by your call to TC_Graph_Cre-
ate. You will probably know the exact size of the box keep image, and use rectangular coordinates consistent with
that size. Or, you can first write the box keep string into a file using the Write_Image subroutine, and then bring
it back using the TC_Graph_SetImageFromFile subroutine, allowing you to display without scaling.

The third subroutine allows you to take an image that has previously been displayed in the image layer and store
it in box keep format in a box keep string. This subroutine uses the rectangle of the image to define the limits of
the box keep process.

Suppose you wish to construct an image that would normally appear in the graphics layer and combine it with
graphics from the plotting layer. The idea is simple. Just read a graphical image from a file into a box keep string
using the Read_Image subroutine, display it using BOX SHOW, add additional True BASIC graphics as desired,
keep the whole using BOX KEEP, and finally saving the result in a file in image format using the Write_Image
subroutine. The following example shows typical code:

CALL Read_Image (“”, bks$, imagefile$) ! Get the bit-mapped image
BOX SHOW bks$ at .2, .2 ! Display it in the plot layer
PLOT TEXT, at .4, .7: “Welcome to ABC Corp.” ! Add other graphics
BOX KEEP 0, 1, 0, 1 in bks2$ ! Grab the entire window
CALL Write_Image (“MS BMP”, bks2$, outfile$) ! and save it in MS BMP format

If you like, you can now display the combined result in the image layer with
CALL TC_Graph_Create (gid, “IMAGE”, .1, .9, .1, .9)
CALL TC_Graph_SetImageFromFile (gid, outfile$, “MS BMP”, 0)

Of course, you can always save box keep strings in their local format using the WRITE statement to a byte file, and
read them back the same way. But this approach is not platform-independent.

The possibilities can summarized as follows:

From an image in a file to: Use
Box Keep String Read_Image
Graphics Layer Read_Image, BOX SHOW
Image Layer TC_Graph_SetImageFromFile

From a BOX KEEP string to: Use
Image File Write_Image
Graphics Layer BOX SHOW
Image Layer TC_Graph_SetImageFromBox

From an image in the graphics layer to: Use
Image File BOX KEEP, Write_Image
BOX KEEP String BOX KEEP
Image Layer BOX KEEP, TC_Graph_SetImageFromBox

181Interface Elements



From an image in the image layer to: Use
Image File TC_GetImageToBox, Write_Image
BOX KEEP String TC_GetImageToBox
Graphics Layer TC_GetImageToBox, BOX SHOW

Shifting and Scaling
Graphics objects may be shifted (translated or moved within the window) using the TC_Graph_Shift routine:

CALL TC_Graph_Shift (gid, xdelta, ydelta)

The object indicated by gid will be shifted by xdelta in the x direction and by ydelta in the y direction.
Xdelta and ydelta should use the same coordinate system as the original graphics object.

Graphics objects may also be scaled (expanded or contracted) with TC_Graph_Scale:
CALL TC_Graph_Scale (gid, xscale, yscale)

If xscale is greater than 1, the object identified by gid will be expanded in the x direction; if xscale is less
than 1, the objected will be contracted in the x-direction. The same holds true for the y direction. The scaling is rel-
ative to the center of the object’s defining rectangle. For “POLYGON” and “POLYLINE” objects, the defining
rectangle, though ignored otherwise, is used for scaling the objects.

Pens and Brushes for Windows and Graphics Objects
Two sets of routines let you control the shape and appearance of lines, filled objects, and other graphics drawn in
windows. Three TC_Win routines set the attributes of objects drawn by regular True BASIC statements such as
PLOT, etc., while similar TC_Graph routines control the same attributes for True Controls graphical objects:

TC_Win_SetPen specify width, color, style and pattern of lines
TC_Graph_SetPen

TC_Win_SetBrush specify appearance of filled areas
TC_Graph_SetBrush

Although the two sets of routines are similar, they act a bit differently. The TC_Win routines affect subsequent
lines or graphics drawn by True BASIC statements in the designated window; it has no affect on any True Con-
trols objects. TC_Graph routines, however, act only on a designated True Controls object; they do not affect any
existing or subsequent objects, nor do they affect anything drawn by True BASIC statements.

TC_Win_SetPen and TC_Graph_SetPen let you specify the width, color, style, and pattern of any lines drawn
by True BASIC graphics statements or a True Controls object, respectively:

TC_Win_SetPen (wid, width, color, style$, pattern$)
TC_Graph_SetPen (gid, width, color, style$, pattern$)

For TC_Win_SetPen you supply the ID for a physical window (wid) and for TC_Graph_SetPen you supply the
ID for a specific graphical object (gid). You specify the width of the line in pixels; the default width is 1 pixel.
You may use any of True BASIC’s color numbers (see Chapter 13) to specify the pen color; the default color is
-1 (black). The pen style$ may be one of the following (case does not matter):

“SOLID” solid line (default)
“DOT” dotted line; only if width is 1
“DASH” dashed line; only if width is 1

If the pen width is something other than 1 pixel, the line will be solid regardless of the style$ setting. The
pattern$ string lets you specify a fill pattern for lines drawn as follows:

“SOLID” solid (default)
“HOLLOW” no visible pattern; overrides style$ regardless of pen width
“RUBBER” grayish or dappled pattern; occurs only if style$ is solid and width is 1

182 True BASIC Language System



The pen attributes may be changed at any time. For windows, the attributes affect all subsequent output from
True BASIC graphics statements, and existing True BASIC graphics may also be affected if the window is
redrawn. For True Control graphic objects, the object is redrawn on the screen to reflect the new attributes; no
other objects are affected. If width is less than zero, it is not changed; if color is less than -2, it is not changed;
if style$ or pattern$ is the null string, it is not changed. The demonstration program DEMSTYLE.TRU
illustrates how pen widths, styles, and patterns interact.

The TC_Win_SetBrush and TC_Graph_SetBrush routines control the appearance of filled areas created with
graphics statements or the area inside the specified graphical object, respectively:

TC_Win_SetBrush (wid, backclr, color, pattern$)
TC_Graph_SetBrush (gid, backclr, color, pattern$)

For TC_Win_SetBrush you supply the ID for a physical window (wid) and for TC_Graph_SetBrush you sup-
ply the ID for a specific graphical object (gid). The backclr and color attributes, which may be any valid
True BASIC color number, set the background and foreground color for the entire window or the fill pattern,
respectively. The default color is black (-1) and the default backclr is white (-2). The brush pattern$ string
may be any of the following patterns:

“SOLID” solid (default)
“HOLLOW” no visible pattern
“HORZ” horizontal lines
“VERT” vertical lines
“FDIAG” diagonal lines running from lower left to upper right
“BDIAG” diagonal lines running from upper left to lower right
“CROSS” crossing horizontal and vertical lines
“DIAGCROSS” crossing diagonal lines

As with pen settings, TC_Win_SetBrush changes affect all subsequent graphics statements, and may alter exist-
ing graphics, while TC_Graph_SetBrush affects only the designated object.

Creating and Using Text Edit Controls
You can include a text editor in your program. This type of control acts on all keypress and mouse events that occur
within it. It can handle several different fonts, font styles, and font sizes. The user can select text by clicking and
dragging the mouse. If you include scroll bars, they will be automatically synchronized with the text itself. You
may specify wrapped text in which lines are folded when they reach the margin. The True Controls library
TRUECTRL.TRC includes routines to carry out the cut, copy, and paste functions, and to find certain text
sequences.

Text Editor Options
To create a text edit control, make sure you are in the correct target window and use:

CALL TC_Txed_Create (cid, op$, xl, xr, yb, yt)

The first argument will be the ID assigned to the control. The four coordinates define the outer limits of the text
edit control and include scroll bars and borders, if such are specified. The actual interior size available to the text
itself will be slightly smaller.

The options allowed for op$ are given in the following table. Multiple options must be separated by vertical bars (|). 

183Interface Elements



Text Edit Control Options
——————————————————————————————————————

Op$ value Meaning
“ATTACHED” Embed in the window, resize if the window is resized
“READONLY” The user will not be allowed to change the text
“WRAP” Lines will be folded when they reach the margin
“MARGIN n” The desired margin, ignored unless the text is wrapped
“BORDER” Include a border
“VSCROLL” Include a vertical scroll bar
“HSCROLL” Include a horizontal scroll bar
“KEY EVENTS” Return key events as well as absorbing them
“MOUSE EVENTS” Return mouse events as well as absorbing them

——————————————————————————————————————
If you include “ATTACHED” as an option, the four positioning parameters will be ignored and the text editor will fill
the available space in the window. Furthermore, if the window is resized, the text edit control will be resized along
with it. And, if you have specified wrapped text with “WRAP”, True Controls will reset the margin so that all of a line
will be visible. Thus, if you use “ATTACHED”with wrapped text, you will not need a horizontal scroll bar, as the entire
horizontal aspect of the text will be visible.  Note also, if you want to use scroll bars with an attached text-edit control,
you must specify “VSCROLL” or “HSCROLL” or both as options when you create the window. True Controls will
therefore ignore the “VSCROLL” and “HSCROLL” options for an attached text edit control, as well as the “BORDER”
option, since the window itself will provide a border.

“READONLY” can be used to present text that the user can not modify, such as help screens. “WRAP” specifies
that the lines of the text will be folded at the margin specified. If you use “WRAP”, you may also specify a margin
with “MARGIN”, which has the format:

MARGIN 120

where the number that follows the word “MARGIN” specifies with maximum width of the text in pixels. If the
option “ATTACHED” is used, then the margin is set automatically if the text is wrapped.

You can change the MARGIN setting at any time by using
CALL TC_Txed_SetMargin (cid, margin)

Remember that the margin must be expressed in pixels. If you specify a margin < 0, then the margin will be set to
the current width of the text edit control.

Include “BORDER” as an option if you want a border. Include “VSCROLL” if you want a vertical scroll bar; include
“HSCROLL” for a horizontal scroll bar. True Controls automatically places the scroll bars where they belong, and
takes care of synchronizing them with the text. (Do not include these options if the text editor is “ATTACHED” to
a window.)

Mouse and Key Events in Text Editors
If you need to know about  mouse events, in addition to having them acted upon by the text edit control, include
“MOUSE EVENTS” as an option. For example, you may wish to notify the user of the exact line and character posi-
tion of the cursor. These will be returned by TC_Event as “TXE MOUSE” events.

If you need to examine the user’s keystrokes, in addition to having them acted on by the text edit control, include
“KEY EVENTS” as an option. You may need to do this if, for example, you have defined one or more characters as
menu equivalents. With the “KEY EVENTS” option, all keystrokes will then be returned by TC_Event as “TXE
KEYPRESS” events, and the code (ASCII) of the key will be returned in x1. 

Instead of specifying “KEY EVENTS”, you may wish to specify only certain characters as “trap characters” for spe-
cial treatment. Occurrences will be returned as “TXE KEYPRESS” events with the character number (ASCII

184 True BASIC Language System



code) in x1. (The end-of-line character is always returned.) To specify a trap character, use:
CALL TC_Txed_SetTrapChar (cid, char, action)

Char is the (ASCII) code of the character to be trapped. Action is a numeric defined as follows:

Text Edit Trap Character Actions
————————————————––——————————————————————

Action Effect
1 The text edit control is suspended, and the character is ignored by the text edit control
2 The text edit control is not suspended, and the key is acted upon by the text edit control
3 If and only if there is selected text, the text edit control is suspended, and the character

is ignored by the text edit control
< 0 The particular character is unregistered

——————————————————––————————————————————
All other action codes are ignored.

As examples, if you wish to use the Escape key to exit from the text edit control, give it a stop code of 1. If you wish
to readjust the scroll bars whenever the user presses the Enter or Return key, give it a stop code of 2. If you wish
to indent selected text when the user enters a “>”, give it a stop code of 3. (Note: True Controls always registers the
Return key (13) as a trap character with action 2.) In the cases of actions 1 and 3, you will need to have the text edit
control resume by issuing:

CALL TC_Txed_Resume (cid)

Text Input and Output with Text Editors
Once you establish the text edit control, you may wish to supply it with text. And later, if the user has made mod-
ifications, you may wish to retrieve the text, perhaps for saving to a file. Six routines are used for these purposes:

CALL TC_Txed_ReadTextFromFile (txid, filename$)
CALL TC_Txed_WriteTextToFile (txid, filename$)

CALL TC_Txed_ReadTextFromArray (txid, lines$())
CALL TC_Txed_WriteTextToArray (txid, lines$())

The first two read and write the text edit control text from and to a file. The last two read and write the text edit
control text from and to a string array. These routines actually use the slightly more primitive routines:

CALL TC_Txed_SetText (cid, text$) ! Supply the text to the editor
CALL TC_Txed_GetText (cid, text$) ! Retrieve the text from the editor

The form of the text in the string variable text$ will be exactly as the text might be stored in a text file. Lines of
the text are assumed to be terminated with the system-dependent end-of-line sequence. The end-of-line character
sequence is typically character 13 (Return) or character 13 followed by character 10 (Line feed).

Be aware that what are called lines in a text file are called paragraphs in the text editor. These consist of strings
of ASCII characters terminated by an end-of-line sequence. What the text editor calls lines are portions of a para-
graph that fit within the specified margin. The way paragraphs are divided into lines depends on the width of the
text editor, as well as on the font (name, size, and style) being used.

Fonts, Styles, Sizes, and Colors in Text Editors
The default font is ten-point , plain Helvetica. To specify another font, use:

CALL TC_Txed_SetFont (cid, fontname$, fontsize, fontstyle$)

Acceptable font names are “Helvetica”, “Times”, “Fixed”, and “System”. Acceptable font styles are
“plain”, “bold”, “italic”, and “bold italic”. Case (upper or lower) doesn’t matter. Additional font
names and font styles may be available on some systems. The font size is specified in points (a point is approxi-
mately 1/72 of an inch). If the font name or the font style is the null string, the previous value will not be changed.

185Interface Elements



If the font size is a negative number, the previous size will not be changed.

You can find out what fonts are available by calling TC_FontsAvailable.

The default colors are black (-1) on white (-2) , with a black border. If you wish to specify other colors, use
CALL TC_Txed_SetColor (cid, forecolor, backcolor, bordercolor)

The three colors are numbers that refer to the color mix table currently in use (see Chapter 13 “Graphics”). If you
specify a number less than -2, the previous value of that color will not be changed.

Cut, Copy, and Paste with Text Editors
True Controls provides for the usual cut, copy, and paste functions.

CALL TC_Txed_Cut (txed)
CALL TC_Txed_Copy (txed)
CALL TC_Txed_Paste (txed)

In each case, it is assumed that text has been selected by the user, so that it shows in reversed color. Cut removes the
text from the text editor and places it on the system clipboard. Copy just places the selected text on the system clip-
board. Paste inserts the contents of the system clipboard at the insertion point, indicated by the insertion cursor; if
text has been selected, paste replaces the selected text with the contents of the clipboard.

If you have included menus in the window that contains the text editor, you may wish to create menu items for cut,
copy, and paste. You can then use the TC_Txed_SetCutCopyPaste routine to have True Controls intercept
those menu items and call the appropriate subroutine above. The format for this routine is:

CALL TC_Txed_SetCutCopyPaste (wid, cutm, cuti, copym, copyi, pastem, pastei)

For cutm and cuti, you supply the appropriate subscripts for the  menu and item choice for Cut, and so on for
the remaining arguments. True Controls keeps track of a text edit control attached to a particular window, and
invokes appropriate cut, copy, or paste operations. Warning: the text edit control must be attached, and there can
be no more than one such attached text edit control.

Find Text in Text Editors
True Controls includes a search utility that works with either wrapped or unfolded text.

CALL TC_Txed_Find (cid, case, word, key$, par, ln1, ch1, ln2, ch2, found)

If you wish the search to be case-sensitive, set the variable case to 1; otherwise, set it to 0. If you wish the search
to concentrate on entire words, set the variable word to 1; otherwise, set it to 0.

The search key must be supplied in the string variable key$. The next five arguments specify where the search
should begin. (Note that if the text is not wrapped, then the line number is always 0. Also note that paragraph,
line, and character numbering start with 0.) To start the search at the beginning of the text, set all five values to
0.

If the search is successful, then the argument found will have the value 1. The matched text will be selected in
the text editor, and its position returned in the five arguments. If the search is not successful, foundwill have the
value 0, and the prior values of the five arguments will not be changed.

Note that the matched text must be contained within a single paragraph, whose number is returned in par.

Selecting Text in Text Editor
Finally, you may wish to select or highlight certain text in the text editor. For example, you may wish to highlight
certain portions of a help file. This can be done with

CALL TC_Txed_SetSelection (cid, par1, ln1, ch1, par2, ln2, ch2)

You must, of course, determine the correct values of the starting and ending paragraphs, lines, and characters.
And remember that paragraph, line, and character numbering starts with 0.

186 True BASIC Language System



Example of Text Edit Control
To see an example of a text edit control, you can examine and run the DEMTXED.TRU program in the TBDEMOS
directory.

True Controls Events Summary
The True Controls subroutine TC_Event returns the first event on the event queue. The calling sequence is:

CALL TC_Event (timer, event$, window, x1, x2)

If there is an event in the event queue, TC_Event returns immediately reporting the event type in event$. If
there is no event in the event queue, then TC_Event will wait for the number of seconds specified by timer. If
an event happens during that time, TC_Event returns immediately with that event$; if no event occurs, the
routine returns an empty string to event$.

Note that, even if the event is returned by TC_Event, that subroutine may already have taken certain actions.

If an event has taken place, the remaining three arguments return additional information about the event. Win-
dow returns the physical window ID, and x1 and x2 return values specific to the event type. The values of x1
and x2 returned for each event$ type are summarized in the table that follows. (The event$ string is returned
in upper case. The notation “—-” means that the value of the variable is ignored.)

Events Returned by TC_Event
———–––———————————————————————————————————

Event$ x1 x2
From mouse activity in windows:

“SINGLE x-coord y-coord
“DOUBLE” x-coord y-coord
“EXTEND” x-coord y-coord
“SINGLE RIGHT” x-coord y-coord
“DOUBLE RIGHT” x-coord y-coord
“EXTEND RIGHT” x-coord y-coord
“SINGLE MIDDLE” x-coord y-coord
“DOUBLE MIDDLE” x-coord y-coord
“EXTEND MIDDLE” x-coord y-coord
“MOUSE UP” x-coord y-coord
“MOUSE UP RIGHT” x-coord y-coord
“MOUSE UP MIDDLE” x-coord y-coord
“MOUSE MOVE” x-coord y-coord

From key press in a window
“KEYPRESS” ASCII code 1 if shift key down; 2 if control key down; 

3 if both; 0 if neither
From menu selection

“MENU” menu number item number
Events related to windows

“SIZE” —- —-
“REFRESH” —- —-
“SELECT” —- —-
“HIDE” —- —-

From scroll bars
“UP —- ID of scroll bar; —-  if attached to a window
“DOWN” —- ID of scroll bar; —-  if attached to a window
“LEFT” —- ID of scroll bar; —-  if attached to a window

187Interface Elements



“RIGHT” —- ID of scroll bar; —-  if attached to a window
“PAGEUP” —- ID of scroll bar; —-  if attached to a window
“PAGEDOWN” —- ID of scroll bar; —-  if attached to a window
“PAGELEFT” —- ID of scroll bar; —-  if attached to a window
“PAGERIGHT” —- ID of scroll bar; —-  if attached to a window
“VSCROLL” —- ID of scroll bar; —-  if attached to a window
“HSCROLL” —- ID of scroll bar; —-  if attached to a window
“END VSCROLL” —- ID of scroll bar; —-  if attached to a window
“END HSCROLL” —- ID of scroll bar; —-  if attached to a window

Events from list boxes and list buttons 
“CONTROL SINGLE —- control ID
“CONTROL DOUBLE —- control ID

From push buttons, radio buttons, check boxes, edit fields, list edit buttons, & text edit controls.
“CONTROL SELECT —- control ID
“CONTROL DESELECTED —- control ID

From text edit controls.
“TXE KEYPRESS char ID
“TXE MOUSE 0 ID

—————————————————————————————–––—————————

Creating and Using Dialog Boxes (True Dials)
The True Dials routines let you create warning dialog boxes, yes-no response dialog boxes, one-line and multiple-
line dialog boxes, file open and file save dialogs, and list selection boxes. The dialog box routines are saved in a sep-
arate library from the other user interface items because they act and are used a bit differently than the other
objects. 
All dialog boxes are modal; that is, no action can occur outside the dialog box until the dialog box activity is completed
or has “timed out”. By default, dialog boxes are placed in the center of the active window by True Dials. Thus, the True
Dials routines are a bit easier to use than the True Controls routines.
All of the True Dials routines call on the powerful TBD built-in subroutine. Users who want direct control of dia-
log boxes should refer to the TBD routine in Chapter 21. Additional control over placement and size is provided by
the TBDX subroutine.
The True Dials routines have names that begin with TD_ and are saved in the TRUEDIAL.TRC library, which
must be named at the beginning of any program that will call the routines. Your programs will start faster if you
use the compiled version of the library. The following statement uses the compiled library in Windows or OS/2:

LIBRARY “c:\TBSilver\TBLIBS\TrueDial.trc”     ! or appropriate path name

On the Macintosh, the statement might be:
LIBRARY “hdisk:TBSilver:TBLIBS:TrueDial.trc” ! use appropriate disk & folder names

There is no initialization routine that must be called and no need to “clean up” after you’ve used dialog boxes.

Different types of dialog boxes are set up by different routines as described below. These routines share many of
the same arguments:

Arguments Used by True Dials Routines
—————————————————————————————————–––—————
title$ specifies the title that appears at the top edge of some of the dialog boxes. On some plat-

forms, such as the Macintosh, the title will not show for any of the dialog boxes.

message$ specifies the message that is to appear in the dialog box. The message may contain several
lines, which should be separated in the message$ string by vertical bars (|). If there is
not enough room for the message, it will be truncated.

188 True BASIC Language System



button$ specifies from one to four buttons that may be displayed in the dialog box. The texts for the
buttons should be separated in the string button$ by vertical bars (|). If there is not
enough room in a button to display the text, it will be truncated.

default specifies which button, if any, is to be outlined. An outlined or selected button can be acti-
vated by pressing the Return or Enter key.

result specifies which button was selected to terminate the dialog box.  If timeout has occurred,
result = 0.

————————————–––——————————————————————————
When a dialog box is created, it remains on the screen and no other activity can occur until the user responds, or
until it has “timed out.” You can set the timeout parameter, which by default is 0 (which means no timeout), using
the following routine:

CALL TD_SetTimeout (seconds)

Dialog boxes will be displayed for the specified number of seconds. If seconds is 0 (the default), there is no
timeout and the dialog box will remain until the user responds. This statement must be executed to set the time-
out before a dialog box is displayed; it remains in effect until another call to TD_SetTimeout. A similar routine
may be used to find out what the current timeout is:

CALL TD_GetTimeout (seconds)

The True Dials routines that create the various kinds of dialog boxes are described in the following sections.

Warning Box
CALL TD_Warn (message$, button$, default, result)

TD_Warn displays the message in message$. The button$ string may contain text for up to four buttons, with
vertical bars separating the buttons. The box remains on the screen until the user presses a button or until timeout
occurs. (Note: it is not possible in this version of True BASIC to display special icons along with the warning message.)
The message may contain up to ten lines with the vertical bars “|” separating the lines.

The DEMWARN.TRU program in TBDEMOS illustrates a simple warning box:
LIBRARY “c:\TBSilver\TBLIBS\TRUEDIAL.TRC     ! or appropriate path name

DO
CALL TD_Warn (“message from ET”, “Read it|Ignore it|Quit”, 1, result)
IF result = 3 then EXIT DO                            ! Quit
IF result = 1 then                                    ! Show message

LET title$ = “Here is a message from ET”
LET message$ = “From outer space:|Hello, down there.”
CALL TD_Message ( title$, message$, “Again|Quit”, 1, result)
IF result = 2 then EXIT DO

ELSE
PAUSE 1

END IF

LOOP
END

Run the DEMWARN.TRU program to see the warning box created by this code.

Message Box with Title
CALL TD_Message (title$, message$, button$, default, result)

TD_Message displays the message in message$. The dialog box is slightly larger than the one used for
TD_Warn, and has a title bar. Again, the box remains on the screen until the user presses a button or until time-
out occurs. As with TD_Warn, the message may contain up to ten lines; the vertical bar “|” is the line separator. 

189Interface Elements



M Note: On the MacOS, message boxes cannot have titles.

The DEMWARN.TRU example shown above uses a message box to print the message if requested

Yes-No Box
CALL TD_YN (message$, default, result)

TD_YN displays the message in message$ along with two buttons, one labeled “Yes” (button 1) and the other
“No” (button 2). The box remains on the screen until the user clicks on one of the boxes or until timeout occurs. As
in TD_Warn and TD_Message, the message may contain up to ten lines, with multiple lines separated by verti-
cal bars (|).

Yes-No-Cancel Box
CALL TD_YNC (message$, default, result)

TD_YNC displays the message in message$ along with three buttons, one labeled “Yes” (button 1), the next
“No” (button 2), and the last “Cancel” (button 3). The box remains on the screen until the user clicks on one of the
boxes or until timeout occurs. As in TD_Warn and TD_Message, the message may contain up to ten lines, with
multiple lines separated by vertical bars (|).

The program DEMYNC.TRU in TBDEMOS illustrates a yes-no-cancel box:
LIBRARY “c:\TBSILVER\TBLIBS\TRUEDIAL.TRC    ! or appropriate path name

DO
CALL TD_YNC (“Do you want to quit?”, 1, result)
SELECT CASE result
CASE 1                      ! Yes

PRINT “Quitting”
PAUSE 1
EXIT DO

CASE 2                      ! No
PRINT “Continuing”
PAUSE 3

CASE 3                      ! Cancel
Print “Canceling”
PAUSE 1

END SELECT
LOOP
END

Run the DEMYNC.TRU program to see the box created by this code.

Input Box
CALL TD_Input (message$, button$, text$, default, result)

TD_Input displays a one-line text field that may be edited; the initial and final values are in text$. 

The program DEMINPUT.TRU in TBDEMOS illustrates this dialog box:
LIBRARY “c:\TBSilver\TBLIBS\TRUEDIAL.TRC   ! or appropriate path name

LET message$ = “Enter your name.”
LET buttons$ = “OK|Cancel|Quit”

DO
LET name$ = “  “ ! Initially must be non-blank
CALL TD_Input (message$, buttons$, name$, 1, result)
SELECT CASE result

190 True BASIC Language System



CASE 1 ! OK
PRINT “You just entered: “; name$
PAUSE 1

CASE 2 ! Cancel
PRINT “You just canceled”
PAUSE 1

CASE 3 ! Quit
PRINT “You just quit”
PAUSE 1
EXIT DO

END SELECT
LOOP
END

Run the DEMINPUT.TRU program to see the box created by this code.

Multiple Input Box
CALL TD_InputM (title$, message$, button$, name$(), text$(), start, default, result)

TD_InputM displays a multiple-line set of text edit fields. The names of each line appear to the left of the editable
portion and are in the string array name$(). The initial and final values of the text lines are in the string array
text$(). Start specifies the line in which the editing cursor initially appears. The arrays name$() and
text$() should have the same size; if they do not, the shorter one will be padded with blanks. Note: on the Mac-
intosh, input boxes cannot have titles.

The program DEMINPTM.TRU in TBDEMOS illustrates a multiple-line input box.

Line Input Box
CALL TD_LineInputM (message$, text$)

TD_LineInput displays a single-line input box with the message provided. There is but a single button – “OK”.
The returned text$ may consist of the null string.

File Open Box
CALL TD_GetFile (type$, filename$, changedir)

TD_GetFile displays a typical file open dialog box. The list of file names displayed may be limited with the first
argument. Unfortunately, this argument is used differently on different platforms. On Windows and OS/2, it spec-
ifies an extension (e.g., “tru”) that may be used to limit the file names displayed; if extension$ is the null
string, all file names are displayed. The extension may be specified in lower- or uppercase, but the period (.) must
not be included. On the Macintosh, the first argument specifies the Macintosh FILE TYPE for the file names to be
displayed. The types “TEXT” and “TEXTTRUE” will result in all True BASIC files being displayed. The selected
file name is returned in filename$. If changedir = 0, the user is not allowed to change directories in the course
of searching for the desired file name.  If changedir = 1, the user may change directories.

Save File Box
CALL TD_SaveFile (type $, filename$)

TD_SaveFile displays a typical file save dialog box, which is similar to a file open box with an additional line con-
taining the suggested file name. See the description of TD_GetFile, just above, for the user of the first argument
to limit the file names displayed. The suggested file name is supplied in filename$, and the selected file name
is returned in filename$. The user is allowed to change directories.

191Interface Elements



Selection List Box
CALL TD_List (message$, button$, list$(), choice, default, result)

TD_List displays a scrollable list of choices, which are supplied in the array list$(). The number of the user’s
selection is returned in choice. The box remains on the screen until the user clicks on one of the buttons or until
timeout occurs.

The DEMSLIST.TRU program in the TBDEMOS directory illustrates the selection list dialog box.

192 True BASIC Language System



CHAPTER

15
Sound and Music

With True BASIC you can enhance your programs with a wide variety of sounds and music. The PLAY statement
lets you play music using codes close to Western musical notation. The SOUND statement lets you generate a
wider range of noises, with finer control over the output.  

Using the PLAY Statement
You can play simple melodies on your computer with a statement such as:

PLAY melody$

where melody$ is a special music string. Here’s an example:
! Play “Amazing Grace”

LET a1$ = “t100 ml o4 d4 g2 b8 g8 b2”
LET a2$ = “a4 g2 e4 d4. r8”
LET a3$ = “d4 g2 b8 g8 b2 a8 mn >d8 d2. ml r2”
LET b1$ = “<b4 >d4. <b8 >d8 <b8 g2”
LET b2$ = “d4 e4. mn g8 g8 ml e8 d4. r8”
LET b3$ = “d4 g2 b8 g8 b2 a4 g2. r2”
LET m$  = a1$ & a2$ & a3$ & b1$ & b2$ & b3$
FOR times = 1 to 3

IF times = 3 then ! Last time
LET ln = Len(m$)
LET m$[ln-1:ln] = “g2” ! Repeat last note

END IF
PLAY m$

NEXT times

END

Normally, True BASIC waits for the melody to end before moving to the next statement. However, you can also
play music “in the background” while computing continues if you use the MB option (which works on all versions
except for Windows 3.x) described below. 

The music string may contain codes for: 
• the notes 
• the lengths of notes
• the tempo
• whether to play in the foreground or the background

You may enter letters in either upper or lowercase, and you may insert spaces anywhere in the string to enhance
readability.

193



The following table lists all the codes allowed in a music string for the PLAY statement:

Codes for PLAY Statement Music Strings
——————————————————————————————————————

Notation Meaning
A through G Name of note

# or + Sharp
– Flat

R or P Rest
O n Octave number n

> Next octave up
< Next octave down

L n Notes are length n
T n Tempo n
ML Legato
MN Normal
MS Staccato
MF Play in foreground (default)
MB Play in background  (except on Windows 3.x)

——————————————————————————————————————

Thus, C# represents a C-sharp and B represents a B-flat. 

Octaves start with C and end with B, and they are numbered 0 through 7. Middle C is the beginning of octave 4. If
no octave if specified, the default is octave 5. You may specify a new octave either by O (the letter “oh”) followed by
the octave number, or by using > or < to move up or down an octave. In the example above, “Amazing Grace” is
played in O4 except for a few notes that are one octave higher in strings a3$ and b1$.

A positive integer indicates the length of a note — 1 stands for a full note, 2 is a half note, 3 is a triplet, 4 a quarter
note, 8 an eighth, etc. You may use the L code to specify the length of notes; for example, L2 means that the fol-
lowing notes are half notes. Or you may attach the integer to the name of a note or rest, as in A2 or R4. You may
also use these two methods in combination. If you specify L4, notes that follow are quarter notes unless they are
followed by an integer. You may also indicate a “dotted note,” as in A4., which multiplies the length by 3/2. If no
length is indicated, the default is a quarter note, or L4.

You specify tempo with the letter T and an integer indicating the number of quarter notes to play in a minute. The
default is T120, the standard speed of a metronome. To play the melody faster, increase the integer; to play
slowly, decrease the integer. “Amazing Grace” uses the code T100 to play a bit slower than standard speed.

You can also modify the way notes are played with ML, MN, and MS for legato, normal, and staccato. With “legato”
mode, each note is played for the full length of time specified by the L code, which makes the melody sound slower
and more sweeping. In “normal” mode a note plays 7/8 the specified time with a little break after each note to give
crispness to the melody. In “staccato” mode notes are played to 3/4 of their length, making the melody quite brisk.
The “Amazing Grace” example plays primarily in legato, but switches to normal mode for a few notes (see the
strings a3$ and b2$).

Finally, the MF code plays the melody in foreground (the default), while the MB code plays the melody in the back-
ground. When the melody is being played in the foreground, True BASIC executes no other statements until the
PLAY statement is done. When the melody is being played in the background, other statements are executed

194 True BASIC Language System



while the melody is playing; the one exception is the execution of another PLAY statement. If you want to cut off
the background melody at some point, include the statement:

SOUND 0, 0

Using the SOUND Statement
The SOUND statement is harder to use than PLAY, but gives you complete flexibility. For example, the state-
ment:

SOUND 440, 10

plays concert A, which has a frequency of 440 Hertz, for 10 seconds. The SOUND statement requires two numeric
values: the first specifies the frequency of the sound in Hertz, and the second gives the duration in seconds. 

Very short sounds repeated rapidly may not be reproduced properly.

195Sound and Music



196 True BASIC Language System



CHAPTER

16
Error Handling

If when compiling or running your program True BASIC encounters a problem it cannot handle, it stops the com-
pilation or run and prints an error message identifying the type of error and where it occurred. 

Errors that True BASIC detects during compilation before it begins to execute the code are called compile-time
errors. These are often caused by typing errors or statements that do not follow the rules described in previous
chapters. The True BASIC Editor reports such errors in the debug window; the Language System prints compile-
time errors in an output window. In both cases, True BASIC indicates the problem and line containing the error.
“The True BASIC Environment” chapter in the introductory section describes how these errors are reported, and
Appendix C includes explanations for these messages; refer to the appropriate sections in the manual for help on
correcting the errors.

Errors that occur when a program is running are called run-time errors or exceptions. When an exception
occurs, True BASIC assigns it an error number and an error message. Some errors, such as division by zero, are
fatal and will stop the program. True BASIC is able to continue the program after other, non-fatal errors, such
as incorrect user input.

You can add error handlers to your programs to prevent fatal errors from stopping your programs or to handle
non-fatal errors your own way. The WHEN structure and built-in error functions let you intercept errors and error
messages.

A program may also create its own specialized error, if, for example, it requires very specific input formats or if cer-
tain values must remain within a designated range. The CAUSE statement generates an error and assigns it an
error number and an error message.

This chapter discusses True BASIC’s built-in errors, the CAUSE statement for defining additional  errors, and the
built-in functions and WHEN structure that let you prevent errors from stopping your program or handle non-
fatal errors your own way.

About Errors
Whenever a run-time error or exception occurs, True BASIC assigns it an error number and an error message. It
also notes where the error occurred. Error handlers and error functions, described in the sections below, let you
use this information in your programs. Appendices B and C list all the error numbers and messages generated by
True BASIC.

If an error is fatal, True BASIC stops the program and prints the error message in the Error Window. If the error
occurs in a procedure outside the main program unit, True BASIC identifies both the offending line in the proce-
dure and the line in the main program that invoked the procedure that caused the error. Examples of fatal errors
include attempts to divide by zero, to calculate a number larger than the computer can handle, or to open a file that
doesn’t exist or is the wrong type  You can use an error handler to intercept such errors and handle them in your
own way as shown in the next section.

If the error is non-fatal, the True BASIC corrects the error (or asks the user to correct the error) and continues.
Most non-fatal errors are input mistakes. For those, True BASIC prints an error message and requires the user to
re-enter the information. For other non-fatal errors, True BASIC makes an adjustment or uses a previous value

197



and continues the program. (Both Appendixes B and C identify the non-fatal errors; the error-message explana-
tions in Appendix C describe what happens after non-fatal errors.) As with fatal errors, you can intercept non-fatal
errors with an error handler and handle them in your own way.

True BASIC’s error numbers all have absolute values of 1000 or higher (some error numbers are negative). The
numbers with absolute values of 1 through 999 are therefore available for you to use when generating specialized
errors. Many of the True BASIC libraries also use the lower numbers. These numbers are helpful when you use an
error handler to protect against errors. As you’ll see in the sections below, you can use the error number to iden-
tify the type of error that occurred.

You might want to create errors specific to your program’s function. For example, if your program plays a game in
which certain moves are prohibited at certain times, the program could generate an error when the player
attempts an illegal move:

...
INPUT nextmove
IF level < 4 and nextmove > 10 then

CAUSE ERROR 100, “Moves greater than 10 prohibited below level 4”
END IF
....

With the CAUSE statement you must define an error number, and you may also define an error message. These
errors are always fatal. In the simple example above, if the CAUSE statement is executed the program will stop
at that line and display the defined error message. This ability to create errors is most helpful when you also use
an error handler to cope with the error. The final section of this chapter illustrates the use of the CAUSE state-
ment within WHEN structures to handle some very specific input requirements.

Using the WHEN Structure
The WHEN structure protects a block of code from errors and lets you specify what the program should do if an
error occurs within that block. This process is called “handling an error,” and for this reason the WHEN structure
is often referred to as an error handler.

Here’s an example that shows a common use of an error handler. This subroutine opens a file. It asks the user for
the name of a file and attempts to open it with the type and access specified by the calling program:

SUB FileOpen(org$, acc$, #9) ! Protected file opener
DO

CLOSE #9 ! In case file still open
PRINT “File name”;
INPUT fname$
WHEN ERROR IN

OPEN #9: name fname$, org org$, access acc$
EXIT SUB ! Success

USE
PRINT “Cannot open that file.”

END WHEN
LOOP

END SUB

The error handler starts with the line WHEN ERROR IN (or WHEN EXCEPTION IN), followed by the pro-
tected code. The USE statement separates the block of protected code from the block of handler code, in which
you specify what to do in case of an error. The error handler must end with an END WHEN statement, which also
serves to mark the end of the handler code. Normally, only the protected code is executed, but if an error occurs
during the execution of the protected code, the program jumps to the line immediately following the USE state-
ment and executes the handler code.

In this example, the WHEN structure protects the OPEN statement. If an error occurs, it is most likely because
the file does not exist or is of the wrong type. Control then goes to the handler code, which prints a message. The

198 True BASIC Language System



program returns to the beginning of the loop and gives the user another chance. If the OPEN is successful, EXIT
SUB is executed, exiting both the enclosing DO and WHEN structures.

The WHEN structure can help you identify non-fatal errors that True BASIC would normally handle itself. For
example, if the argument to the TAB function is less than one:

PRINT TAB(-2); “Hello, out there.”

True BASIC assumes the argument to the TAB function is 1, and the program continues. This could be the result
of a programming error, however — especially if the argument to the TAB function is a variable calculated else-
where. You can intercept such non-fatal errors by placing the potentially offending line in the protected part of a
WHEN structure:

WHEN ERROR IN
PRINT Tab(tabstart); “Value”

USE
PRINT “Tab is set to”; tabstart

END WHEN

This will reveal when the value of tabstart is less than one.

Any statement, except for procedure definitions, may occur in the protected code. There can be calls to procedures,
in which case any error occurring in the invoked procedure is also intercepted. However, if the called procedure
has its own error handler, it can handle its own errors or it can “pass them up.” Passing up errors is discussed
below.

The handler code may also consist of any block of code except for procedure definitions. This gives you great flexi-
bility in handling errors. The next section describes two additional statements that are permitted only in the han-
dler code of an error handler.

Using RETRY and CONTINUE
The handler code of an error handler may contain two special statements: the RETRY statement, which transfers
control back to the statement that caused the error, and the CONTINUE statement, which transfers control to
the statement that “logically follows” the statement that caused the error. These statements are not allowed out-
side an error handler. 

As an example, suppose you don’t like True BASIC’s messages for faulty responses to a form of the INPUT state-
ment (all of which are non-fatal errors). You can substitute your own message, as follows:

WHEN EXCEPTION IN 
INPUT age, ht, wt

USE
PRINT “Enter your age, height, and weight,”
PRINT “on the same line, separated by commas,”
PRINT “as in ‘? 27,71.5,185’”
RETRY

END WHEN

As another example, consider the SET TEXT JUSTIFY statement. If the program specifies an improper value for
the SET TEXT JUSTIFY statement (see Chapter 13 “Graphics”), True BASIC normally ignores the improper
value and uses the previous one. If you want the program to continue but not necessarily use the previous value,
you could use the following:

WHEN ERROR IN
SET TEXT JUSTIFY horiz$, vert$
CALL Instructions

USE
PRINT “Improper TEXT JUSTIFY values.  I’ll center the text for you.”
PAUSE 2
CLEAR

199Error Handling



SET TEXT JUSTIFY “center”, “half”
CONTINUE

END WHEN

Using Error Functions
There are four functions that provide information about an error. These error functions let you work with the error
number, error message, and information about the location of the error. They always refer to the most recent error.
Since fatal errors stop the program unless intercepted by an error handler and non-fatal errors are ignored unless
intercepted by an error handler, these error functions are generally used only in the handler code of an error handler.

The EXTYPE function returns the error number of the most recent error. It is 0 if no error has occurred. Knowing
that the numbers of True BASIC’s built-in errors have absolute values 1000 or higher and that errors in True
BASIC libraries (and perhaps those you created) have error numbers with absolute values of 1 through 999, you
may use the EXTYPE number to separate types of errors. 

The EXTEXT$ function returns the string that True BASIC would have printed as an error message. You might
wish to have an error handler print this, showing the user what error occurred, even though the program will con-
tinue. If no error has yet occurred, the null string is returned.

The following example uses the EXTYPE and EXTEXT$ functions to respond appropriately to either a True
BASIC error or one defined by the program:

DO
WHEN ERROR IN

INPUT PROMPT “Enter your next move: “: nextmove
IF level < 4 and nextmove > 10 then

CAUSE ERROR 100, “Moves greater than 10 prohibited below level 4”
END IF
EXIT DO ! Success; exit the handler

USE
IF Abs(Extype) < 1000 then ! Program-defined error

PRINT Extext$
PRINT “To review the rules, press I,”
PRINT “To re-enter your next move, press any other key.”
GET KEY k
IF k = Ord(“i”) or k = Ord(“I”) then CALL Instructions

ELSE ! True BASIC error
PRINT Extext$

END IF
END WHEN

LOOP

If the absolute value of the EXTYPE function indicates a program-defined error, the user gets the option of
reviewing the rules for entering moves. No matter what the type of error, the program uses EXTEXT$ to print the
error message and then loops back to the INPUT statement.

The EXLINE function returns the line number where the error occurred. This number is either the sequential
position of the line in the file containing the program unit, or, if the program uses line numbers, it is the line num-
ber of the offending line.

The EXLINE$ function returns a detailed description of the location of the most recent error. The result of the
EXLINE$ function is a string that describes the “path” from the location of the intercepted error to the error han-
dler that intercepted it. This path begins with the number of the line and the name of the procedure where the
error occurred, followed by the name and line number of the procedure that invoked the procedure containing the
error, and so on. Thus, by tracing the line numbers and subroutine names in this “lineage” you can trace the
sequence of procedure calls that resulted in the error. If the total number of procedures involved in the lineage is
greater than ten, only the first five and the last five will be listed.

200 True BASIC Language System



Passing Errors
You can use several layers of nested error handlers to protect a given block of code. For example, the main program
may protect some code that calls a subroutine. The subroutine may have its own error handler and may invoke a
function that has its own error handler. If an error cannot be handled conveniently at a given level, it can be
“passed up” to the calling procedure. 

Any error that occurs in a procedure and is not handled there (i.e., is not contained in the protected part of a
WHEN structure) is automatically passed back to the calling procedure. The error is then deemed to have
occurred at the CALL statement that invoked the offending procedure. Thus, in the following example:

CALL Test
...

SUB Test
LET x = 1/0

END SUB

error 3001 (division by zero) occurs at the LET statement but is not handled there. Therefore, the error is “passed
back” to the CALL statement. If the CALL statement is contained within a WHEN structure, the error is handled
there. If there is no WHEN structure and the CALL statement is itself within a procedure, the error is passed back
to that calling procedure, and so on. If there is no higher error handler, an error results and the error message is
printed.

You can also explicitly “pass up” an error with an EXIT HANDLER statement or with a CAUSE ERROR state-
ment. The simplest method is to use the EXIT HANDLER statement within the handler code of an error handler. 

For example, suppose you wish to intercept a potential overflow (calculation of a number larger than the computer
can handle), but let the calling procedure handle any other errors:

SUB Calculate (a, b, c, result)
WHEN ERROR IN

LET result = a*b/c
USE

IF Extype = 1002 then     ! Overflow
LET result = Maxnum    ! Make it very large

ELSE
EXIT HANDLER           ! Let someone else handle

END IF
END WHEN

END SUB

In place of the EXIT HANDLER statement, you could use a CAUSE statement to specify a number and message
of your own to be passed up to the calling procedure:

SUB Calculate (a, b, c, result)
WHEN ERROR IN

LET result = a*b/c
USE

IF Extype = 1002 then          ! Overflow
LET result = Maxnum         ! Make it very large

ELSE
CAUSE ERROR 888, “This calculation is not possible”

END IF
END WHEN

END SUB

Used inside the handler code, the CAUSE statement generates an error that is not intercepted by the error han-
dler containing it. Instead, the error number specified in the CAUSE statement is assigned to the EXTYPE func-
tion, the error message specified in the CAUSE statement (if present) is assigned to EXTEXT$, and that infor-
mation is passed back to the calling procedure. It is therefore up to the calling procedure to handle the error, or the

201Error Handling



error will be passed up to the next higher routine. This process continues until the error has been passed up as far
as it can go (which is the main program), and if the error has still not been handled, it stops the program run.

Note that although the CAUSE statement may occur anywhere, the EXIT HANDLER statement may be used
only in handler code blocks. Also, the EXIT HANDLER statement does not change the values of EXTYPE and
EXTEXT$.

In either case, the error is passed up to the next higher error handler. For example, an error in a procedure might
be passed up to the program unit that called the procedure. If there is no higher error handler, an error results and
the current error message is printed.

Using Detached Handlers
WHEN structures normally have two parts. The part between the WHEN line and the USE statement is called
the protected code; and the part between the USE statement and the END WHEN statement is called the han-
dler code.

The handler code, however, may also be defined in a separate structure and given a name, like a subroutine. Such
a structure is called a detached handler, and it is defined using the HANDLER structure. With detached han-
dlers, two or more protected parts may use the same handler code. Note, however, that the detached handler must
be in the same program unit as the protected part that will use it. In this regard it is like an internal subroutine. 

Consider these two WHEN structures:
WHEN ERROR IN

OPEN #1: name infile$
USE

PRINT “Can’t open the file.”
END WHEN
..

WHEN ERROR IN
OPEN #2: name outfile$

USE
PRINT “Can’t open the file.”

END WHEN

They could be changed to:
HANDLER CantOpen 

PRINT “Can’t open the file.”
END HANDLER
. . .
WHEN ERROR USE CantOpen

OPEN #1: name infile$
END WHEN
...
WHEN ERROR USE CantOpen

OPEN #2: name outfile$
END WHEN

You must be careful that the detached handler will properly handle all the errors that might be referred to it. For
instance, in the above example the detached handler cannot print the name of the file that could not be opened,
since the value of the offending file name is contained in two different variables. 

Examples of Error Handlers
This section builds a library of utility routines, each useful in itself but also used by later routines. Each illustrates
a strategy for error handling, and the last shows how to sort out various types of errors. 

202 True BASIC Language System



The first procedure converts a string into a number:
SUB Convert(n$,n)   ! Protected number converter

WHEN ERROR IN
LET n = Val(n$)

USE
CAUSE ERROR 100, “Not a number”

END WHEN
END SUB

If n$ does not represent a number, then the VAL function causes an error. The True BASIC error message about
a “VAL string” would confuse the user who does not know that the program used the VAL function. Hence the sub-
routine intercepts it and issues a simple error message. 

The next subroutine calls the Convert routine defined above and makes sure the number is an integer.
SUB Integer(n$,n)   ! Must be an integer

CALL Convert(n$,n)
IF n <> Int(n) then CAUSE ERROR 200, “Not an integer”

END SUB

Either error 100 (from Convert) or 200 could occur, and each error message is appropriate.

Finally these two subroutines could be used by an input routine that asks the user to type a fraction, such as
“17/64”, and returns the numerator and denominator. This routine intercepts any error, sends a relevant message,
and gives the user another chance: 

SUB Get_fraction(prompt$,n,d) ! numerator, denominator
DO

WHEN ERROR IN
PRINT prompt$; ! Prompt user
LINE INPUT x$
LET p = Pos(x$,”/”) ! Find /
IF p = 0 then CAUSE ERROR 300
CALL Integer(x$[1:p-1],n) ! Numerator
CALL Integer(x$[p+1:1000],d) ! Denominator
IF d = 0 then CAUSE ERROR 400
EXIT SUB ! All ok

USE
IF Extype = 400 then

PRINT “Denominator cannot be 0”
ELSE

PRINT “Type: integer / integer”
END IF
END WHEN

LOOP
END SUB

The loop gives the user repeated chances if needed. A WHEN structure protects the body of the code. First, the
LINE INPUT accepts any input. Next the routine looks for “/” and causes an error if there is no “/”; this error in
turn causes the program to jump to the handler code, and the rest of the protected code is skipped. If “/” is found,
the routine calls Integer twice, which in turn calls Convert. Either of these may cause an error and jump
into the handler code. Finally, the routine causes an error if the denominator is zero. 

The EXIT SUB statement is reached only if everything is correct. Since this is the only way out of the loop, the rou-
tine repeats until the user enters a legal fraction. 

If an error is intercepted the handler code decides what error message to issue. Errors 100, 200, 300 all have to do
with incorrect format, so they can use same message. Error 400, however, needs a different error message. Note
that the first error detected throws the program into the handler code; only one error message can result.

203Error Handling



204 True BASIC Language System



CHAPTER

17
Constants, Variables,
Expressions, and Program Units
This chapter defines concepts used in the rest of this manual. It uses a special notation to describe the correct
grammatical use, or syntax, of these terms. Higher-level concepts are defined in terms of lower-level concepts,
which are defined in terms of still lower-level concepts, and so on. The lowest-level concepts are defined directly in
keywords, letters, digits, or in English sentences. The names of the concepts appear in italics and may contain
hyphens. (This approach to specifying the correct syntax is widely used in computing, and is sometimes called
BNF; the names of the concepts are sometimes called metanames.)

Here is an example of how to read the notation, using the definition for signed-integer.
signed-integer:: integer

+integer
–integer

integer:: digit  …digit

This may be read as: “A signed-integer consists of either an integer, or a plus sign (+) followed by an integer, or a
minus sign (–) followed by an integer. The concept integer, used to define the concept signed-integer, is now defined
as consisting of one or more digits.” (A digit is one of the ten characters “0”,“1”, ... “9”.)

Symbols Used in the Snytax
——————————————————————————————————————

The Symbol Is Read As
:: “consists of”
... “followed by zero or more”

——————————————————————————————————————
If the definition of a concept contains a list (as, for example, the list integer, +integer, –integer in the definition
above), it means that the concept can be any one of the items in the list.
——————————————————–––—————————————————————
[ ! ] Note: Do not confuse a double colon (::) that is part of the special notation, with a single colon (:) that

appears in certain True BASIC statements. Also, do not confuse the ellipsis (...) with a decimal point (.),
which can appear in numeric constants.

—————————————————–––——————————————————————

Constants
Constants are sequences of characters. They can be used to represent numbers, or they can merely represent
themselves. That is, 123may represent the number one hundred twenty three, in which case it is a numeric con-
stant, or it may represent the character “1” followed by the character “2” followed by the character “3”, in
which case it is a string constant. Usage determines which of the two cases is meant.

Constants can be used in expressions, in DATA statements, as responses to INPUT statements, and in True
BASIC commands. In program statements, numeric-constants are unquoted-strings while string-constants must

205



be quoted-strings. In DATA statements and INPUT responses, string-constants may be either quoted- or
unquoted-strings, while numeric-constants must be unquoted-strings.

Numeric Constants
Numeric-constants are sequences of characters that represent numbers. The rules for forming numeric-constants
are:

numeric-constant:: unsigned-constant
+unsigned-constant
–unsigned-constant

unsigned-constant:: decimal-constant
decimal-constant exponent-part

decimal-constant:: integer
integer.
integer.integer
.integer

exponent-part: E signed-integer
e signed-integer

signed-integer:: integer
+integer
-integer

integer:: digit  …digit

Spaces or commas are not allowed in numeric-constants. The E in exponent-part, which can be either upper case
(E) or lower case (e), stands for “times ten to the power”; thus, 123.45e6, 1234.5e5, and 123450000 represent the
same number: 123,450,000.

The above rules allow such constants as 1.e3 and .4e5, but do not allow .e3, 1e, or e1. (The last will be con-
strued to be a variable name if it appears unquoted in a program statement.) In other words, if there is a decimal
point, there must be at least one digit either before or after the decimal point. If there is no decimal point, there
must be at least one digit before the e. The exponent-part cannot contain a decimal point, and must contain at least
one digit.

Unsigned-constants are used in numeric expressions, signed-integers are used in OPTION BASE and DIM state-
ments, and numeric-constants are used in DATA statements and as responses to INPUT statements.

String Constants
String-constants are simply strings of characters. Like numeric-constants, they can be quoted-strings or unquoted-
strings. The rules for forming quoted- and unquoted-strings are given below in English rather than BNF.

A quoted-string consists of zero or more characters surrounded by quote marks (“ “). The quote marks surrounding
the string are not part of the string, but all the characters inside the quote marks are part of the string. If there
are no characters inside the quote marks, the quoted-string represents the null string, i.e., a string containing no
characters, not even a space.

Any printable characters from the ASCII character set (see Appendix A), except for a quote mark, can be placed inside
the quote marks. To represent a quote mark in a quoted-string, it must be doubled. For example, in:

“He said, “”Hello.”””

the first and last quote marks merely surround the string. The second and third quote marks stand for a single
quote mark. The fourth and fifth quote marks also stand for a single quote. If this string-constant were printed, the
result would be

He said, “Hello.”

206 True BASIC Language System



Similarly, the quoted-string “””” stands for a single quote mark.

Quoted-strings can include the printable characters in the ASCII character set and can also include certain other
characters and control characters as long as they do not have a special system meaning.

Unquoted-strings, which are used in DATA statements and as INPUT responses, can contain any of the printable
characters in the ASCII character set except the comma (,) or quote mark (“). In addition, an unquoted-string used
in DATA statements cannot contain an exclamation mark (!). Finally, neither the first nor the last character of an
unquoted-string can be a blank space, although interior spaces can be included. Thus, unquoted-strings can’t be
null – you have to use the quoted-string (“”).

If you wish to use a string-constant that contains one of the prohibited characters, or includes leading or trailing
spaces, make it a quoted-string. For example, the unquoted-string:

ab c

consists of four characters: the letter a, the letter b, one space, and the letter c; leading and trailing spaces are
omitted. On the other hand, the quoted-string:

“   ab c  “

consists of nine characters: three spaces, the letter a, the letter b, one space, the letter c, and two spaces.
Quoted-strings can appear in string expressions, as well as in DATA statements and INPUT statement
responses. Unquoted-strings cannot appear in string expressions but can appear in numeric expressions if they
represent unsigned-constants.
Quoted-strings and unquoted-strings can be used in DATA statements and in INPUT responses as strings. If the
matching READ or INPUT variable is a string variable, then the quoted-string or unquoted-string is assigned to
it. Quoted-strings that represent numeric-constants can be received by a numeric-variable in an INPUT state-
ment, but not in a READ statement. 

Identifiers
Identifiers are names that refer to items such as  variables, arrays, and subroutines. They are defined as follows:

identifier:: letter  …ident-char
ident-char:: letter

digit
underline

Thus, an identifier consists of a letter followed by any number of letters, digits, and underlines. Letter stands for an
uppercase or lowercase letter, digit stands for one of the ten digits, and underline stands for the underline char-
acter (_).
String-identifiers are identifiers to which a final dollar sign ($) is attached. The formal definition is:

string-identifier:: identifier$

Identifiers name numeric variables and arrays, numeric defined functions, subroutines, pictures, modules, and
programs. String-identifiers name string variables and arrays, and string defined functions.

Certain identifiers may not be used for certain purposes. Such identifiers are called reserved words. The names
of the no-argument numeric functions and array constants CON, DATE, EXLINE, EXTYPE, IDN, MAXNUM, PI,
RND, RUNTIME, TIME, and ZER may not be used to name a simple numeric variable, a numeric array, or a
numeric function. The names of the no-argument string functions and array constant DATE$, EXLINE$,
EXTEXT$, TIME$ and NUL$, may not be used to name a simple string variable, a string array, or a string func-
tion. The keywords ELSE, NOT, PRINT, and REM may not be used to name a numeric variable, function, sub-
routine, or picture. Finally, if you use:

OPTION NOLET
DATA = 3

the DATA = 3 statement will be treated as a DATA statement, not an assignment statement.

207Constants, Variables, Expressions, and Program Units



Expressions
There are three types of expressions: numeric expressions, string expressions, and logical expressions.

Numeric Expressions
Numeric expressions are formulas created from numeric variables, array elements, unsigned numeric constants,
or numeric function values, together with the arithmetic operators +, –, *, /, ̂ , and parentheses.

The notation numex stands for numeric expression.
numex:: term  …addop term

addop term  …addop term
addop:: + 

–
In other words, a numeric expression numex consists of one or more terms joined by + or – signs, and possibly
starting with a + or – sign. As usual, + stands for addition while – stands for subtraction. For example, 1-2+3 is
a numex.

term:: factor  …multop factor
multop:: * 

/
Thus, a term consists of one or more factors joined by * or / signs. Here, * stands for multiplication while / stands
for division. For example, 2*3/5 is a term. Term refers to factor, which we now define.

factor:: primary  …^primary

A factor consists of one or more primaries joined with ^ signs. The sign (^) stands for “raised to the power.” For
example, 10^2 is a factor.

primary:: unsigned-constant
numvar
numeric-function
numeric-function (arg  …, arg)
(numex)

arg:: numex
strex
numarr
strarr

Therefore, a primary is either an unsigned numeric constant, a numeric variable, a numeric function value (the
numeric function may or may not require arguments), or a numex contained within parentheses. Numeric func-
tions may be either supplied by True BASIC or provided by the programmer through defined-functions. The names
and argument types for the supplied functions are given in Chapters 8 and 18. The programmer may choose any
identifier as the name of a defined-function as long as there is no conflicting use of that name.

numvar:: simple-numvar
numarr (rnumex  …, rnumex)

rnumex:: a numex that is rounded before use
In other words, a numvar is either a simple numeric variable or a numeric array element. A rnumex is a numeric
expression that is rounded to the nearest integer before use. For example, if a is an array, a(1.7) is the same as
a(2) and a(3.3) is the same as a(3).

Finally, note that both simple-numvars and numarrs are denoted by identifiers .

208 True BASIC Language System



The order of evaluation implied by the above rules is as follows: 
• expressions inside parentheses are evaluated first, 
• then exponentiations (^), 
• then multiplications (*) and divisions (/), 
• and finally additions (+) and subtractions (–). 

Operators of the same level are evaluated from left to right. For example, (7-4-2)means ((7-4)-2) = 1 and
not (7-(4-2)) = 5. Similarly, (4^3^2) means ((4^3)^2) = 4,096 and not (4^(3^2)) = 262,144.

As another example:
3 + (-6 ^ 2 / 4 / 3) * (4 / 3 ^ 2 ^ 3 / 3 )

is evaluated in the order:
6^2 to yield 36
36/4 to yield 9
9/3 to yield 3
-3 to yield -3(saved)
3^2 to yield 9
9^3 to yield 729
4/729 to yield 5.48695e-3
5.48695e-3/3 to yield 1.82899e-3
-3*1.82899e-3 to yield -5.48695e-3
3 + (-5.48695e-3) to yield 2.99451

The evaluation of numeric expressions can lead to the following runtime errors:
Exceptions: 1001 Overflow in numeric constant.

1002 Overflow.
2001 Subscript out of bounds.
3001 Division by zero.
3002 Negative number to non-integral power.
3003 Zero to a negative power.

—————————————————————————–––——————————————
[ ! ] Note: Runtime errors, also called exceptions, can occur only while a program is running and may

depend on the data provided to the program. Syntax errors are caused by one or more lines disobeying the
established grammar rules of True BASIC. A program containing syntax errors will not compile or run.

———————————————————–––————————————————————
Other errors can arise from misuse of numeric functions. (See Chapter 18 and Appendix C.)

String Expressions
A string expression is a formula created from string variables, string array elements, quoted string constants, or
string function values, together with the ampersand (&), substring extraction, and parentheses. (The ampersand
stands for concatenation, which involves joining two strings to create one longer string.)

strex:: str-factor  … & str-factor

A string expression strex consists of one or more string factors joined by concatenation signs (&). When two strings
are concatenated, the first character of the second string comes immediately after the last character in the first
string.

str-factor:: str-primary
str-primary substrex

substrex:: [rnumex : rnumex]

A string factor str-factor consists of either a string primary, or a string primary followed by a substring expression
substrex. You can use parentheses instead of square brackets in a substrex.

The string expressions s$[a:b] has a value consisting of the a-th through the b-th characters of the string s$.

209Constants, Variables, Expressions, and Program Units



For example:
LET a$ = “abcdefghijk”
! Then a$[3:7] = “cdefg”

If a or b falls outside the string, then these substitution rules apply:
! For s$[a:b]
LET ls = LEN(s$)         ! Length of the string
IF a < 1  then LET a = 1
IF a > ls then LET a = ls + 1
IF b < 1  then LET b = 0
IF b > ls then LET b = ls

Finally, if b < a, the null string results.

A string primary is defined as:
str-primar:: quoted-string

strvar
string-function
string-function (arg  …,arg)
(strex)

In other words, a str-primary consists of a quoted string constant, or a string variable, or a string function value,
or a string expression contained within parentheses. String functions may be either supplied by True BASIC or
provided by the programmer through defined-functions. The names and argument types for True BASIC’s sup-
plied functions are given in Chapters 8 and 18. The programmer may choose any string-identifier as the name of
a string defined-function as long as there is no conflicting use of that name.

A strvar is either a simple string variable or a string array element:
strvar:: simple-strvar

strarr (rnumex  …, rnumex)

Finally, note that both simple-strvars and strarrs are denoted by string-identifiers.

The order of evaluation implied by the above rules is as follows: 
• string expressions inside parentheses are evaluated first
• then substring expressions, and
• finally concatenations (&).

For example, if s$ = “abcdefghij”, then s$ & (“xyz” & s$)[5:10] is evaluated in the order:
“xyz” & s$ to yield “xyzabcdefghij”
“xyzabcdefghij”[5:10} to yield “bcdefg”
s$ & “bcdefg” to yield “abcdefghijbcdefg”

String variables and arrays may be given a maximum length in a DECLARE statement. An attempt to assign a
string longer than that maximum will result in an exception. For example, after:

DECLARE STRING str$*10, str_array(10)*5

the following will cause exceptions:
LET strvar$ = “0123456789x”

LET str_array$(3) = “ABCDEF”

while:
LET strvar$ = “ABCDEF”

will not. Note that it is the maximum length that is fixed, not the actual length. In the last example, the length of
strvar$ is 6; not 10.

You can find out the maximum string length of a particular string variable or array with the MAXLEN function.
(See the MAXLEN function and the DECLARE STRING statement in Chapter 18.)

210 True BASIC Language System



The evaluation of string expressions can lead to the following runtime errors:

Exceptions: 1051 String too long.
1106 String too long in assignment.

Exception 1051 can occur only on computers whose operating systems limit the length of strings. Exception 1106
will occur if you attempt to assign a string that is too long for the string variable or array element that has been
given a maximum length.

Other exceptions may arise from misuse of string functions. (See Chapter 18 and Appendix C.)

Logical Expressions
A logical expression, denoted logex, consists of a combination of relational expressions and special logical clauses,
together with the logical operators AND, OR, NOT, and parentheses. A logical expression is one that takes on the
value “true” or “false.” (Logical constants and variables do not exist in True BASIC.)

The formal definition of logex is:
logex:: log-term  … OR log-term

In other words, a logical expression consists of one or more log-terms joined by OR. The log-terms are examined
from left to right. As soon as a “true” log-term is found, no further log-term is evaluated and the logex as a whole is
“true”; otherwise (if none of the log-terms is true), the logex as a whole is “false.” A logex with one or more ORs is
sometimes called a disjunction.

A log-term is defined as:
log-term:: log-factor  … AND log-factor

A log-term consists of one or more log-factors joined by AND. The log-factors are examined from left to right. As
soon as a “false” log-factor is found, no further log-factor is evaluated and the log-term as a whole is “false;” other-
wise (if every log-factor is true), the log-term as a whole is “true.” A log-term with one or more ANDs is sometimes
called a conjunction.

The process whereby disjunctions and conjunctions are evaluated from left to right but only far enough to deter-
mine truth or falseness is known as short-circuiting.

The log-factor from which a log-term is built is defined as:
log-factor:: log-primary

NOT log-primary

A log-factor is either a log-primary or a log-primary preceded by NOT. This rule precludes more than one NOT in
front of a log-primary. A log-factor without NOT is “true” if and only if the log-primary is true. A log-factor with
NOT is “true” if and only if the log-primary is “false.” A log-factor with NOT is sometimes called a negation.

log-primary:: relational-expr
special-clause
(logex)

A log-primary consists of a relational expression, or a special logical clause, or a logex contained within parenthe-
ses. A log-primary is true if and only if the relational-expr, the special-clause, or the logex within parentheses is
“true.”

The order of evaluation for logical expressions implied by the above rules is as follows:
• expressions inside parentheses are evaluated first, 
• then relational expressions and special logical clauses, 
• then negations (NOT), 
• then conjunctions (AND), 
• and finally disjunctions (OR).

211Constants, Variables, Expressions, and Program Units



Relational expressions are formally defined as:
relational-expr:: numex relop numex

strex relop strex

Where the allowed relational operators are:
relop:: <

<= or =<
=
>= or =>
>
<> or ><

A numeric relational expression numex relop numex is “true” if and only if the order relation specified by the relop
between the two numexs is “true.” The usual real number ordering relation is used.

A string relational expression strex relop strex is “true” if and only if the order relation specified by the relop
between the two strexs is “true.”

The ordering relation for strings is determined by the numeric values of the ASCII code. (For those characters not
in the ASCII code, the numeric values are determined by the operating system; see Appendix A.) When two strings
are compared, the first character of each is examined. If the first character in the first string occurs earlier in the
numeric code sequence than the first character in the second string, then the first string as a whole is considered
less than (<) the second string. If the first character in the first string occurs later in the numeric code sequence
than the first character in the second string, then the first string as a whole is considered greater than (>) the sec-
ond string. If the first characters are the same, then the second characters are examined in a like manner. If the
strings have the same number of characters and the characters are the same, position by position, the two strings
are considered equal (=). If the first string is shorter than the second string, but the characters match up through
the number of characters in the first string, then the first string is considered less than (<) the second string, and
vice versa.

The logical special-clause is defined as:
special-clause:: END #rnumex

MORE #rnumex
END DATA
MORE DATA
KEY INPUT

END #rnumex is “true” if #rnumex refers to an opened file whose file pointer is at the end of the file, or if the file is
empty. END #rnumex is “false” if the associated file pointer is not at the end of the file or if #rnumex refers to a win-
dow (#0 is always a window). See Chapter 12 for a discussion of file pointers.

MORE #rnumex is “true” if #rnumex refers to an opened file whose file pointer is not at the end of the file or if #rnu-
mex refers to a window (#0 is always a window). MORE #rnumex is “false” if the associated file pointer is at the end
of the file or if the file is empty.

END DATA is “true” if the data-list of the current invocation of the program-unit has become exhausted, and is
“false” otherwise. (See later in this chapter for a definition of program-unit.)

MORE DATA is “true” if the data-list of the current invocation of the program-unit has not become exhausted, and
is “false” otherwise.

For both data-lists and files, MORE is the same as NOT END, and END is the same as NOT MORE.

If the END clause is “false” or the MORE clause is “true,” it is not necessarily true that additional input statements
(such as INPUT and READ) can be executed without causing an exception. For example, with READ and DATA
statements, the READ statement may contain two variables, but there may be only one data item remaining in the
data-list. The same situation can arise with files.

212 True BASIC Language System



KEY INPUT is “true” if there is at least one character in the keyboard input buffer that can be supplied to a GET
KEY statement, and is “false” otherwise. 

The evaluation of logical expressions can lead to the following runtime error:
Exceptions: 7004 Channel isn’t open.

I/O Recovery Clauses
There are two I/O recovery clauses that let you protect many types of input and output operations from missing data
items and overwriting existing items. These can be used only as part of READ statements, file READ and WRITE
statements, and file INPUT and PRINT statements, and their MAT statement equivalents.

if-missing:: IF MISSING THEN action
if-there:: IF THERE THEN action

action:: EXIT DO
EXIT FOR
line-number

If the action is EXIT DO, the input or output statement must be contained within a DO loop. If the action is EXIT
FOR, the input or output statement must be contained within a FOR loop. If the action is a line-number, the
action is a GO TO to that line-number and must follow the rules for valid GO TO statements. (See Chapter 18.)

If an if-missing is used in a data READ statement, the indicated action is taken if there is no data value for any
one of the variables in the READ statement.

If an if-missing is used with a file statement, the indicated action is taken if there is no file record available at that
point in the file. If an if-there is used with a file statement, the indicated action is taken if there is a file record
available at that point in the file. The action is taken regardless of the contents of the file record.

The logical special-clauses interact with if-missing and if-there as follows. MORE DATA and END DATA detect if
there is or is not at least one more data element available, whereas the IF MISSING clause attached to the READ
statement is in effect if there are not enough data to satisfy all the variables in the READ statement. For exam-
ple:

DO WHILE MORE DATA
READ x
DATA 1, 2, 3

LOOP

and
DO

READ IF MISSING THEN EXIT DO: x
DATA 1, 2, 3

LOOP

are equivalent; as soon as there are no more items in the data pool, the DO loop is exited.

In the first of the following examples, the FOR loop is exited when the data pool is exhausted because the MORE
DATA clause checks only if there is a data element for the variable a. In the second example, the DO loop is exited
when the data pool is exhausted because MORE DATA is checked before the IF MISSING clause is carried out.

FOR i = 1 TO 3
DO WHILE MORE DATA

READ IF MISSING THEN EXIT FOR: a, b
DATA 1, 2, 3

LOOP
NEXT I

FOR i = 1 TO 3

213Constants, Variables, Expressions, and Program Units



DO WHILE MORE DATA
READ IF MISSING THEN EXIT FOR: a, b
DATA 1, 2

LOOP
NEXT i

Similar relationships hold for MORE #n, END #n, and the IF MISSING and IF THERE clauses attached to file
statements.

Array Terms
Arrays are denoted by identifiers or string-identifiers. Other terms associated with the use of arrays are: array-
parms, arrayargs, bowlegs, bounds, and redims:

arrayparm:: array bowlegs
arrayarg:: array

array bowlegs
array:: numarr

strarr
bowlegs:: ( )

(,  … ,)

Bowlegs, which consist of parentheses containing zero or more commas, tell True BASIC that the names to which
they are attached are arrays having a certain number of dimensions. The number of commas in a bowlegs must be
one less than the number of dimensions in the corresponding array. For example, a one-dimensional numeric
array a is written a(), while a one-dimensional string array a$ is written a$(); similarly, a three-dimensional
numeric array b is written b(,,), while a three-dimensional string array b$ is written b$(,,).

Arrayparms, or arrays with bowlegs, are used in SUB, PICTURE, DECLARE PUBLIC, and DEF statements.
The bowlegs are required for those statements because there is no DIM or similar statement in the subroutine to
tell True BASIC how many dimensions the array has. Arrayargs, or arrays with or without bowlegs, are used in
CALL and DRAW statements, in function references, and with certain supplied functions such as UBOUND,
LBOUND, and SIZE. The bowlegs are optional for those statements. Bowlegs are not allowed in MAT statements.

Suppose the subroutine Total takes two arguments, one a numeric array and the other a simple variable. Then
the CALL and SUB statements might look like this:

DIM x(50)
...
! The bowlegs are optional here
CALL Total (x(), t)
...
END

! The bowlegs are required here
SUB Total (a(), b)
...
END SUB

Bounds provide the initial dimensions of arrays in DIM, LOCAL, PUBLIC, or SHARE statements. 
bounds:: (bounds-range  …, bounds-range)
bounds-range:: signed-integer

signed-integer TO signed-integer
signed-integer : signed-integer

If the keyword TO or the colon (:) is present, the bounds-range establishes both the lower and upper bounds for a
particular subscript. If TO and the colon are absent, the bounds-range establishes the upper bound for the sub-
script; the default lower bound currently in effect establishes the lower bound. If the upper bound is one less than

214 True BASIC Language System



the lower bound, the subscript range is empty, and the array has no elements. The upper bound is not allowed to
be smaller than one less than the lower bound.

Redims establish new subscript ranges for arrays in MAT READ, INPUT, REDIM and similar statements. 
redim:: (redim-range  …, redim-range)
redim-range:: rnumex

rnumex TO rnumex
rnumex : rnumex

The number of redim-ranges must be the same as the original number of bounds-ranges for a particular array.
That is, the number of dimensions, once set, cannot be changed. 

The new ranges may be smaller or larger than the original ranges. If the keyword TO or the colon (:) is present, the
redim-range establishes new lower and upper bounds for the subscript. If TO and the colon are absent, the redim-
range establishes the new upper bounds for the subscript; the default lower bound currently in effect establishes
the new lower bound. (The default lower bound is initially 1, but an OPTION BASE statement can change it to
any desired value.) The upper bound is not allowed to be smaller than one less than the lower bound.

Exceptions: 5000 Out of memory.
6005 Illegal array bounds.

Program Units
A True BASIC program consists of a main program together with any number of modules and external procedures.
The precise definitions of procedure, program-unit, and program are as follows:

procedure:: defined-function
subroutine
picture

Thus, procedure stands for a defined-function, subroutine, or picture. A procedure that is inside a program-unit is
said to be internal; otherwise, it is external. The procedures that form a module are external.

The term program-unit, used extensively in the rest of the manual, refers to either the main-program or an exter-
nal-procedure.

program-unit:: main-program
external-procedure

A program unit may contain internal-procedures, but an internal-procedure may not contain other internal-proce-
dures.

A program consists of a main-program together with its associated external-procedures and modules. The exter-
nal-procedures and modules can be contained in the main-program file or in any number of LIBRARY files. (The
order in which the LIBRARY files are processed may dictate how the external-procedures and modules are dis-
tributed among the files.)

215Constants, Variables, Expressions, and Program Units



216 True BASIC Language System



CHAPTER

18
Statements, 
Built-in Functions and Subroutines

This chapter describes all of True BASIC’s built-in functions, subroutines, and statements, and is organized
alphabetically.

The following built-in functions are covered. Function names that end with a dollar sign ($) are string-valued;
that is, they yield values that are strings. The others are numeric-valued.

ABS ACOS ANGLE ASIN
ATN CEIL CHR$ CON
COS COSH COT CPOS
CPOSR CSC DATE DATE$
DEG DET DOT EPS
EXLINE EXLINE$ EXP EXTEXT$
EXTYPE FP IDN INT
INV IP LBOUND LCASE$
LEN LOG LOG10 LOG2
LTRIM$ MAX MAXLEN MAXNUM
MAXSIZE MIN MOD NCPOS
NCPOSR NUL$ NUM NUM$
ORD PI POS POSR
RAD READPIXEL REMAINDER REPEAT$
RND ROUND RTRIM$ RUNTIME
SEC SGN SIN SINH
SIZE SQR STR$ STRWIDTH
TAB TAN TANH TIME
TIME$ TRIM$ TRN TRUNCATE
UBOUND UCASE$ UNPACKB USING$
VAL ZER

The MAT functions and constants (CON, IDN, INV, NUL$, TRN, and ZER) can appear only in MAT assignment state-
ments. TAB can appear only in PRINT statements. The picture transformations (SHIFT, SCALE, ROTATE, and
SHEAR) can appear only in DRAW statements and are not included here. Other functions are available through
libraries and are described in Chapters 22 “Interface Library Routines” and 23 “Additional Library Procedures.”

The following built-in subroutines, which must be invoked with CALL statements, are covered:
ADD_POSTSCRIPT BEGIN_POSTSCRIPT CLIPBOARD COMLIB
COMOPEN DIVIDE END_POSTSCRIPT OBJECT
PACKB READCPIXEL READ_IMAGE SOCKET
SQL STRWIDTH SYS_EVENT SYSTEM
WRITE_IMAGE TBD TBDX

(ADD_POSTSCRIPT, BEGIN_POSTSCRIPT, END_POSTSCRIPT, SOCKET and SQL are available only in  Gold Edition)

217



The following True BASIC statements are described:
ASK BOX BREAK CALL
CASE CAUSE CHAIN CLEAR
CLOSE CONTINUE DATA DEBUG
DECLARE DEF DIM DO
DRAW ELSE ELSEIF END
ERASE EXIT EXTERNAL FLOOD
FOR FUNCTION GET KEY GET MOUSE
GET POINT GOSUB GOTO HANDLER
IF IMAGE INPUT LET LIBRARY
LINE INPUT LOCAL LOOP MAT
MODULE NEXT ON GOSUB ON GOTO
OPEN OPTION PAUSE PICTURE
PLAY PLOT PRINT PRIVATE
PROGRAM PUBLIC RANDOMIZE READ
REM RESET RESTORE RETRY RETURN
SELECT SET SHARE SOUND
STOP SUB TRACE UNSAVE
USE WHEN WINDOW WRITE

(The statements LOCK and UNLOCK [often essential in data base programs] are available in the Gold Edition.)

Most of the above are single statements, such as LET. Several have numerous variations provided by additional
keywords, such as the ASK, MAT, and SET statements. And several are the beginning keywords of multi-line
structures, such as FOR and DO.
For some functions, subroutines, and statements, certain values may be illegal for arguments, causing a runtime
error or exception. The programmer can use a WHEN structure (see Chapter 16 “Error Handling”) to “intercept”
such errors and take corrective action. If no WHEN structure is present, the program will halt. We give the num-
ber of the exception (returned by the EXTYPE function) and the error message (returned by the EXTEXT$ func-
tion) for each function that can generate an exception.
The evaluation of expressions may cause such exceptions as “Overflow (1002)” or “Division by zero (3001).” These
exceptions are listed in Chapter 17, where numeric and string expressions are defined, and are omitted here.
The computation of some functions and subroutines may require additional memory that is not available. This
chapter does not include this exception (5000). Nor does it include exceptions that may arise from the evaluation of
the arguments of the function that are numeric or string expressions. See Chapter 17 for these errors. 
The accuracy of the trigonometric and transcendental functions is at least 10 decimals; that is, the absolute
error should be less than 10^(-10) in absolute value. (The TAN and EXP functions are computed to an accuracy of
10 significant figures; that is, their relative error should be less than 10^(-10) in absolute value.) If your com-
puter has an arithmetic coprocessor, the accuracy will be that provided by the coprocessor.
Some of the statements deal with graphical input and output or the management of the terminal display screen.
If used on a computer that does not offer graphical input and output, exceptions will occur. 
In what follows, we use the following terms, which are defined in Chapter 17 “Constants, Variables, Expres-
sions, and Program Units:”

numex numeric expression
rnumex rounded numeric expression
strex string expression
redim array redimensioning expression
arrayarg array argument (array name with optional bowlegs)

218 True BASIC Language System



ABS Function
ABS(numex)

Returns the absolute value of the argument.
ABS can be defined in terms of other True BASIC statements as follows:

DEF ABS(x)
IF x<0 then

LET ABS = -x
ELSE

LET ABS = x
END IF

END DEF

ACOS Function
ACOS(numex)

Returns the value of the arccosine function.  If OPTION ANGLE DEGREES is in effect, the result is given in
degrees.  If OPTION ANGLE RADIANS (default) is in effect, the result is given in radians. 
For example, if OPTION ANGLE DEGREES is in effect, ACOS(.5) is 60; if OPTION ANGLE RADIANS is in
effect, then ACOS(.5) is approximately 1.04720...
ACOS may be defined in terms of other True BASIC functions as follows:

DEF ACOS(x) = PI/2 - ASIN(x)

Exception: 3007 ASIN or ACOS argument must be between 1 and -1.

Add_Postscript Subroutine available only in Gold Edition; see Chapter 27 of Gold manual.

ANGLE Function
ANGLE(numex, numex)

ANGLE(x,y) returns the counterclockwise angle between the positive x-axis and the point (x,y). Note that x
and y cannot both be zero. The angle will be given in radians or degrees depending on whether the current
OPTION ANGLE is RADIANS (default) or DEGREES. The angle will always be in the range -180 <
ANGLE(x,y) <= 180 (assuming that the current OPTION ANGLE is DEGREES). For example:

ANGLE(1,1) = 45 degrees (pi/4 radians)
ANGLE(0,1) = 90 degrees (pi/2 radians)
ANGLE(1,0) = 0 degrees
ANGLE(-1, 1) = 135 degrees (3*pi/4 radians)

ANGLE can be defined in terms of the ATN and SGN function as follows (assume OPTION ANGLE DEGREES):
DEF ANGLE(x,y)

IF x > 0 then
LET ANGLE = ATN(y/x)

ELSE IF x < 0 and y <> 0 then
LET ANGLE = ATN(y/x) + SGN(y) * 180

ELSE IF x < 0 and y = 0 then
LET ANGLE = 180

ELSE IF y <> 0 then
LET ANGLE = SGN(y)*90

ELSE
CAUSE EXCEPTION 3008, “Can’t use ANGLE(0,0).”

END IF
END DEF

Exception: 3008 Can’t use ANGLE(0,0).

219Statements, Built-in Functions and Subroutines



ASIN Function
ASIN(numex)

Returns the value of the arcsine function. If the OPTION ANGLE is DEGREES, then the result is given in
degrees. If the OPTION ANGLE is RADIANS (default), then the result is given in radians.
For example, with OPTION ANGLE DEGREES then ASIN(.5) is 30; with OPTION ANGLE RADIANS then
ASIN(.5) is approximately  .523549...
ASIN may be defined in terms of other True BASIC functions as follows:

DEF ASIN(x)
IF abs(x) < 1 then

LET Asin = Atn(x/Sqr(1 - x*x))
ELSEIF x = 1 then

LET Asin = 1
ELSEIF x = -1 then

LET Asin = -1
ELSE

CAUSE EXCEPTION 3007, “ASIN or ACOS argument must be between 1 and -1.”
END IF

END DEF

Exception: 3007 ASIN or ACOS argument must be between 1 and -1.

ASK Statements
A running program can get information about its current environment (for example, how many colors are avail-
able or how much free memory is left) through the ASK statements. Some ASK statements require a channel
expression (which can refer to a file or a logical window), others forbid it, and a few can have it or not. For those
that allow or require a channel expression, channel #0 always refers to the default logical window. If the channel
expression refers to neither a file nor a logical window, then an exception occurs.

Exception: 7004 Channel isn’t open.
ASK and SET work together. The program can ASK about any parameter that can be SET. The reverse is not
true, as there are parameters beyond the control of the program. It is important to realize that ASK gives the
actual values of the parameters, which may not necessarily be what previous SET statements assigned to them.
For the ASK statements that receive string information, the string variable may be followed by a substring
expression. Such a variable is referred to as a starget, that is, a “string target.”

starget:: strvar
strvar substrex

If the strvar in an ASK statement is followed by a substrex, the appropriate keyword replaces the character posi-
tions given by the substrex.
For example, with:

ASK COLOR col$[1:2]

if the color is GREEN, that string will replace the characters in col$ in position 1 through 2, and will inciden-
tally lengthen the string col$ by three characters (since the five-character word GREEN is replacing only two
characters).
Here is an alphabetical list of the ASK statements; each is described below:

ASK ACCESS
ASK BACK
ASK COLOR
ASK COLOR MIX
ASK CURSOR
ASK DATUM

220 True BASIC Language System



ASK DIRECTORY
ASK ERASABLE
ASK FILESIZE
ASK FILETYPE
ASK FREE MEMORY
ASK MARGIN
ASK MAX COLOR
ASK MAX CURSOR
ASK MODE
ASK NAME
ASK ORGANIZATION
ASK PIXELS
ASK POINTER
ASK RECORD
ASK RECSIZE
ASK RECTYPE
ASK SCREEN
ASK SETTER
ASK TEXT JUSTIFY
ASK WINDOW
ASK ZONEWIDTH

Several ASK statements may be combined:
ASK io-ask-item  …, io-ask-item

io-ask-item:: MARGIN numvar
ZONEWIDTH numvar

ASK #rnumex: file-ask-item  …,  file-ask-item file-ask-item:: ACCESS starget
DATUM starget
ERASABLE starget
FILESIZE numvar
FILETYPE starget
MARGIN numvar
NAME starget
ORGANIZATION starget
POINTER starget
RECORD numvar
RECSIZE numvar
RECTYPE starget
SETTER starget
ZONEWIDTH numvar

See the individual ASK statements that follow for the details of each io-ask-item or file-ask-item.

ASK ACCESS Statement
ASK #rnumex: ACCESS starget

Determines the access mode available to the file referred to by #rnumex, and assigns into starget: 
INPUT if the file is available only for input (input, read)
OUTPUT if the file is available only for output (print, write)
OUTIN if the file is available for both input and output (default), or if the channel is a

logical window

221Statements, Built-in Functions and Subroutines



ASK BACK Statement
ASK BACK numvar
ASK BACK starget
ASK BACKGROUND COLOR numvar
ASK BACKGROUND COLOR starget

ASK with BACK (or BACKGROUND COLOR) and numvar assigns to numvar the background color number of the
current screen. If none has been set, -2 is the default. ASK with BACK (or BACKGROUND COLOR) and starget
assigns into starget the background color name, in capital letters, of the current screen. If none has been set,
“WHITE” is the default. If the current background color does not have a name, then the null string is assigned.
(See also SET BACK for more details.)

ASK COLOR Statement
ASK COLOR numvar
ASK COLOR starget

ASK COLOR with numvar assigns to numvar the foreground color number of the current screen. If none has been
set, -1 is the default. ASK COLOR with starget assigns into starget the foreground color name of the current
screen. If none has been set, “BLACK” is the default. If the current foreground color does not have a name, then
the null string is assigned. (See also SET COLOR)

ASK COLOR MIX Statement
ASK COLOR MIX (rnumex) numvar, numvar, numvar

Assigns to each numvar, respectively, the red, green, and blue components of the color whose color number is the
value of rnumex. (See also SET COLOR MIX for more details.)

ASK CURSOR Statement
ASK CURSOR starget
ASK CURSOR numvar, numvar

ASK CURSOR with starget assigns into starget the cursor state in the current logical window:
ON if the cursor is on, or if graphics is not available
OFF if the cursor is off

ASK CURSOR with two numvars assigns to each numvar, respectively, the current line and column locations of
the cursor in the current window. The cursor locations are in character coordinates. That is, the top line in the win-
dow is numbered 1, as is the left-most column. (See also SET CURSOR.)

ASK DATUM Statement
ASK #rnumex: DATUM starget

If #rnumex refers to a STREAM file, ASK DATUM assigns into starget:
NUMERIC if the next item in the file is a number
STRING if the next item in the file is a string
NONE if there is no next item in the file
UNKNOWN if the type of the next item cannot be determined.

For all other file types and organizations, and for logical windows, UNKNOWN is assigned.

ASK DIRECTORY Statement
ASK DIRECTORY starget

Assigns into starget the string of characters that defines the current directory being used for reading and writing
files.  (See Chapter 12 “Files for Data Input and Output” for details; also SET DIRECTORY.)

222 True BASIC Language System



ASK ERASABLE Statement
ASK #rnumex: ERASABLE starget

Determines whether or not the file referred to by #rnumex can actually be erased and assigns into starget:
YES if the ERASE statement can actually erase file elements
NO in all other cases

ASK FILESIZE Statement
ASK #rnumex: FILESIZE numvar

Determines the size of the file referred to by #rnumex, and assigns to numvar the current number of records in a
RANDOM or RECORD file and the current number of bytes in all other file types. If #rnumex refers to a logical
window, 0 is assigned.

ASK FILETYPE Statement
ASK #rnumex: FILETYPE starget

Assigns into starget:
FILE if #rnumex refers to a disk file
DEVICE in all other cases

ASK FREE MEMORY Statement
ASK FREE MEMORY numvar

Assigns to numvar the number of bytes available in free memory. On virtual memory systems, may assign 256K.

ASK MARGIN Statement
ASK MARGIN numvar
ASK #rnumex: MARGIN numvar

Assigns to numvar the margin associated with the current logical window. If the channel expression is present and
corresponds to a file or a logical window, assigns the current margin of a TEXT file or a logical window; for RAN-
DOM, STREAM, RECORD, and BYTE files, 0 is assigned. (See also SET MARGIN.)

ASK MAX COLOR Statement
ASK MAX COLOR numvar

Assigns to numvar the maximum color number of foreground colors that may be shown at the same time. For
example, if this number is 3, you may assign foreground colors in the range 1 through 3. (The maximum color num-
ber depends on the computer system being used.)

ASK MAX CURSOR Statement
ASK MAX CURSOR numvar, numvar

Assigns to each numvar, respectively, the maximum line (row) and character (column) positions to which the text
cursor may be set in the current window.

ASK MODE Statement
ASK MODE starget

Assigns into starget the current screen mode, in uppercase letters, which will always be “GRAPHICS” in Version
5. This statement is provided for compatibility with earlier versions of True BASIC.

ASK NAME Statement
ASK NAME starget
ASK #rnumex: NAME starget

223Statements, Built-in Functions and Subroutines



If the channel expression is present and refers to a file, the name of that file is assigned to starget . If the channel
expression refers to a logical window, the null string is assigned. 
The form without a channel expression is provided for compatibility with earlier versions of True BASIC. In this
version, this form of the statement always assigns the null string into starget. 

ASK ORGANIZATION Statement
ASK #rnumex: ORGANIZATION starget
ASK #rnumex: ORG starget

Determines the organization of the file referred to by #rnumex, and assigns into starget:
TEXT if the file is a text file
STREAM if the file is a stream file
RANDOM if the file is a random file
RECORD if the file is a record file
BYTE if the file has been opened as a byte file
WINDOW if #rnumex refers to a logical window

ASK PIXELS Statement
ASK PIXELS numvar, numvar

Assigns to each numvar, respectively, the number of pixels in the current window in the horizontal and vertical
directions.

ASK POINTER Statement
ASK #rnumex: POINTER starget

Determines the pointer position of the file referred to by #rnumex and assigns into starget:
BEGIN if the pointer is at the start of the file
END if the pointer is at the end of the file, or if the file is empty
MIDDLE if the pointer is not at the start or the end of the file, or if #rnumex refers

to a logical window
(See also the SET POINTER statement.)

ASK RECORD Statement
ASK #rnumex: RECORD numvar

Assigns to numvar the current position of the file pointer of the file referred to by #rnumex. The units are records
for RANDOM and RECORD files, bytes for TEXT and BYTE files, and 0 for STREAM files. For logical windows, -
1 is assigned. (See also SET RECORD.)

ASK RECSIZE Statement
ASK #rnumex: RECSIZE numvar

Determines the record size parameters of the file referred to by #rnumex and assigns to numvar the record size,
measured in bytes, for RANDOM,  RECORD and BYTE files, and 0 for other file types. If none has yet been set, 0
is assigned. (See also SET RECSIZE.)

ASK RECTYPE Statement
ASK #rnumex: RECTYPE starget

Determines the record type of the file referred to by #rnumex and assigns into starget:
DISPLAY if the file is a text file, or is a logical window, or is the printer
INTERNAL if the file is of internal type, or is a device

224 True BASIC Language System



ASK SCREEN Statement
ASK SCREEN numvar, numvar, numvar, numvar

Assigns to each numvar, respectively, the left, right, bottom, and top edges of the current logical window within its
physical window. The values are in screen coordinates that range from 0 to 1 in both directions. (See also OPEN
SCREEN.)

ASK SETTER Statement
ASK #rnumex: SETTER starget

Determines whether or not the record pointer of the file referred to by #rnumex can be set to any record and assigns
into starget:

YES if the file is a RANDOM or RECORD file
NO in all other cases

ASK TEXT JUSTIFY Statement
ASK TEXT JUSTIFY starget, starget

Assigns into the first starget one of the values “LEFT” (default), “RIGHT”, or “CENTER” according to the current
horizontal text position. Assigns into the second starget one of the values “TOP”, “BOTTOM”, “BASE” (default), or
“HALF” according to the current vertical text position. (See also SET TEXT JUSTIFY.)

ASK WINDOW Statement
ASK WINDOW numvar, numvar, numvar, numvar

Assigns to each numvar, respectively, the left, right, bottom, and top edges of the current logical window. The val-
ues are in user coordinates, which are the ones used for PLOT statements, BOX statements, etc. (See SET WIN-
DOW statement.)

ASK ZONEWIDTH Statement
ASK ZONEWIDTH numvar
ASK #rnumex: ZONEWIDTH numvar

Assigns to numvar the zonewidth of the current logical window. (When a comma appears in a PRINT statement, sub-
sequent printing starts in the next print zone, which could be on a new line. The zonewidth is the number of character
positions in each zone.) If the channel expression is present, this statement assigns to numvar the zonewidth of the
TEXT file referred to by #rnumex. For BYTE, STREAM, RANDOM, and RECORD files, 0 is assigned. For logical win-
dows, the zonewidth of the window is assigned. (See also SET ZONEWIDTH.)

ATN Function
ATN(numex)

ATN(x) returns the arctangent of x, which is the angle whose tangent is x. The angle will be given in radians or
degrees according to whether the current OPTION ANGLE is RADIANS (default) or DEGREES. The angle will
always be in the range -90 < ATN(x) < 90 (assuming that the current OPTION ANGLE is DEGREES). 
For example:

ATN(1)   =  45 degrees (pi/4 radians)
ATN(-1)  = -45 degrees (-pi/4 radians)

Begin_Postscript Subroutine available only in Gold Edition; see Chapter 27 of Gold manual.

BOX Statements
All BOX statements except BOX SHOW use boxcoords.

boxcoords:: numex, numex, numex, numex
The values of the four numex refer, respectively, to the left edge, right edge, bottom edge, and top edge of the box,
in user coordinates. The left edge need not be less than the right edge, or the bottom less than the top. The four

225Statements, Built-in Functions and Subroutines



coordinates will be taken simply as the coordinates of a rectangular region; the first two being x-coordinates and
the second two y-coordinates.
For BOX AREA, BOX CIRCLE, BOX CLEAR, BOX ELLIPSE, and BOX LINES, only the part of the box within the
current logical window is affected. Furthermore, BOX statements are unaffected by PICTURE transformations.
This means that rectangles always look like rectangles of the same physical size, unless, of course, part of the rec-
tangle extends beyond the current logical window and is therefore “cropped” or “clipped.” Finally, all the BOX
statements are graphics statements and cannot be used in a text-only mode.
On systems that do not support graphics, attempts to execute any of the BOX statements will cause an exception.

BOX AREA Statement
BOX AREA boxcoords

Draws the rectangle specified by the boxcoords and fills it with the current foreground color. The result is the same
as using a BOX CLEAR and a BOX LINES statement, and then FLOODing the interior, but BOX AREA is faster.

BOX CIRCLE Statement
BOX CIRCLE boxcoords

Draws an ellipse (or circle) inscribed in the rectangle specified by the boxcoords in the current foreground color.
Whether or not the ellipse looks like a circle depends on the aspect ratio, which depends on the user coordinates,
the screen coordinates, and the dimensions of the physical screen.

BOX CLEAR Statement
BOX CLEAR boxcoords

Clears the rectangular region specified by the boxcoords; that is, it fills that region with the current background
color.

BOX DISK Statement
BOX DISK boxcoords

Draws an ellipse (or circle) inscribed in the rectangle specified by the boxcoords and fills it with the current fore-
ground color. The result is the same as using a BOX CLEAR and a BOX CIRCLE or BOX ELLIPSE statement, and
then FLOODing the interior, but BOX DISK is faster.

BOX ELLIPSE Statement
BOX ELLIPSE boxcoords

BOX ELLIPSE is the same as BOX CIRCLE.

BOX KEEP Statement
BOX KEEP boxcoords IN starget

Stores the entire rectangular region specified by the boxcoords into the starget in pixel form for subsequent use in
a BOX SHOW statement. The format of the bits in the string is highly mode- and machine-dependent, and such
strings are not portable. (See Chapter 13 for more details.)
If the rectangle is partly or completely outside the logical window, only that portion of the region within the win-
dow will be stored. The portion outside the logical window will be ignored. Assuming the user and box coordinates
are not reversed, the BOX KEEP statement:

BOX KEEP l, r, b, t in a$

will have the same effect as:
ASK WINDOW lw, rw, bw, tw
BOX KEEP max(l,lw),min(r,rw),max(b,bw),min(t,tw) in a$

226 True BASIC Language System



BOX LINES Statement
BOX LINES boxcoords

Draws the outline of a rectangle specified by the boxcoords in the current foreground color.

BOX SHOW Statement
BOX SHOW strex AT numex, numex
BOX SHOW strex AT numex, numex USING showword
BOX SHOW strex AT numex, numex USING rnumex
showword:: “AND”

“OR”
“XOR”

Note that showword must be one of the three quoted-strings shown, although the words can be spelled using low-
ercase or uppercase letters.
BOX SHOW restores the image stored in strex to the rectangular position whose lower left corner is specified by
the pair of values that give, respectively, the x- and y-coordinates of the lower left corner of the rectangle, in user
coordinates. The size of the rectangle, in pixels, is determined by the BOX KEEP statement.
The string expression will normally be the string variable or array element in which the image was previously
stored using a BOX KEEP statement. (It is possible to build an image from scratch, but the details will differ from
machine to machine and mode to mode, depending on the number of pixels on the screen, the number of colors, and
so on.)
If the rectangle is partly or completely outside the logical window, only that portion of the image that is within the
window will be shown.
If the USING clause is present, the bits of the “show string” will interact with the bits in screen memory as
described in Chapter 13 “Graphics.”

BREAK Statement
BREAK

If debugging is active for the program unit containing the BREAK statement, it causes an exception. Otherwise,
the BREAK statement is ignored. This statement is included only for compatibility with the ANSI Standard. Its
use is not recommended.

Exception: 10007 Break statement encountered.

CALL Statement
CALL identifier
CALL identifier(subarglist)
subarglist:: subarg …, subarg
subarg:: numex

strex
arrayarg
#rnumex

The CALL statement invokes the subroutine given by the SUB statement with the same name. The subroutine can
be internal if it is within the program-unit containing the CALL statement, or it can be external. If the subroutine
is in a separate module, it must not be named in a PRIVATE statement in the module-header.
The arguments in the CALL statement are matched with the parameters in the SUB statement, the first with the
first, and so on. The types of the parameters must correspond to the types of arguments as follows:

227Statements, Built-in Functions and Subroutines



Examples of  Argument/Parameter Relationship
——————————————————————————————————————

Argument (CALL) Parameter (SUB)
numex simple-numvar
strex simple-strvar
arrayarg arrayparm
#rnumex #integer

——————————————————————————————————————
(The “#” signifies that the argument or parameter is a file reference number.)
A numex must match a simple numeric variable; a subscripted array element is not acceptable. The types and
number of dimensions of arrays must match. (The distinction between arrayarg and arrayparm permits bowlegs
to be optional in the CALL statement, although they are required in the SUB statement.)
Parameter passing is by reference. That is, the variables and arrays in the SUB statement actually refer to the
matching variables and arrays in the program-unit of the CALL statement. Changes to them in the subroutine
will cause simultaneous changes to the variables in the calling program-unit.
If the argument is an expression that is not a simple-variable or array element, then that expression is evaluated
and stored in a location not available to the programmer. This evaluation is done for each such argument, left to
right. The parameters of the subroutine are then matched, by reference, to these private locations. Thus, CALL
S(x) allows S to change x, while CALL S((x)) does not. In this way, passing “by value” can be achieved.
Arrays are always passed to subroutines by reference. (In contrast, arrays are always passed to functions by value.)
Files and logical windows are also passed by reference. That is, any changes to them, or to their states, will be
made to the corresponding files and windows in the calling program-unit.

Exception: 5000 Out of memory.

CASE Statement
The CASE statement can occur only as part of a SELECT CASE structure. See the SELECT CASE structure.

CAUSE Statement
CAUSE EXCEPTION rnumex
CAUSE EXCEPTION rnumex, strex
CAUSE ERROR rnumex
CAUSE ERROR rnumex, strex

The keyword ERROR is a synonym for the keyword EXCEPTION.
This statement causes a program-generated error (a runtime exception). The value of rnumex becomes the error
number, which will be the value of a subsequent reference to the function EXTYPE. Like True BASIC’s runtime
errors, these errors can be intercepted with WHEN structures. It is recommended that you use error numbers in
the range 1 through 999, as some of the numbers 1000 and above correspond to True BASIC’s error messages. (See
Appendix B for a complete list of these errors.)
If strex is present as the second argument and the error is intercepted by a WHEN structure, the value of strex can
be obtained using:

EXTEXT$
If the error is not intercepted with a WHEN structure, then the value of strex followed by the value of rnumex in
parentheses will be printed on the screen.  If strex is absent, EXTEXT$ will return the null string.
The CAUSE statement can be used to generate errors in user defined functions, to pass control from a low-level
subroutine back to a top-level WHEN structure, and for other purposes.

228 True BASIC Language System



CEIL Function
CEIL(numex)

Returns the least integer that is greater than or equal to numex.  For example, CEIL(1.9) = 2, CEIL(13) = 13,
and CEIL(-2.1) = -2.
CEIL may be defined in terms of other True BASIC functions as follows:

DEF CEIL(x) = -INT(-x)

(See also INT, IP, and ROUND.)

CHAIN Statement
CHAIN strex
CHAIN strex WITH (funarglist)
CHAIN strex, RETURN
CHAIN strex WITH (funarglist), RETURN
funarglist:: arg …, arg
arg:: numex

strex
numvar
strarr

The CHAIN statement stops the current program and starts the program in the file named in strex. If the target
program is not accessible, an exception occurs.
If the WITH clause is present, and there is a PROGRAM statement with matching parameters as the first exe-
cutable statement in the target file, the arguments will be passed to the corresponding parameters in the target
program. The parameter passing mechanism is by value, the same as for defined functions. (See the PROGRAM
statement.) If the PROGRAM statement does not have parameters, or they do not match in number and type, an
exception occurs.
If the RETURN clause is missing, all storage associated with the first program is released, allowing the target pro-
gram to occupy more memory. If the RETURN clause is present, the first program is retained; when the target
program finishes, control is returned to the statement following the CHAIN statement in the first program, and
that program continues. 
If the string-expression after the word CHAIN begins with a “!”, the rest of it will be taken as a command to the
operating system. If the string-expression begins with a “!&”, and a RETURN clause is present, the program
will continue immediately; the command will be executed in background.
—————————–––——————————————————————————————
W NOTE:  On some Windows systems, "!" and "!&" behave effectively the same.

There will still be a small difference, as the latter will return immediately, while
the former will wait until the CHAINed application is launched before returning.

———————————————–––————————————————————————
When the target program starts, all modules associated with it are initialized, even if the target program had been
chained to previously. However, loaded modules are not re-initialized.
On personal computer systems, chaining from either source or compiled programs is permitted to either source or
compiled targets. Chaining to or from executable (bound) programs is restricted. On Unix systems, chaining from
either source or executable programs is permitted for either source or compiled targets; chaining from an executable
program to a source program requires the location of the compiler to be known within the current directory.
A target program can itself chain to another program. This process can continue indefinitely, limited only by the
amount of memory on your system.
If the RETURN clause is present, any runtime error (exception) that occurs in the target program but is not handled
there by a WHEN USE structure will be sent back to the original program. If the target program is in source form and
contains syntax errors, the exception number will be 10005 but the message will describe the actual error.

229Statements, Built-in Functions and Subroutines



If the RETURN clause is absent, any runtime error in the target program not handled by a WHEN USE structure
will be handled and reported by the system. 

Exceptions: 4301 Mismatched parameters for CHAIN/PROGRAM.
4302 Mismatched dimensions for CHAIN/PROGRAM.
5000 Out of memory.

10005 Program not available for CHAIN.

CHR$ Function
CHR$(rnumex)

Returns the character whose number is rnumex. If rnumex is not in the range 0 to 255, inclusive, then an exception
is caused. See Appendix A for the ASCII characters that correspond to numbers in the range 0-255.  For example: 

CHR$(65) = “A”
CHR$(48) = “0” (the digit)
CHR$(47.9) = “0” (the digit)
CHR$(304) causes exception

Exception: 4002 CHR$ argument must be between 0 and 255.

CLEAR Statement
CLEAR

Clears the current logical window. The text cursor is reset to the (default) position, i.e. row 1, column 1. The posi-
tion of the graphics cursor and/or mouse pointer is not affected. 

CLIPBOARD Subroutine
CALL Clipboard (strex, strex, strex)

The Clipboard subroutine provides access to the system clipboard. The contents of the clipboard can contain text
or images:

CALL CLIPBOARD (operation$, type$, item$)

Operation$ must be one of “GET” or “PUT”.
Type$ must be “TEXT”, “PICT”, or “” (null).
Item$ is the string that contains (or is to contain) the text or picture in the form of a BOX KEEP string.
The GET operation transfers the contents of the system clipboard to the string variable item$. The PUT opera-
tion places the contents of the string expression in the third argument onto the system clipboard, erasing the pre-
vious contents of the clipboard. If you PUT images of the PICT type, you need to supply a BOX KEEP string as the
third argument of the routine. Or, if you GET images of the PICT type, you will receive a BOX KEEP string as the
third argument of the routine.
———————–––————————————————————————————————
W O NOTE:  For Windows and OS/2, the native type of image that will be placed

or expected on the clipboard will be a standard device-independent bitmap,
which all PC paint programs should be able to handle easily.

M On the MacOS, the native type of image that will be placed or expected on the
clipboard will be the Macintosh PICT format.

—————————————–––——————————————————————————
The TEXT type is used for simple text. The PICT type is used for pictures or images, the format of which is sys-
tem-dependent. The null type defaults to the TEXT type.
Example

CALL Clipboard (“PUT”, “TEXT”, string$)

will put the text that is in string$ onto the system clipboard.

230 True BASIC Language System



Exceptions: -11210 Invalid option for SUB Clipboard.
-11211 Invalid type for SUB Clipboard.
-11212 Error opening clipboard for reading.
-11213 Error closing clipboard.
-11214 Error opening clipboard for writing.
-11215 Error putting text onto clipboard.

See also: BOX CLEAR, BOX AREA

CLOSE Statement
CLOSE #rnumex

If the channel number refers to a file, this statement closes the file, allowing the channel number to be reused or
the file to be reopened. 
If the channel number refers to a logical window, the CLOSE statement closes the window and frees the channel
number for reuse. It also eliminates the logical window’s coordinate system, text cursor, margin, zone width, and
so on; but it does not erase its current contents. If you close the currently active logical window, the default logical
window (#0) becomes the currently active logical window.
Attempts to close the default logical window (#0) cause no action, but can be trapped as a nonfatal exception. 
If the channel number is not associated with a currently open file or screen, no action occurs and no error
results.

Exception:7002 Can’t use #0 here. (nonfatal)

ComLib Subroutine
CALL ComLib (method, p1, p2, options$)

The ComLib subroutine provides access to the communications ports on your computer. It is a low-level subrou-
tine and is documented in Chapter 22. Most users will find that the convenience subroutines found in ComLib.trc
(source code in ComLib.tru) will be adequate for most purposes.

ComOpen Subroutine
CALL ComOpen (method, #1, port, speed, options$)

The ComOpen subroutines allows you to open and close a communications port on your computer. It is a low-level
subroutine and is documented in Chapter 22. Most users will find that the convenience subroutines found in Com-
Lib.trc (source code in ComLib.tru) will be adequate for most purposes.

CON Array Constant
CON redim
CON

CON is an array constant that yields a numeric array consisting entirely of ones. CON can appear only in a MAT
assignment statement. The dimensions of the array of ones are determined in one of two ways. If the redim is pre-
sent, then an array of those dimensions will be generated; the array being assigned to in the MAT assignment
statement will be resized (see the MAT Assignment statement) for these new dimensions. If the redim is absent,
then the dimensions will match those of the array being assigned to in the MAT assignment statement.

Exceptions:6005 Illegal array bounds.
(See also IDN, NUL$, and ZER.)

CONTINUE Statement
CONTINUE

The CONTINUE statement can appear only in the handler-part of a WHEN or HANDLER structure. If the line
being executed when the exception occurred contains a statement (not a structure or loop), then CONTINUE
transfers to the following line. If the line being executed is a required part of a loop or structure, then CON-

231Statements, Built-in Functions and Subroutines



TINUE transfers to the line following the closing statement for that structure. That is, if the exception occurred
in a DO statement or LOOP statement, CONTINUE will transfer to the line following the LOOP statement.
Similarly, if the exception occurred in an IF line of an IF structure, an ELSEIF line, or an ELSE line, then CON-
TINUE transfers to the line following the END IF.
See the WHEN and HANDLER structures and the EXIT HANDLER and RETRY statements.

COS Function
COS(numex)

Returns the value of the cosine function. If the OPTION ANGLE is DEGREES, then the argument is assumed to
be in degrees. If the OPTION ANGLE is RADIANS (default), then the argument is assumed to be in radians. 
For example, if OPTION ANGLE DEGREES is in effect, then COS(45) is approximately 0.707107...; if OPTION
ANGLE RADIANS is in effect, then COS(1) is approximately 0.540302...

COSH Function
COSH (numex)

Returns the value of the hyperbolic cosine function. For example, COSH(1) = 1.54308...
COSH may be defined in terms of other True BASIC functions as follows:
DEF COSH(x) = (EXP(x) + EXP(-x))/2

Exception: 1003 Overflow in numeric function.

COT Function
COT(numex)

Returns the value of the cotangent function.  If OPTION ANGLE DEGREES is in effect, the argument is
assumed to be in degrees.  If OPTION ANGLE RADIANS (default) is in effect, the argument is assumed to be in
radians. 
For example, if OPTION ANGLE DEGREES is in effect then COT(45) is 1; if OPTION ANGLE RADIANS is in
effect, then COT(1) is approximately .642093...
COT may be defined in terms of other True BASIC functions as follows:

DEF COT(x) = 1/TAN(x)

Exception: 1003 Overflow in numeric function.

CPOS Function
CPOS(strex, strex)
CPOS(strex, strex, rnumex)

Returns the position of the first occurrence in the first argument of any character in the second argument. If no
character in the second argument appears in the first argument, or either is the null string, then CPOS returns 0.
If a third argument is present, then the search for the first occurrence starts at the character position in the first
string given by that number and proceeds to the right. The first form of CPOS is equivalent to the second form with
the third argument equal to one.
For example:

CPOS (“banana”, “mno”)   returns 3
CPOS (“banana”, “pqr”)    returns 0
CPOS (“banana”, “mno”, 4) returns 5
CPOS (“banana”, “mno”, 10) returns 0

CPOS can be defined more precisely in terms of other True BASIC statements as follows:
DEF CPOS(s1$,s2$,start)

LET start = MAX(1,MIN(ROUND(start), LEN(s1$) + 1))
FOR c = start TO LEN(s1$)

232 True BASIC Language System



FOR j = 1 to LEN(s2$)
IF s1$[c:c] = s2$[j:j] THEN

LET CPOS = c
EXIT DEF

END IF
NEXT j

NEXT c
LET CPOS = 0

END DEF

(See also POS, POSR, CPOSR, NCPOS, and NCPOSR.)

CPOSR Function
CPOSR(strex, strex)
CPOSR(strex, strex, rnumex)

Returns the position of the last occurrence in the first argument of any character in the second argument. If no char-
acter in the second argument appears in the first argument, or either is the null string, then CPOSR returns 0.
If a third argument is present, then the search for the last occurrence starts at the character position in the first
string given by that number and proceeds to the left (that is, backwards). The first form of CPOSR is equivalent to
the second form with the third argument equal to the length of the first argument. For example:

CPOSR (“banana”, “mno”) returns 5
CPOSR (“banana”, “pqr”) returns 0
CPOSR (“banana”, “mno”, 4) returns 3
CPOSR (“banana”, “mno”, 10) returns 5

CPOSR can be defined more precisely in terms of other True BASIC statements as follows:
DEF CPOSR(s1$,s2$,start)

LET start = MAX(0,MIN(ROUND(start),LEN(s1$)))
FOR c = start TO 1 STEP -1

FOR j = 1 to LEN(s2$)
IF s1$[c:c] = s2$[j:j] THEN

LET CPOSR = c
EXIT DEF

END IF
NEXT j

NEXT c
LET CPOSR = 0

END DEF

(See also POS, POSR, CPOS, NCPOS, and NCPOSR.)

CSC Function
CSC(numex)

Returns the value of the cosecant function.  If OPTION ANGLE DEGREES is in effect, the argument is assumed
to be in degrees.  If OPTION ANGLE RADIANS (default) is in effect, the argument is assumed to be in radians. 
For example, if OPTION ANGLE DEGREES is in effect, then CSC(45) is approximately 1.41421...; if OPTION
ANGLE RADIANS is in effect, then CSC(1) is approximately 1.18840...
CSC may be defined in terms of other True BASIC functions as follows:
DEF CSC(x) = 1/SIN(x)

Exception: 1003 Overflow in numeric function.

233Statements, Built-in Functions and Subroutines



DATA Statement
DATA datum …, datum
datum:: quoted-string

unquoted-string
At program startup, all the data in the collection of DATA statements in a program-unit are collected into a data
list, in the order in which they are encountered. DATA statements in internal procedures will be added to the data
list for the program-unit containing the internal procedure. There is a separate data list for each program-unit,
and for each module header. In addition, the data list for an external procedure is supplied afresh to each invoca-
tion of that procedure.
If a datum is a quoted-string, leading and trailing spaces are included as part of the datum. If a datum is an
unquoted-string, leading and trailing spaces are ignored. As with string constants, a null string is represented by
a double quote (""). The surrounding quote marks of a quoted-string are not part of the datum that is added to the
data list. If quote marks appear as part of the datum, they must be doubled.
The READ statements in the program unit assign to their variables the next available datum. If the variable is a
string variable, then it receives the datum as is. If the variable is a numeric variable, then the datum must be an
unquoted-string and must represent a numeric-constant. 
When the data list has become exhausted, further READ statements will cause a runtime error (exception), unless
an IF MISSING clause is present.
A RESTORE statement can be used to reset the data pointer to the beginning of the data list, allowing the data list
to be reused. A RESTORE to line-number statement can be used to reset the data pointer to some intermediate
point in the data list, provided the entire file is line-numbered.
(See also the READ and RESTORE statements.)

DATE Function
DATE

DATE, a no-argument function, returns the current date in the decimal numeric form YYDDD, where YY is the
year (more exactly, the last two digits of the year) and DDD is the day number in the year. If your computer can-
not tell the date, DATE returns -1. (Values of the DATE function can be sorted; that is, an earlier date will corre-
spond to a smaller number.) For example,

For February 1, 1990, DATE returns 90032
For November 9, 1989, DATE returns 89313

DATE$ Function
DATE$

DATE$, a no-argument string-valued function, returns the current date in the character string form “YYYYM-
MDD” – here YYYY is the year, MM is the month number (from 1 to 12), and DD is the day number within the
month (from 1 to 28, 29, 30, or 31). If your computer cannot tell the date, then DATE$ returns “00000000”. (Val-
ues of the DATE$ function can be sorted; that is, an earlier date will correspond to a string that occurs earlier in
“alphabetical” order.) 
For example:

For February 1, 1990, DATE$ returns “19900201”
For November 9, 1988, DATE$ returns “19891109”

DEBUG Statement
DEBUG ON
DEBUG OFF

The DEBUG ON statement, when executed in a program-unit, activates debugging for that program-unit. Debug-
ging remains active until a DEBUG OFF statement is executed in that program-unit. Exiting and reentering a
program-unit does not change the debugging status for that program-unit. If debugging is active in a program-

234 True BASIC Language System



unit, the BREAK and TRACE statements have an effect; otherwise, they are ignored.
The DEBUG OFF statement, when executed in a program-unit, deactivates debugging for that program-unit.
This statement is included only for compatibility with the ANSI Standard. Its use is not recommended.

DECLARE Statements
The DECLARE statements are used to provide information on the identifiers — variables, defined functions,
arrays, and subroutines — for the program. Some of them are required in certain situations, others are optional,
and still others are ignored.
Here is an alphabetical list of the DECLARE statements.

DECLARE DEF 
DECLARE FUNCTION
DECLARE NUMERIC
DECLARE PUBLIC
DECLARE STRING
DECLARE SUB

DECLARE DEF Statement
See the DECLARE FUNCTION statement.

DECLARE FUNCTION Statement
DECLARE FUNCTION funname  …, funname
DECLARE INTERNAL FUNCTION funname …, funname
DECLARE EXTERNAL FUNCTION funname …, funname
funname:: identifier

string-identifier
(The keyword DEF is a synonym for the keyword FUNCTION and may be substituted for it.)
All external defined functions used in the given program-unit must be named in a DECLARE DEF, DECLARE
FUNCTION, DECLARE EXTERNAL DEF, or DECLARE EXTERNAL FUNCTION statement that appears lexi-
cally before the first reference to that external defined function. 
Internal defined functions whose definitions occur later in the program-unit than the first reference must be
named in a DECLARE DEF, DECLARE FUNCTION, DECLARE INTERNAL DEF, or DECLARE INTERNAL
FUNCTION statement that appears lexically before such first reference.
Other internal defined functions and external defined functions, including nonexistent ones, may also be named
in DECLARE FUNCTION statements without adverse effect, except to preclude other uses of those names within
the program-unit.

DECLARE NUMERIC Statement
DECLARE NUMERIC numeric-dec …, numeric-dec
numeric-dec:: simple-numvar

numarr bounds
The appearance of a simple-numvar in a DECLARE NUMERIC statement has no effect other than to preclude
other uses of its name within the program-unit. The appearance of a numvar with bounds in a DECLARE
NUMERIC statement has the same effect as if it appeared in a DIM statement. (Note: DECLARE NUMERIC used
in an internal procedure does not make a simple-numvar LOCAL.)

DECLARE PUBLIC Statement
DECLARE PUBLIC publicname …, publicname
publicname:: simple-numvar

simple-strvar
arrayparm

235Statements, Built-in Functions and Subroutines



All public variables defined elsewhere but used in a program-unit must be named in a DECLARE PUBLIC state-
ment that appears lexically before such use. Any variable or array named in a DECLARE PUBLIC statement
must be defined (in some other program-unit or module) with a PUBLIC statement. The syntax and semantics for
such variables is similar to the syntax and semantics for subroutine parameters. Simple variables, either numeric
or string, or arrayparms (which must contain the bowlegs) can be used. The association with the public variable or
array itself is by reference; that is, a change to a public variable or array in any program unit is immediately
reflected in all other program units referring to that variable or array.

DECLARE STRING Statement
DECLARE STRING stringdec …, stringdec
DECLARE STRING length-max stringdec …, stringdec
stringdec:: simple-strvar

simple-strvar length-max
strarr bounds
strarr bounds length-max

length-max:: *integer
If the DECLARE STATEMENT begins with a length-max, the effect is to force the string variables and arrays to
have a maximum length (maximum number of characters) given by the integer, unless a particular stringdec
also includes a length-max, which takes precedence. If a DECLARE STATEMENT does not begin with a length-
max, the string variable and arrays will not have a maximum length, unless a particular stringdec contains a
length-max.
The appearance of a strarr with bounds has the same effect as if it appeared in a DIM statement. (Note:
DECLARE STRING used in an internal procedure does not make a simple-strvar LOCAL.)
A length-max for an array is applied to each individual string element in that array.
The appearance of a simple-strvar in a DECLARE STRING statement, both without a length-max, has no effect
other than to preclude other uses of its name within the program-unit. (Note: DECLARE STRING used in an
internal procedure does not make a simple-strvar LOCAL.)
For example, with:

DECLARE STRING a$, b$*10, c$(15), d$(5)*8
DECLARE STRING *10 e$, f$(25), g$*13, h$(20)*17

! Variable  Maximum length (characters)
!   a$        unlimited
!   b$        10
!   c$()      unlimited, for each element
!   d$()      8, for each element
!   e$        10
!   f$()      10, for each element
!   g$        13
!   h$()      17, for each element

(See also the MAXLEN function.)

DECLARE SUB Statement
DECLARE SUB subname  …, subname
DECLARE INTERNAL SUB subname …, subname
DECLARE EXTERNAL SUB subname …, subname
subname:: identifier

The DECLARE SUB statement and it variations has no effect.  (This statement serves no useful purpose in this
version of True BASIC but is included for compatibility with ANSI.)

236 True BASIC Language System



DEF Statement
The keyword DEF is a synonym for the keyword FUNCTION throughout the language. See the FUNCTION
statement.  

DEF Structure
The keyword DEF is a synonym for the keyword FUNCTION throughout the language. See the FUNCTION
structure.

DEG Function
DEG(numex)

Returns the number of degrees in numex radians. This function is not affected by the current OPTION ANGLE.
For example:

DEG(PI/2) = 90.

DEG can be defined in terms of other True BASIC statements as follows:
DEF DEG(x) = 180*x/PI

(See also PI and RAD.)

DET Function
DET (numarr)
DET

Returns the value of the determinant for the square numeric matrix named as its argument. For example, if A is:
 1 2 
 3 4 

then Det(A) yields -2.
DET with no argument returns the value of the determinant of the matrix most recently inverted with the INV
array function.

Exceptions: 1009 Overflow in DET or DOT.
6002 DET needs a square matrix.

DIM Statement
DIM dimitem  …, dimitem
dimitem:: numarr bounds

strarr bounds
Except for function or subroutine parameters, each array in a program-unit must be dimensioned in a DIM statement
(or a LOCAL, PUBLIC, or SHARE statement) that occurs lexically before the first reference to that array. 
DIM is not executable; instead array storage is created when the containing program-unit is invoked.
The actual bounds for an array may be changed later by a MAT REDIM statement or a MAT statement with a
redim. The changed ranges for the subscripts can be larger than the original ranges, but the number of dimensions
must be the same.

Exception: 5000 Out of memory.

DIVIDE Subroutine
CALL DIVIDE (numex, numex, numvar, numvar)

CALL DIVIDE (dvend, dvsor, q, r) divides dvend by dvsor to give quotient q and remainder r. More
specifically, q and r are solutions to dvend = dvsor*q + r, where q = INT(dvend/dvsor) and r = MOD
(dvend, dvsor). For example:

237Statements, Built-in Functions and Subroutines



! DIVIDE with these arguments ! Returns
CALL DIVIDE (2.5, 1.5, q, r) ! q = 1, r = 1
CALL DIVIDE (1, 10, q, r) ! q = 0, r = 1
CALL DIVIDE (7, 3, q, e) ! q = 2, r = 1
CALL DIVIDE (-7, 3, q, r) ! q = -3, r= 2
CALL DIVIDE (7, -3, q, r) ! q = -3, r = -2
CALL DIVIDE (-7, -3, q, r) ! q = 2, r = -1

Exceptions: 1002 Overflow.
3001 Division by zero.

DO Loop Structure
do-loop:: do-statement

. . .
loop-statement

do-statement:: DO 
DO WHILE logex
DO UNTIL logex

loop-statement:: LOOP 
LOOP WHILE logex
LOOP UNTIL logex

When the DO statement is reached, the next statement to be executed will be the first statement inside the loop if
(1) the DO statement has no WHILE or UNTIL condition, (2) the WHILE condition is present and logex is “true,”
or (3) the UNTIL condition is present and logex is “false.” Otherwise, the next statement to be executed will be the
first statement after the associated LOOP statement.
When the LOOP statement is reached, the next statement to be executed will be the associated DO statement if
(1) the LOOP statement has no WHILE or UNTIL condition, (2) the WHILE condition is present and logex is
“true,” or (3) the UNTIL condition is present and logex is “false.” Otherwise, the next statement to be executed will
be the first statement after the LOOP statement.
In other words, the WHILE condition keeps the loop going if logex is true, and the UNTIL condition keeps the loop
going if logex is false.
If an EXIT DO statement is encountered while executing the statements inside the loop, the next statement to be
executed will be the first statement following the LOOP statement. Such an EXIT DO statement must be lexically
contained within the loop.
The action of the WHILE and UNTIL clauses on the DO and LOOP statements can be obtained with an IF state-
ment containing an EXIT DO statement, as follows:

Forms of DO LOOP
——————————————————————————————————————

This Form: Is Equivalent to this Form:
DO WHILE logex DO
... IF NOT logex THEN EXIT DO
... ...

DO UNTIL logex DO 
... IF logex THEN EXIT DO
... ...

... ...

... IF NOT logex THEN EXIT DO
LOOP WHILE logex LOOP

238 True BASIC Language System



... ...

... IF logex THEN EXIT DO 

LOOP UNTIL logex LOOP

——————————————————————————————————————

DOT Function
DOT(arrayarg, arrayarg)

DOT computes and returns the dot product of two arrays, which must be one-dimensional, numeric, and have
the same number of elements. (The subscript ranges need not be the same, however.) If both arrays have no ele-
ments, then DOT returns 0. 
For example, if A = (1 2 3) and B = (4 5 6), then DOT(A,B) will return 1*4+2*5+3*6 = 32.

Exceptions: 1009 Overflow in DET or DOT.
6001 Mismatched array sizes.

DRAW Statement
DRAW identifier
DRAW identifier (subarglist)
DRAW identifier WITH transform
DRAW identifier (subarglist) WITH transform
transform:: trans-item … * trans-item
trans-item:: SCALE (numex) 

SCALE (numex, numex)
ROTATE (numex) 
SHIFT (numex, numex)
SHEAR (numex) 
numarr

See the CALL statement for definitions of subarglist and subarg.
The DRAW statement causes the picture whose name is identifier to be drawn on the screen, just as if the DRAW
statement were replaced by the code of the picture definition. The DRAW statement and the associated PICTURE
definition are like the CALL statement and the associated SUB definition. The picture named in the DRAW state-
ment can consist entirely of non-graphics statements, in which case it acts exactly like a subroutine.
If the subarglist is present, the rules are identical to those for subroutines, i.e., the parameter passing mechanism
is by reference. (See the CALL statement for a more complete discussion.)
If the WITH clause is present, then the transformation specified in the WITH clause is applied to PLOT, FLOOD,
and MAT PLOT statements (but not BOX statements) in the picture before drawing it. If a picture contains DRAW
statements also with WITH clauses, then the final transformation is the “product” of the transformations along
the way. Similarly, the inverse transformation is applied to the point determined by a GET POINT or GET
MOUSE statement. The transformation consists of shifts, rotations, shears, or changes of scale, or any sequence
thereof.
The transformation applied to the picture can be represented by a four-by-four matrix. When a graphics statement
is executed using coordinates (x, y), the transform matrix is pre-multiplied by a row vector (x, y, 0, 1). The first
two elements of the resulting row vector are the transformed coordinates. The first two rows and columns of the
transform matrix correspond to the x- and y-coordinates. The fourth row and column provides for “homogeneous
coordinates,” allowing shifts to be represented by matrix multiplications. The third row and column corresponds
to the z-coordinate, which is not currently used.
A trans-item can consist of any four-by-four numeric matrix. Its effect will be determined by matrix multiplication,
just as with the four named trans-items SCALE, ROTATE, SHIFT, and SHEAR.

239Statements, Built-in Functions and Subroutines



SCALE with two arguments causes the x-coordinates of the picture to be scaled by a factor of the first argument
and the y-coordinates to be scaled by a factor of the second argument. For example, SCALE(2,1) will turn a cir-
cle into an ellipse, elongated in the x-direction. SCALE with one argument is the same as SCALE with two argu-
ments with the same scale factor applied to both the x- and y-directions. That is, SCALE(a)= SCALE(a,a).
ROTATE causes the picture to be rotated counter-clockwise around the origin of the coordinate system by an
amount equal to numex. The angle is measured in radians unless OPTION ANGLE DEGREES is in effect, in
which case the angle is measured in degrees.
SHIFT causes the picture to be shifted in the x-direction by an amount given by the first argument, and in the y-
direction by an amount given by the second argument. The two arguments will be added to the x- and y-coordi-
nates, respectively.
SHEAR causes the picture to be tilted clockwise through an angle given by the argument. That is, SHEAR leaves
horizontal lines horizontal, but tilts vertical lines through the specified angle. The angle is measured in radians
unless OPTION ANGLE DEGREES is in effect, in which case the angle is measured in radians.
More precisely, SHEAR(a) causes the new x- and y-coordinates to be related to the old x- and y-coordinates as fol-
lows: 

LET xnew = xold + yold*Tan(a)
LET ynew = yold

If there are several trans-items, they are applied left to right. For example:
DRAW square WITH SHIFT(2,0) * ROTATE(45)

will first move the picture of the square 2 units to the right (the x-direction), and then rotate the entire scene 45
degrees (assuming OPTION ANGLE DEGREES to be in effect) counterclockwise about the origin. Contrast this
with:

DRAW square WITH ROTATE(45) * SHIFT(2,0)

which will first rotate the square about the origin to produce a diamond-shaped object, and then will move that
object 2 units to the right.
On systems that do not support graphics, executing a DRAW statement will not cause an exception, as long as the
picture it refers to does not contain any graphics statements.
These transforms can be represented as four-by-four numeric matrices: 

Graphics Transformations (DRAW)
——————————————————————————————————————

Function Transformation
SHIFT(a,b) Translates (x,y) to (x+a,y+b). 

Returns:  1 0 0 0 
 0 1 0 0 
 0 0 1 0 
 a b 0 1 

SCALE(a,b) Scales (x,y) to (a*x,b*y). 
Returns:  a 0 0 0 

 0 b 0 0 
 0 0 1 0 
 0 0 0 1 

SCALE(a) Scales (x,y) to (a*x,a*y). 
Returns:  a 0 0 0 

 0 a 0 0 
 0 0 1 0 
 0 0 0 1 

240 True BASIC Language System



ROTATE(a) Rotates the picture counterclockwise about the origin of 
the coordinate system by angle a. 

Returns:  cos(a) sin(a) 0 0 
 -sin(a) cos(a) 0 0 
 0 0 1 0 
 0 0 0 1 

SHEAR(a) Shears non-horizontal lines to lean to the right by angle 
a, that is, by mapping (x,y) into (x+y*tan(a),y). 

Returns:  1 0 0 0  
 tan(a) 1 0 0 
 0 0 1 0 
 0 0 0 1 

——————————————————————————————————————
The ROTATE and SHEAR functions work with arguments in radians unless OPTION ANGLE DEGREES is in
effect, in which case they use degrees.

Exception: 6001 Mismatched array sizes.

ELSE Statement
The keyword ELSE can appear only as part of an IF statement or an IF structure. See the IF statement and the
IF structure.

ELSEIF Statement
The ELSEIF statement can appear only as part of an IF structure. ELSEIF may also be spelled ELSE IF. See the
IF structure.

End_Postscript Subroutine available only in Gold Edition; see Chapter 27 of Gold manual.

END Statements
END statements are used to end the main program, all procedures, and several structured constructs. They are,
alphabetically:

END
END DEF
END FUNCTION
END HANDLER
END IF
END MODULE
END PICTURE
END SELECT
END SUB
END WHEN

END Statement
The END statement must be the last statement of a program and is required. Only one END statement is allowed.
The file that contains the program can also contain external procedures and modules following the END state-
ment.
Executing the END statement stops the program. The program can also be stopped with the STOP statement. (See
also the STOP statement.)

END DEF Statement
The END DEF statement is the same as the END FUNCTION statement.

241Statements, Built-in Functions and Subroutines



END FUNCTION Statement
The END FUNCTION statement can appear only as the last statement of a multi-line defined function and is
required. See the FUNCTION structure.

END HANDLER Statement
The END HANDLER statement can appear only as the last statement of a HANDLER structure and is required.
See the HANDLER structure.

END IF Statement
The END IF statement can appear only as the last statement of an IF structure and is required. See the IF struc-
ture.

END MODULE Statement
The END MODULE statement can appear only as the last statement of a module and is required. See the MOD-
ULE structure.

END PICTURE Statement
The END PICTURE statement can appear only as the last statement of a picture and is required. See the PIC-
TURE structure.

END SELECT Statement
The END SELECT statement can appear only as the last statement of a SELECT structure and is required. See
the SELECT structure.

END SUB Statement
The END SUB statement can appear only as the last statement of a subroutine and is required. See the SUB struc-
ture.

END WHEN Statement
The END WHEN statement can appear only as the last statement of a WHEN structure and is required. See the
WHEN structure.

EPS Function
EPS(numex)

EPS(x) returns the smallest positive number that can “make a difference” when added to or subtracted from x.
More precisely, EPS(x) is MAX(x x’, x”-x, sigma), where x’ is the immediate predecessor of x (in float-
ing point representation), x” is the immediate successor of x, and sigma is the smallest positive number that can
be represented, which is given by EPS(0).
For example, on an IBM-compatible PC, without a numeric coprocessor, EPS(1e13) = 1.953125e-3 and EPS(0)
= 2.2250739e-308. In other words, if a value is 1e13 (10^13), then the smallest amount that can change that value
through addition or subtraction is 1.953125e-3. Similarly, the smallest positive number that can be represented
on such a machine is 2.2250739e-308 (2.2250739 * 10^(-308).)

ERASE Statement
ERASE #rnumex
ERASE REST #rnumex

If rnumex refers to a file opened with access OUTIN, the ERASE statement erases the contents of a file. None of
the attributes associated with the file are changed. For example, the organization of the file (TEXT, RECORD,
etc.) is not affected. However, certain attributes can be changed; a PRINT statement to an empty file forces its
organization to be changed to TEXT. Similarly, if the file is a RECORD file, the record size remains, but can be
changed since the file is now empty.

242 True BASIC Language System



If rnumex refers to a file opened with access OUTIN, the ERASE REST statement erases the contents of the file
from the item or record currently pointed to through the end of the file. (This statement may be impossible to exe-
cute on certain systems, in which case an exception will be generated. Even when possible, this statement may
require excessive time or storage space.)
If rnumex refers to a logical window, the ERASE statement clears the window. 

Exceptions: 7002 Can’t use #0 here. (nonfatal)
7004 Channel isn’t open.
7301 Can’t ERASE file not opened as OUTIN.
9100 Can’t open temporary file.

EXIT Statements
EXIT statements are used to exit from loops and procedures other than at their ends. They are, alphabetically:

EXIT DEF
EXIT DO
EXIT FOR
EXIT FUNCTION
EXIT HANDLER
EXIT PICTURE
EXIT SUB

EXIT DEF Statement
EXIT DEF

The EXIT DEF statement is the same as the EXIT FUNCTION statement. See the EXIT FUNCTION statement.

EXIT DO Statement
EXIT DO

The EXIT DO statement can appear only within a DO loop. If this statement is encountered during the execution
of a DO loop, the next statement to be executed will be the one following the LOOP statement of the inner-most DO
loop containing the EXIT DO. For example, in:

DO
...
DO

...
EXIT DO
...

LOOP
REM end of inner loop
...

LOOP
REM end of outer loop

the EXIT DO statement will cause a jump to the REM statement at the end of the inner loop.

EXIT FOR Statement
EXIT FOR

The EXIT FOR statement can appear only inside a FOR loop. If this statement is encountered during the execu-
tion of a FOR loop, the next statement to be executed will be the one following the NEXT statement of the inner-
most FOR loop containing the EXIT FOR. For example, in:

FOR i = 1 to 20
...
FOR j = 5 to 10

...

243Statements, Built-in Functions and Subroutines



EXIT FOR
...

NEXT j
...

NEXT i

the EXIT FOR statement will cause a jump to the statement immediately following NEXT j. (After the inner FOR
loop has been exited, the value of j can be examined. If j is equal to 11 [the first value not used] the loop was exited
normally; if j is in the range 5 to 10, the loop was exited through the EXIT FOR statement.)

EXIT FUNCTION Statement
EXIT FUNCTION

The EXIT FUNCTION statement can appear only inside a multi-line defined function. When this statement is
encountered during the execution of a defined function, the result is as if the END FUNCTION statement had
been reached.

EXIT HANDLER Statement
EXIT HANDLER

The EXIT HANDLER statement can appear only in the handler-part of a WHEN or HANDLER structure.
The EXIT HANDLER statement causes the exceptions to “recur” as if the WHEN structure were not present. The val-
ues of EXTYPE, EXLINE, EXLINE$, and EXTEXT$ are not changed by the EXIT HANDLER statement.

EXIT PICTURE Statement
EXIT PICTURE

The EXIT PICTURE statement can appear only inside a picture definition.
The EXIT PICTURE statement causes a jump to the END PICTURE statement of the innermost picture that con-
tains it.

EXIT SUB Statement
EXIT SUB

The EXIT SUB statement can appear only inside a subroutine definition. The EXIT SUB statement causes a jump
to the END SUB statement of the innermost subroutine that contains it.

EXLINE Function
EXLINE

A no-argument function, EXLINE returns the line number in your program where the most recent error occurred.
If your program does not have line numbers, EXLINE returns the ordinal number of the line in the file, e.g., the
17th.

EXLINE$ Function
EXLINE$

A no-argument function, EXLINE$ returns a string giving the location in your program where the most recent
error occurred. If an error has occurred, EXLINE$ gives the erroneous line and the routine in which the error
occurred. If the program has line numbers, these are used to identify the line. If the error occurred several levels
deep in nested subroutine calls, EXLINE$ returns the genealogy of the error, except that only the first five and the
last five subroutines are given. If the program does not have line numbers, then EXLINE$ assumes that the first
line is 1, the second 2, and so on. In this case, the line numbers refer to a file, which may contain several routines,
and not to individual routines within the file. If no error has occurred since the program was started or chained to,
EXLINE$ gives the null string.

244 True BASIC Language System



EXP Function
EXP(numex)

Returns the natural exponential of the argument. That is, EXP(x) calculates e^x, where e = 2.718281828..., the
base of the natural logarithms. For example, EXP(0) = 1 and EXP(1) = 2.718281828....

Exception: 1003 Overflow in numeric function.

EXTERNAL Statement
EXTERNAL 

The EXTERNAL statement, when occurring prior to any procedure declaration in a library file, designates all
the procedures in that file as being external. If the EXTERNAL statement is absent, the compiler will assume
that the procedure definitions are internal and part of a main program; it may then complain about the lack of
an END statement.
The keyword EXTERNAL can also appear in front of any SUB, FUNCTION (or DEF), or PICTURE statement that
begins an external subroutine, defined function, or picture. If all the subroutines, defined functions, and pictures
in a particular file contain the keyword EXTERNAL as described here, then the initial keyword EXTERNAL in
the file need not appear.

EXTEXT$ Function
EXTEXT$

A no-argument function, EXTEXT$ returns the error message associated with the most recent error or CAUSE
EXCEPTION statement, provided that the error was trapped by an error handler (see Chapter 16 “Error Han-
dling”). If no error has occurred, then EXTEXT$ returns the null string. If an error is not trapped by an error han-
dler, then the True BASIC system prints the error message and stops the program.

EXTYPE Function
EXTYPE

A no-argument function, EXTYPE returns the error number of the most recent error, provided that the error was
trapped by an error handler (see Chapter 16 “Error Handling”). If the error was not trapped by an error handler,
then the True BASIC system prints the error message (see EXTEXT$) and stops the program. If no error has
occurred since the program was started or chained to, EXTYPE returns 0.
True BASIC error numbers lie in the range 1000 and up in absolute value. (See Appendix B for a complete list.)
Numbers in the range 1 to 999 are therefore available for your use. (See the CAUSE ERROR statement.)

FLOOD Statement
FLOOD numex, numex

FLOOD will fill, with the current foreground color, the closed graphical region containing the point whose x-coor-
dinate is the first numex and whose y-coordinate is the second numex, in user coordinates.
The closed region consists of the pixel identified by the x- and y-coordinates and all adjacent pixels in the horizon-
tal and vertical directions that have the same value (i.e., color, if there is more than one bit in the pixel) and so on.
FLOOD sets the pixels so identified to the current color. FLOOD does not change the value (color) of pixels that
have a different value from the original point.
Normally, FLOOD is used to fill a region surrounded by a closed boundary. If this boundary has openings, the
flooding will seep through and may extend to the edges of the logical window.
You should also be aware that if the color on the screen is a dithered color, FLOOD will not work correctly. Colors
need to be solid (realizing them if necessary) for FLOOD to work correctly.
If colors are being used with the FLOOD statement on a machine or in a graphics mode that does not allow colors,
unexpected results may occur. The reason is that colors in such cases may be represented by patterns whose
boundaries are not necessarily closed. The flooding will then seep through the gaps in the boundary and extend
beyond the intended region.

245Statements, Built-in Functions and Subroutines



————————————————————–––———————————————————
[ ! ] NOTE:  FLOOD will not work correctly if the color on the screen is dithered. Dithered col-

ors can sometimes be made solid by “realizing” the palette. (See TC_Win_Realize Palette in
Chapter 22.)

———————————————————–––————————————————————

FOR Loop Structure
for-loop:: for-statement

. . .
NEXT simple-numvar

for-statement:: FOR simple-numvar = numex TO numex
FOR simple-numvar = numex TO numex STEP numex

The simple numeric variable (not a numeric array element) in the NEXT statement must be the same as the
numeric variable appearing in the FOR statement.
The FOR loop may be described in terms of other statements as follows:

FOR v = initialvalue TO limit STEP increment
...

NEXT v

is equivalent to

LET own1 = limit
LET own2 = increment
LET v = initialvalue
DO UNTIL (v - own1)*(0.5 + SGN(own2)) > 0

...
LET v = v + own2

LOOP

Here, v is a simple numeric variable (not a numeric array element), and own1 and own2 are variables associated
with the particular FOR loop and not available to the programmer.
The reason for the (0.5 + SGN(own2)) is as follows: When the step size is 0, the loop is infinite if the limit is
larger than or equal to the initial value but is executed zero times if the limit is smaller than the initial value.
If the STEP clause is missing, the increment is 1.
Upon normal exit from the FOR loop (i.e., other than through the EXIT FOR statement) the value of the FOR vari-
able is the first value not used. The following examples illustrate the various cases:

FOR i = 2 TO 3
...

NEXT i
! i is now equal to 4

FOR i = 6 TO 3 STEP -2
...

NEXT i
! i is now equal to 2

FOR i = 3 TO 1
...

NEXT i
! i is now equal to 3, since 3 was not used

FOR i = 2 TO 3 STEP -1
...

NEXT i
! i is now equal to 2, since 2 was not used.

(See also the EXIT FOR statement.)

246 True BASIC Language System



FP Function
FP(numex)

Returns the fractional part of the argument. For example, FP(1.9) = .9, FP(-1.3) = -.3, and FP(-17) = 0.
FP can be defined in terms of the IP function as follows:

DEF FP(x) = x - IP(x)

FUNCTION Statement
FUNCTION identifier = numex
FUNCTION identifier (funparm …, funparm) = numex
FUNCTION string-identifier = strex
FUNCTION string-identifier (funparm …, funparm) = strex
funparm:: simple-numvar

simple-strvar
arrayparm

The keyword FUNCTION may be replaced by the keyword DEF.
The FUNCTION statement allows the programmer to define new one-line functions.
The arguments in the invocation are matched with the parameters, the first argument with the first parameter,
and so on. Each argument must match the corresponding parameter in type, numeric or string. Arrays must agree
in the number of dimensions. The arguments are evaluated in left to right order  and assigned to the correspond-
ing funparms. (This parameter passing mechanism is called passing by value and contrasts with passing by ref-
erence, the mechanism used with subroutines and pictures. It should be noted that passing an array by value
requires that it be copied completely before use, which can be time- and memory-consuming for large arrays.)
The expression on the right is then evaluated. If the defined function is internal, the variables and arrays that
appear in the expression, but that are not funparms, refer to variables and arrays in the containing program-unit.
If the defined function is external, then all such variables and arrays that are not shared will have their default
initial values (i.e., 0 or null).
A FUNCTION statement can be replaced by a FUNCTION structure. For example, the following two definitions
of the function f are equivalent.

FUNCTION f(a,b) = expr

FUNCTION f(a,b)
LET f = expr

END FUNCTION

(See also the FUNCTION structure.) 

FUNCTION Structure
function-structure:: funopener

. . .
END FUNCTION

funopener:: FUNCTION identifier
FUNCTION identifier (funparmlist)
FUNCTION string-identifier
FUNCTION string-identifier (funparmlist)

funparmlist:: funparm …, funparm
funparm:: simple-numvar

simple-strvar
arrayparm

The keyword FUNCTION may be replaced by the keyword DEF.

247Statements, Built-in Functions and Subroutines



The FUNCTION structure allows the programmer to define new multi-line functions.
The arguments in the invocation are matched with the parameters, the first argument with the first parameter,
and so on. Each argument must match the corresponding parameter in type, numeric or string. Arrays must agree
in the number of dimensions. The arguments are evaluated in left to right order  and assigned to the correspond-
ing funparms. (This parameter passing mechanism is called passing by value and contrasts with passing by ref-
erence, the mechanism used with subroutines and pictures. It should be noted that passing an array by value
requires that it be copied completely before use, which can be time- and memory-consuming for large arrays.)
The statements of the function are then executed. The defined function is assigned its value through the execution
of one or more LET statements with the name of the function as a LET variable. If no such LET statement is exe-
cuted, then the value of the function will be the default initial value (i.e., 0 or null).
If the defined function is internal, the variables and arrays that appear in the expression, but that are not fun-
parms, refer to variables and arrays in the containing program-unit. If the defined function is external, then all
such variables and arrays that are not shared will have their default initial values (i.e., 0 or null).
The defined function can also contain DECLARE PUBLIC, DECLARE DEF, LOCAL, SHARE, and PUBLIC state-
ments.

GET KEY Statement
GET KEY numvar
GET KEY: numvar

The GET KEY statement assigns to numvar the numerical equivalent of the next character in the keyboard input
buffer. If no character is in the buffer, the program waits until the user presses a key.
If the character is an ASCII character, the numerical equivalent of that character is assigned to numvar (see
Appendix A). Otherwise, the value assigned to numvar depends on the particular machine.
The logical clause KEY INPUT can be used in conjunction with the GET KEY statement. If there is a character in
the input buffer, then KEY INPUT is “true,” and the first character will be assigned to numvar by the GET KEY
statement without delay.

GET MOUSE Statement
GET MOUSE numvar, numvar, numvar
GET MOUSE: numvar, numvar, numvar

The GET MOUSE statement returns the current position of the mouse and its current state. On mice with multi-
ple buttons, only the state and position of the left-most button is reported. The current x- and y-coordinates of the
current position, in user coordinates, are assigned to the first two numvars, respectively. If one or more picture
transformations are in effect, their inverse is applied before assigning to the variables. The current state of the
mouse is assigned to the third numvar according to the following table:

Mouse State
——————————————————————————————————————

Value Mouse state
0 No button Down
1 Button Down
2 Button clicked at this point
3 Button released at this point
4 Button shift-clicked at this point

——————————————————————————————————————
The values assigned to the two variables may be outside the current logical window; they are not “clipped” and are
given in terms of the current user coordinates.
The state of the mouse is determined within a certain time interval that is dependent on the particular machine.
Thus, even if the GET MOUSE statement is executed continuously, as within a tight loop, it may nonetheless miss
the exact moments when the button is being clicked or released.

248 True BASIC Language System



GET MOUSE is provided primarily for compatibility with earlier versions of True BASIC. This version of the lan-
guage provides more reliable and flexible means of getting mouse input via the Sys_Event routine (see Chapter 20
“Sys_Event Subroutine”) or the TC_Event library routine (see Chapter 14 “Interface Elements”).

GET POINT Statement
GET POINT numvar, numvar
GET POINT: numvar, numvar

When the GET POINT statement is executed, the program will stop to allow the user to indicate a point on the
screen, in current user coordinates. A graphics cursor indicates the current point. The form of the graphics cursor
depends on the system; for instance, it may be small cross hairs or an arrow. The user is then allowed to move the
graphics cursor via cursor keys, the mouse, or other means depending on the particular machine.
When the new location is correct, the user signals by pressing the RETURN key or the left-most mouse button, or
by some other means; the x- and y-coordinates of the graphics cursor are assigned to the two numvars respectively,
and the program is continued. If one or more picture transformations are in effect, their inverse is applied before
assigning to the variables. 
The values assigned to the two variables may be outside the current logical window; they are not “clipped” and are
given in terms of the current user coordinates.
GET POINT is provided primarily for compatibility with earlier versions of True BASIC. This version of the lan-
guage provides more reliable and flexible means of getting input via the Sys_Event routine (see Chapter
20,“Sys_Event Subroutine”) or the TC_Event library routine (see Chapter 14 “Interface Elements”). The GET
POINT statement will not work if program-controlled event handling (via Sys_Event or TC_Event) is in effect.

GOSUB Statement
GOSUB line-number
GO SUB line-number

The GOSUB statement causes a jump to the line-number specified. It also places the number of the line following
the GOSUB statement on the top of a RETURN stack. A subsequent RETURN statement will jump to the line
whose number is at the top of this stack. There is a separate return stack for each invocation of a program-unit.
The GOSUB statement can appear only in a line-numbered program. The target line-number must be within the
scope of the GOSUB statement and must contain an allowable statement. 

Exception: 5000 Out of memory.

GOTO Statement
GOTO line-number 
GO TO line-number

The GOTO statement causes a jump to the line-number specified.
The GOTO statement can appear only in a line-numbered program. The target line-number must be within the
scope of the GOTO statement and must contain an allowable statement. 

HANDLER Structure
handler-structure HANDLER handler-name

handler-part
END HANDLER

handler-name:: identifier
handler-part:: … statement

The HANDLER structure, a detached handler, is used in conjunction with the WHEN EXCEPTION USE form
of the WHEN structure and must be located within the same program-unit. (The HANDLER structure may be
viewed as an internal-procedure.)

249Statements, Built-in Functions and Subroutines



When an exception occurs in the when-part of a WHEN EXCEPTION USE structure, control transfers to the
HANDLER structure named in the WHEN EXCEPTION USE line.
The effect of the statements in the handler-part is the same as if the statements were in the USE part of a WHEN
EXCEPTION IN structure.
If an EXIT HANDLER or CAUSE EXCEPTION statement is not executed and the END HANDLER statement is
reached, control is transferred to the line following the END WHEN line of the WHEN structure that invoked the
handler. The action is as if the handler were a subroutine and the END WHEN line were a CALL to that subrou-
tine.
An error (exception) that occurs while the statements of the HANDLER structure are being executed will be
treated as a new error.
An EXIT HANDLER statement will cause the exception to “recur” as if the WHEN structure that caught the
exception were not present. A RETRY statement will transfer to the statement being executed when the exception
occurred. A CONTINUE statement will transfer to the statement following the statement being executed when
the exception occurred, unless the offending statement is an essential part of loop or choice structure, when the
transfer will be made to the statement following the end of the choice structure. See the WHEN structure, EXIT
HANDLER, RETRY, and CONTINUE statements.

IDN Array Constant
IDN redim
IDN

IDN is an array constant that yields an identity matrix, which is a square numeric matrix consisting of ones on the
main diagonal and zeroes elsewhere. IDN can appear only in a MAT assignment statement. The dimensions of the
identity matrix are determined in one of three ways. If the redim is present and represents a square matrix, then
an array of those dimensions will be generated. If the redim represents a one-dimensional matrix, then IDN will
generate a square matrix with the given redim applying to both dimensions. In these two cases, the array being
assigned to in the MAT assignment statement will be resized (see the MAT Assignment statement) to these new
dimensions. If the redim is absent, then the dimensions will match those of the array being assigned to in the MAT
assignment statement.
For example:

 1 0 0 
IDN (1 to 3, 2 to 4) =  0 1 0 

 0 0 1 
Exceptions: 6004 IDN must make a square matrix.

6005 Illegal array bounds.
(See also CON, NUL$, and ZER.)

IF Statement
IF logex THEN simple-statement
IF logex THEN simple-statement ELSE simple-statement

If the value of logex is “true,” then the simple-statement following the keyword THEN will be executed, following
which control will pass to the next line.
If logex is “false,” and the ELSE clause is present, its simple-statement will be executed, following which control
will pass to the next line. If the ELSE clause is not present, then control will pass directly to the next line.
The simple-statement can be replaced by a line-number, in which case a GOTO to that line-number will result,
but only in a line-numbered program. See the GOTO statement.
The simple-statements in True BASIC are the ones beginning with the following keywords: ASK, BOX, CALL,
CAUSE, CHAIN, CLEAR, CLOSE, DRAW, ERASE, EXIT, FLOOD, GET, GO, GOSUB, GOTO, INPUT, LET,
LINE, MAT, ON, OPEN, PAUSE, PLAY, PLOT, PRINT, RANDOMIZE, READ, RESET, RESTORE, RETURN,
SET, SOUND, STOP, UNSAVE, WINDOW, and WRITE.

250 True BASIC Language System



IF Structure
if-structure:: IF logex THEN

. . .
ELSEIF logex THEN

. . . 
ELSEIF logex THEN

. . .
ELSE

. . .
END IF

The IF structure can have 0 or more ELSEIF parts and 0 or 1 ELSE parts. If ELSE is present, it must follow any
ELSEIF part. The keyword ELSEIF can also be spelled ELSE IF.
If the value of logex in the first line of the IF structure is “true,” the statements immediately following are executed,
up to the first ELSEIF, ELSE, or END IF, following which control jumps to the statement following the END IF.
If the value of logex in the first line of the IF structure is “false,” control passes to the first ELSEIF part following
the IF line. If the value of logex in the ELSEIF part is “true,” the statements immediately following it are executed,
up to the next ELSEIF, ELSE, or END IF, following which control passes to the statement following the END IF
line. If logex in the ELSEIF part is “false,” this process is repeated.
If there are no more ELSEIF parts, then control is passed to the ELSE part, and the statements following the ELSE
line are executed, up to the END IF line. If there is no ELSE part, control is passed to the statement following the
END IF line.

IMAGE Statement
IMAGE: format-string

The IMAGE statement provides an alternate way to specify the format-string for a PRINT USING statement. The
format-string is taken to consist of all characters starting with the character after the colon (even if it is a space)
up through the last nonspace character prior to the on-line comment symbol “!” or the actual end of the line. The
IMAGE statement may be used only with line-numbered programs, and is referred to by line-number in the
PRINT USING statement. 
The following two program fragments will produce identical results:

100 IMAGE        : The answer is ###### percent
110 PRINT USING 100   : x

100 LET image$ = “ The answer is ###### percent”
110 PRINT USING image$: x

Exceptions: 8201 Badly formed USING string.
8202 No USING item for output.

INPUT Statement
INPUT inputlist
INPUT inputlist,
INPUT input-option …, input-option: inputlist
INPUT #rnumex: inputlist
INPUT #rnumex, file-input-option  …, file-input-option: inputlist
inputlist:: var …, var
var:: numvar

strvar
strvar substrex

251Statements, Built-in Functions and Subroutines



file-input-option:: input-option
IF MISSING THEN action

input-option:: PROMPT strex
TIMEOUT numex
ELAPSED numvar

action:: EXIT DO
EXIT FOR
line-number

input-response:: input-item …, input-item
input-item …, input-item,

input-item:: quoted-string
unquoted-string

When the INPUT statement without #rnumex is executed, the program awaits an input-response from the user.
The input-response consists of quoted-strings and unquoted-strings, separated by commas, possibly followed by a
trailing comma. (Only certain characters are allowed in unquoted-strings used in input-responses..)
The items in the input-response are assigned to the variables in the INPUT statement. String variables can receive
any input-item, but numeric variables can receive only input-items whose characters form a numeric-constant. If
the strvar is followed by a substrex, the input-item is assigned to the character positions given by the substrex.
The rules are the same as for READ and DATA statements. That is, leading and trailing spaces are included for
quoted-strings, but omitted for unquoted-strings. The null string must be represented by the quoted-string ("").
If there are input-options present, no more than one of each type may be present.
If there is a PROMPT clause, the strex is displayed as the prompt, before awaiting the user’s response. If there is
no PROMPT clause, the default prompt “?”, is used.
If the user does not supply enough input-items to satisfy the inputlist, the message “Too few input items. Please
reenter input line.” is displayed. The user can then retype the input-items to satisfy the inputlist. (This is a nonfa-
tal exception, and can be intercepted.)
If the user supplies more input-items than are needed to satisfy the inputlist, the message “Too many input items.
Please reenter input line.” is displayed. The user can then retype the input-items to satisfy the inputlist. (This is a
nonfatal exception and can be intercepted.)
If an input-variable is numeric and the corresponding input-item is not a valid numeric representation, the mes-
sage “String given instead of number. Please reenter input line.” is printed and a prompt issued. The user can then
retype the input-response. (This is a nonfatal exception and can be intercepted.)
If the inputlist ends with a comma, the remainder of the input-response, if any, is retained for use by the next
INPUT statement, and the error message is not displayed.
If the input-response ends with a comma and the inputlist requires additional input-items, then the default prompt
“?” is issued and the user given a chance to enter additional input-items.
To illustrate these ideas, for the following sequence,

INPUT a, b,
INPUT c, d

each of the following is a valid input-response:
? 1,2,3,4 

or
? 1,2,
? 3,
? 4

For an INPUT statement with #rnumex, the variables in the inputlist receive their values from the TEXT file asso-
ciated with #rnumex.

252 True BASIC Language System



If there are more items on a text line in the TEXT file than are needed to satisfy the inputlist, an exception occurs.
If there are fewer items on a text line in the TEXT file than are needed to satisfy the inputlist, an exception occurs.
If the inputlist ends with a comma, the remainder of the line in the TEXT file, if any, is retained for use by a sub-
sequent INPUT statement with channel, and no exception occurs.
If a line in a TEXT file ends with a comma and the inputlist requires additional input-items, then the next line from
the TEXT file is used.
If a TIMEOUT clause is present, then the user is given numex seconds, possibly fractional, to supply a valid input-
response; otherwise, an exception (8401) occurs. If the TIMEOUT value is 0, exception (8401) will immediately
occur, but values may still be assigned to the input variables if there are characters available in the input buffer
of the operating system.
If the ELAPSED clause is present, then the value of numvar will contain the number of seconds, possibly fractional,
that it took the user to supply a valid input-response. The elapsed time is measured by the program and may be
longer than the elapsed time as perceived by the user if, for example, there are network delays.
If an INPUT statement with #rnumex contains a file-option-list, no more than one of each type may be present. If
the action of an IF MISSING clause is EXIT FOR or EXIT DO, then the INPUT statement must be contained
within a loop of that type. If the action is a line-number, it must follow the same rules as a GOTO statement with
that line-number.
Before actual input occurs, the action of the IF MISSING clause, if present, is carried out if the file-pointer is at
the end of the file.
The PROMPT, TIMEOUT, and ELAPSED input-options have no effect if the channel refers to a disk file. If the
channel refers to the interactive terminal, then these options have the same effect as if the channel were miss-
ing.

Exceptions: 1007 Overflow in INPUT. (nonfatal)
1008 Overflow in file INPUT.
1054 String too long in INPUT. (nonfatal)
1105 String too long in file INPUT.
7004 Channel isn’t open.
7303 Can’t input from OUTPUT file.
7318 Can’t INPUT from INTERNAL file.
8002 Too few input items. (nonfatal)
8003 Too many input items. (nonfatal)
8011 Reading past end of file.
8012 Too few data in record.
8013 Too many data in record.
8101 Data item is not a number.
8102 Badly formed input line. (nonfatal)
8103 String given instead of number. (nonfatal)
8105 Badly formed input line from file.
8401 Input timeout.
8402 TIMEOUT value < 0.

-8450 Nested INPUT statements with TIMEOUT clauses.
9001 File is read or write protected.

INT Function
INT(numex)

Returns the greatest integer that is less than or equal to numex. INT is sometimes called the floor function. For
example, INT(1.9) = 1, INT(13) = 13, and INT(-2.1) = -3.
(See also CEIL, IP and ROUND.)

253Statements, Built-in Functions and Subroutines



INV Array Function
INV(numarr)

Returns the inverse of its argument, which must be a square two-dimensional numeric matrix. If the matrix is
singular, an error will occur, and the value of DET with no argument will be set to 0. If the matrix is non-singu-
lar, the value of DET with no argument will be set to the determinant of the matrix.
For example:

 1 2   -2.0 1.0 
If A =   , then INV(A) =  

 3 4   1.5 -0.5 
Exceptions: 3009 Can’t invert singular matrix.

6003 INV needs a square matrix.

IP Function
IP(numex)

Returns the greatest integer that is less than or equal to numex without regard to sign, that is, towards zero. For
example, IP(1.9) = 1, IP(13) = 13, and IP(-2.1) = -2.
(See also CEIL, INT and ROUND.)

LBOUND Function
LBOUND(arrayarg, rnumex)
LBOUND(arrayarg)

If there are two arguments, LBOUND returns the lowest value (lower bound) allowed for the subscript in the array
and in the dimension specified by rnumex. If there is no second argument, arrayarg must be a vector, and
LBOUND returns the lowest value (lower bound) for its subscript. For example:

! For these OPTION and DIM statements
OPTION BASE 0
DIM A(2:5, -3:10), V(10)
! LBOUND takes on these values:
! LBOUND(A,1) = 2
! LBOUND(A,2) = -3
! LBOUND(V)   = 0
Exception: 4008 LBOUND index out of range.

(See also SIZE and UBOUND.)

LCASE$ Function
LCASE$(strex)

Returns the value of strex with all ASCII uppercase letters (see Appendix A) converted into lower case. Characters
outside the range of the ASCII uppercase letters are left unchanged. For example:

LCASE$(“Mr. Smith is 65.”)

returns the value “mr. smith is 65.”
(See also UCASE$.)

LEN Function
LEN(strex)

Returns the length (that is, the number of characters) of the argument strex. All characters count, including con-
trol characters and other non-printing characters. For example:

LEN(“a;sldkfjg”) returns  9
LEN(“”””) returns 1

254 True BASIC Language System



LET Assignment Statement
LET numvar …, numvar = numex
LET starget …, starget = strex
starget:: strvar

strvar substrex
The keyword LET may be omitted if your program contains OPTION NOLET. Substrex refers to a substring
expression and is defined in Chapter 17.
The LET statement causes the expression on the right of the equal sign to be evaluated and then assigns the result
to the variables (simple variables or array elements) on the left of the equal sign. More precisely, first the subscript
and substring expressions on the left are evaluated, from left to right. Second, the expression on the right is eval-
uated. Third, this value is assigned to the variables and array elements on the left, in left to right order.
For example:

LET i, j = 2
LET i, a(i) = 1

will assign the value 1 to both i and a(2); that is, the subscript expression is calculated first, and thus uses the
old value of i.
For string assignments, if a strvar on the left does not have a substrex, then the strex on the right becomes the new
value of that strvar. If a strvar has a substrex, then the strex on the right replaces only the substring defined by the
substrex.
The rules for substrex when the “from” and “to” positions extend beyond the ends of the string are described in
Chapter 17. If the substrex defines a null string, then the assignment of the strex on the right is made as an inser-
tion immediately in front of the “from” position; no characters are removed. If the “from” position is less than or
equal to 0, then the insertion is made to the front of the string. If the “from” position is greater than the length of
the string, then the strex is appended to the end of the string. The resulting string being assigned into may become
longer or shorter as a result.
For example:

LET a$, b$, c$, d$ = “abc”
LET a$[2:2] = “x”
LET b$[2:1] = “x”
LET c$[-4:-2] = “x”
LET d$[4:6] = “x”
PRINT a$, b$, c$, d$

will yield:
axc         axbc          xabc          abcx

Inside a multiple-line function definition, the list of variables to the left of the equal sign may include the func-
tion’s name. The value of the expression then becomes the function’s return value. The function’s name may con-
tain a substring expression.

Exceptions: 1106 String too long in assignment.
5000 Out of memory.

LIBRARY Statement
LIBRARY quoted-string …, quoted-string

The LIBRARY statement names the file or files containing external routines needed by the entire program. Nor-
mally, the LIBRARY statements are all in the main program, but this is not necessary. The library files can be
compiled or uncompiled. 
The order in which the files are named in the collection of LIBRARY statements may be critical. Generally speak-
ing, if a higher-level routine calls a lower-level routine, the file containing the higher-level routine should be
named before the file containing the lower-level routine, or the higher-level routine should contain a LIBRARY
statement that tells where to find the lower-level routine.

255Statements, Built-in Functions and Subroutines



The procedure is as follows:
1. The loader constructs a need-list of the names of all external routines that are needed by the main program.

(A user-defined function is assumed to be needed if its name appears in a DECLARE FUNCTION state-
ment.) It also constructs a library-list of all the files named in the LIBRARY statements.

2. The loader loads all routines following the END statement in the main program file. The names of all addi-
tional lower-level routines needed by any of the loaded routines are added to the need-list. In addition,
libraries named in such routines are added to the end of the library-list.

3. The loader examines the first file named in the library-list. All routines that are known to be needed are
loaded; the others are discarded. The names of any additional routines that are needed are added to the
need-list. If a loaded routine contains LIBRARY statements, their library file names are added to the end of
the library-list.

4. The loader discards this file name from the head of the library-list. Thus, True BASIC never looks back at
earlier libraries.

5. This process is continued with the rest of the files named in the LIBRARY statements.
For example, suppose there are two files of external routines, and that their names are “file1” and “file2”.
Suppose “file1” contains a routine x and “file2” contains a routine y. Further suppose that the main pro-
gram calls (or invokes) x but not y, that the routine x calls (or invokes) y, and that none of the other routines in
the two files calls x or y. Then the first LIBRARY statement below  will work, but the second will not.

LIBRARY “file1”, “file2” ! Will work
LIBRARY “file2”, “file1” ! Will not work

It would also be correct if the main program contained:
LIBRARY “file1”

while routine x in “file1” contained:
LIBRARY “file2” 

In fact, a safe procedure is to include a LIBRARY statement in every routine that calls another external routine.
It is permissible to name a LIBRARY file more than once, as follows:

LIBRARY “file2”, “file1”, “file2” 

This technique allows subroutines in either file to call subroutines in the other file and will work for the previous
example.

LINE INPUT Statement
LINE INPUT strvarlist
LINE INPUT input-option …, input-option: strvarlist
LINE INPUT #rnumex: strvarlist
LINE INPUT #rnumex, file-input-option  …, file-input-option: strvarlist
strvarlist:: starget …, starget
starget:: strvar

strvar substrex
(See the INPUT statement for an explanation of the input-options and the file-input-options.)
A LINE INPUT statement without #rnumex requests one or more lines of input from the user. The first line is sup-
plied to the first strvar, the second to the second, and so on. All characters in the response-line are supplied, includ-
ing leading and trailing spaces, embedded commas, and quote marks. The final end-of-line is not included.
A LINE INPUT statement with a PROMPT input-option issues strex as the prompt for the first response, but uses
the default prompt “?” for subsequent responses.
A LINE INPUT statement with #rnumex obtains lines of text from the associated file and assigns them in order to
the stargets in the strvarlist.

256 True BASIC Language System



An unquoted null string is a valid response to a LINE INPUT statement.
Exceptions: 1054 String too long in INPUT. (nonfatal)

1105 String too long in file INPUT.
7004 Channel isn’t open.
7303 Can’t input from OUTPUT file.
7318 Can’t INPUT from INTERNAL file.
8011 Reading past end of file.
8401 Input timeout.
8402 TIMEOUT value < 0.

-8450 Nested INPUT statements with TIMEOUT clauses.

LOCAL Statement
LOCAL local-item …, local-item
local-item:: simple-numvar

simple-strvar
array bounds

A LOCAL statement specifies that the variables named in it are local to the routine containing the statement.
This statement is normally irrelevant in external routines, since all variables except parameters are automati-
cally local, but it can be important in internal routines. All variables and arrays named in LOCAL statements but
used in different invocations of the internal routine are different and are initialized each time the internal routine
is invoked. The appearance of an array bounds in a LOCAL statement causes the array to be dimensioned, as in a
DIM statement. In addition to creating local variables in internal routines, the LOCAL statement can be used in
conjunction with the OPTION TYPO statement to avoid typographical errors in variable names.
An OPTION TYPO statement that occurs early in a program-unit or a module-header requires subsequent vari-
ables and arrays to be declared. This may be done in one of the following ways: naming them in a LOCAL state-
ment; having them appear in the SUB, DEF, FUNCTION, or PICTURE statements that initiate the program unit;
naming them in DECLARE PUBLIC statements; declaring arrays in DIM statements; or naming them in SHARE
or PUBLIC statements in the program unit or in the module-header containing the program unit. 
A variable or array appearing in a LOCAL statement in a module overrides the definition of a variable or array
having the same name and appearing in a SHARE or PUBLIC statement in the module-header.
An OPTION TYPO statement that appears in a module-header applies to all the routines of the module. Thus, all
routines in the module must name in a LOCAL statement their variables and arrays that are not included in pre-
vious SHARE or PUBLIC statements. An OPTION TYPO statement that appears in an external procedure in a
library file applies to the rest of the procedure containing it and to all subsequent procedures in that library file.
(See the OPTION TYPO statement.)

LOG Function
LOG(numex)

Returns the natural logarithm of numex, which must be greater than 0. The natural logarithm of x may be
defined as that value v for which e^v = x, where e = 2.718281828.... For example:

LOG(1)  returns 0
LOG(10) returns 2.30259...

Exception: 3004 LOG of number <= 0.
(See also LOG10 and LOG2.)

LOG10 Function
LOG10(numex)

Returns the common logarithm of numex, which must be greater than 0. The common logarithm of x is defined as
that value v for which 10^v = x. For example:

257Statements, Built-in Functions and Subroutines



LOG10(100 returns 2
LOG10(2)   returns .30103...

LOG10 can be defined in terms of LOG as follows:
DEF LOG10(x) = LOG(x)/LOG(10)

Exception: 3004 LOG of number < = 0.
(See also LOG and LOG2.)

LOG2 Function
LOG2(numex)

Returns the logarithm to the base 2 of numex, which must be greater than 0. The logarithm to the base 2 of x is
defined as that value v for which 2^v = x. For example:

LOG2(8)  returns 3
LOG2(10) returns 3.32193 ...

LOG2 can be defined in terms of LOG as follows:
DEF LOG2(x) = LOG(x)/LOG(2)

Exception: 3004 LOG of number < = 0.
(See also LOG and LOG10.)

LOOP Statement
The LOOP statement may occur only as the last statement of a DO loop, and is required. (See the DO Loop.)

LTRIM$ Function
LTRIM$(strex)

Returns the value of strex but with leading blank spaces removed. Trailing spaces, if any, are retained. For
example: 

LTRIM$(“   a b c    “) returns “a b c    “
(See also RTRIM$ and TRIM$.)

MAT Statements
There are a number of MAT statements, which deal with computation, input, output, and graphics. They are as
follows; each is described separately below:

MAT Assignment
MAT INPUT
MAT LINE INPUT
MAT PLOT
MAT PRINT
MAT READ
MAT REDIM
MAT WRITE

MAT Assignment Statement
MAT assignment
assignment:: numarr = numarrex

strarr = strarrex
strarr substrex = strarrex

numarrex:: numarr 
numarr numarrop numarr
numarrconst 
numarrconst redim

258 True BASIC Language System



primary
primary * numarr
primary * numarrconst
primary * numarrconst redim
numarrfunction(numarr)

numarrop:: + or – or *
numarrconst:: CON or IDN or ZER

CON or IDN or ZER redim
numarrfunction:: INV or TRN
strarrex:: strarrprim

strarrprim & strarrprim
str-factor & strarrprim
strarrprim & str-factor
str-factor 
strarrconst
str-factor & strarrconst

strarrprim:: strarr
strarr substrex

strarrconst:: NUL$
NUL$ redim

(A primary is, for example, a numerical expression within parentheses. A str-factor is, for example, a quoted-string
or a string-variable followed by a substrex. See Chapter 17 for complete definitions of these and other syntax items
and the exceptions that can occur if they are misused.)
A MAT assignment evaluates the array expression (numarrex or strarrex) on the right and then assigns it to the
array on the left. If the array being assigned to is a string array followed by a substring expression, the array ele-
ments from the array expression on the right replace only the characters specified by the substring expression in
the array on the left.
The number of dimensions of the array expression and the array on the left must agree. (If the array expression is
a numarrconst or strarrconst without a redim, the number of dimensions of the array expression is determined
from the array on the left.)
The result of array addition (or subtraction) is an array, each of whose elements is the sum (or difference) of the
corresponding elements in the arrays of the numarrex.
The result of array multiplication depends on what is being multiplied. If both arrays are two-dimensional matri-
ces, the result is a two-dimensional matrix. If one array is one-dimensional and the other is two-dimensional, then
the result is a one-dimensional array, i.e., a vector. If both arrays are one-dimensional, then the result is a one-
dimensional array, i.e., a vector; in this case, the vector will have only one element whose value will be the DOT
product of the two vectors being multiplied. (Note: array multiplication is not the element-by-element product.)
Below is a list of array functions and their effects:

Array Constants and Functions
——————————————————————————————————————

Function Effect
CON Produces an array each of whose elements is 1.
ZER Produces an array each of whose elements is 0.
IDN Produces a square matrix having 1s on the main diagonal and 0s elsewhere.
INV Produces the mathematical inverse of a square matrix.
TRN Produces the transpose of a two-dimensional matrix.

NUL$ Produces an array each of whose elements is the null string.
——————————————————————————————————————

259Statements, Built-in Functions and Subroutines



(See Chapter 9 Arrays and Matrices, for descriptions of DET, DOT, LBOUND, SIZE, and UBOUND, which require
array arguments but return numeric values.)
The presence of a primary (which is a numeric variable, a numeric-constant, or a numeric expression in parenthe-
ses) implies scalar multiplication; that is, each element of the array is multiplied by the numeric value of the
primary. If the primary exists by itself, it generates a numeric array, each of whose elements has the value of the
primary and with dimensions determined from the array on the left. (For example, MAT A = 17 is the same as
MAT A = 17*CON.) The primary is evaluated and stored in a temporary location before the MAT assignment
begins.
The presence of a str-primary (which is a string variable, a quoted-string constant, or a string expression in paren-
theses) generates a string array, each of whose elements has the value of the str-primary. If a strarr is followed by
a substrex, that substring applies to each element of the strarr.
For addition and subtraction of arrays, the two arrays must be numeric and must have the same sizes, but they
need not have the same subscript ranges.
For multiplication of two arrays, the two arrays must be one- or two-dimensional, must be numeric, and must have
sizes that conform with the mathematical rules for matrix multiplication. (One-dimensional arrays will be treated
as either row or column vectors in order to obey the rules for matrix multiplication.) The argument of the INV func-
tion must be a two-dimensional square numeric array. The argument of the TRN function must be a two-dimen-
sional numeric array.
For the MAT assignment statements, the actual subscript ranges for the array on the left are inherited from the
array expression on the right according to the following rule:

new LBOUND(left array) = old LBOUND(left array)

new UBOUND(left array) = new LBOUND(left array) + SIZE(array expression) - 1

Thus, the lower bounds remain the same, while the upper bounds are adjusted to be consistent with the size of the
array expression on the right.
For those numarrex and strarrex whose dimensions and subscript ranges are determined from the array on the
left (such as MAT a = ZER, MAT b = 17, MAT c = 17*CON, or MAT d$ = “Hello”), the dimensions and
subscript ranges for the array on the left do not change.

Exceptions: 1005 Overflow in MAT operation.
1052 String too long in MAT.
3009 Can’t invert singular matrix.
5000 Out of memory.
6001 Mismatched array sizes.
6003 INV needs a square matrix.
6004 IDN must make a square matrix.
6005 Illegal array bounds.
6101 Mismatched string array sizes.

(Other numeric and string exceptions may occur.)
(See also the CON, IDN, ZER, INV, TRN, and NUL$ functions and the MAT REDIM statement.) 

MAT INPUT Statement
MAT INPUT matinlist
MAT INPUT input-option …, input-option: matinlist
MAT INPUT #rnumex: matinlist
MAT INPUT #rnumex, file-input-option …, file-input-option: matinlist
matinlist:: inputarray …, inputarray
inputarray:: array 

array redim
array (?)

260 True BASIC Language System



(See the INPUT statement for an explanation of the input-options and the file-input-options and their effects.)
If an inputarray is followed by a (?), it must be one-dimensional.
MAT INPUT without #rnumex assigns values from the input-response to the elements of the arrays, in order.
There must be a separate input-response for each array in the inputlist. For each array, the elements are assigned
values in “odometer” order. (That is, if A is a 2-by-2 array, odometer order is A(1,1), A(1,2), A(2,1),
A(2,2).) The input-response must contain a sufficient number of values of the appropriate type (numeric or
string), separated by commas, in a single input-response or in a collection of input-responses with all but the last
ending with a comma. (See the INPUT statement for details of input-responses.)
If there are insufficient values in the input-response, True BASIC will print “Too few input items. Please reenter
input line,” issue the default prompt (?), and await further input. If there are too many values in the input-
response, True BASIC will print “Too many input items. Please reenter input line,” issue the default prompt, and
await further input. In these cases, it is necessary only to reenter the last input line. Previously entered input lines
that end with commas will have been stored in the array.
If a redim is present on an array in the matinlist, then that array is redimensioned before the values are assigned
to it. The new dimensions are precisely those of the redim.
If the PROMPT clause is present as an input-option, then that prompt is used for the initial input-response. Sub-
sequent input-responses, if needed, will use the default prompt.
If the matinlist contains a vector with a (?) as the redim expression, then as many values are assigned to the ele-
ments of the vector as are supplied by the user in the input-response, or in the collection of input-responses, with
all but the last ending with a comma. The lower bound of the vector is unchanged, but its upper bound is adjusted
to accept the values. Thus, the new upper bound of the vector is (lower-bound + number-of-values-supplied – 1).
If #rnumex is present, then the values assigned are taken from the associated TEXT file. If the required input
extends over several lines of text in the file, all lines but the last must end with a comma. The PROMPT clause is
not permitted with #rnumex.

Exceptions: 1008 Overflow in file INPUT.
1054 String too long in INPUT. (nonfatal)
1105 String too long in file INPUT.
6005 Illegal array bounds.
7004 Channel isn’t open.
7303 Can’t input from OUTPUT file.
7318 Can’t INPUT from INTERNAL file.
8002 Too few input items. (nonfatal)
8003 Too many input items. (nonfatal)
8011 Reading past end of file.
8012 Too few data in record.
8013 Too many data in record.
8101 Data item is not a number.
8102 Badly formed input line. (nonfatal)
8103 String given instead of number. (nonfatal)
8105 Badly formed input line from file.
8401 Input timeout.
8402 TIMEOUT value < 0.

-8450 Nested INPUT statements with TIMEOUT clauses.

MAT LINE INPUT Statement
MAT LINE INPUT lineinlist
MAT LINE INPUT input-option …, input-option: lineinlist
MAT LINE INPUT #rnumex: lineinlist
MAT LINE INPUT #rnumex, file-input-option …, file-input-option: lineinlist

261Statements, Built-in Functions and Subroutines



lineinlist:: redimstrarray …, redimstrarray
redimstrarray:: strarr 

strarr redim
(See the INPUT statement for an explanation of the input-options and the file-input-options and their effects.)
MAT LINE INPUT without #rnumex assigns response-lines to the elements of the arrays in the redimarraylist, in
order from left to right, and within each array in odometer order. The entire line of input is assigned to an array
element, including leading and trailing spaces and embedded commas.
If a redim is present, that array is redimensioned before values are assigned to its elements. The new dimensions
are precisely those of the redim.
If the PROMPT clause is present as an input-option, that prompt is used for the first line of input. Subsequent
lines of input will be prompted with the default prompt (?).
If #rnumex is present, then the lines of input are taken from the associated TEXT file. The PROMPT clause is not
permitted with #rnumex.

Exceptions: 1054 String too long in INPUT. (nonfatal)
1105 String too long in file INPUT.
6005 Illegal array bounds.
7004 Channel isn’t open.
7303 Can’t input from OUTPUT file.
7318 Can’t INPUT from INTERNAL file.
8011 Reading past end of file.
8401 Input timeout.
8402 TIMEOUT value < 0.

-8450 Nested INPUT statements with TIMEOUT clauses.

MAT PLOT Statement
MAT PLOT POINTS: matplotarray
MAT PLOT LINES: matplotarray
MAT PLOT AREA: matplotarray

The MAT PLOT statements all require a single matplotarray, which must be a two-dimensional numeric array
that has two (or more) columns. Each of the rows is interpreted as a single point. The first column is the x-coordi-
nate of the point, and the second column is the y-coordinate. (If the array has more than two columns, the last col-
umn is the y-coordinate.)
MAT PLOT POINTS plots the points in the array, just as if the points were supplied with a MAT PLOT statement
naming the array elements. Thus, the following two statements are equivalent:

MAT PLOT POINTS: x
PLOT POINTS: x(1,1),x(1,2); ...; x(n,1),x(n,2)

MAT PLOT LINES plots the line segments connecting the points in the array. Thus, the following two statements
are equivalent:

MAT PLOT LINES: x
PLOT LINES: x(1,1),x(1,2); ...; x(n,1),x(n,2)

The line segments plotted may fail to represent a closed polygon if, for example, the last point does not repeat one
of the earlier points.
MAT PLOT AREA plots the polygon represented by the points and fills it with the current foreground color. Thus,
the following two statements are equivalent:

MAT PLOT AREA: x
PLOT AREA: x(1,1),x(1,2); ...; x(n,1),x(n,2)

It is not necessary for the last point to repeat the first point, as the MAT PLOT AREA statement supplies the line
segment joining the first and last points.

262 True BASIC Language System



Exception: 6401 Must have two or more columns for MAT PLOT.
-11000 Can’t do graphics on this computer.

MAT PRINT Statement
MAT PRINT matprintlist
MAT PRINT using-option: matusinglist
MAT PRINT #rnumex: matprintlist
MAT PRINT #rnumex, file-print-option …, file-print-option: matprintlist
MAT PRINT #rnumex, file-using-option …, file-using-option: matusinglist
matprintlist:: array …, separator array

array …, separator array separator
matusinglist:: array …, array

array …, array ;
separator:: , or ;

(See the PRINT statement for an explanation of the print-options and the file-print-options and their effects.)
The MAT PRINT statement prints the elements of each array in its matprintlist to the screen or, if #rnumex is pre-
sent, at the end of the associated file or into the associated logical window. The values of each array are printed sep-
arately, with a blank line following the printed values for each array. For two-dimensional arrays, the values for
each row start on a new line. This rule also applies to arrays of three or more dimensions.
The separators following the array determine the spacing of the printed array values. If the separator is a comma,
the values are printed in successive print zones; if it is a semicolon, the values are printed immediately following
each other. If there is no separator following the last array, a comma is assumed. The effects of the current
zonewidth and margin are the same as for the ordinary PRINT statement. 
If the USING clause is present, the separators must be commas. The values are then printed according to the for-
mat specified, instead of being printed in zones or being packed. The effect is exactly as if you used a normal PRINT
USING statement containing all the array elements listed in odometer order. (See the PRINT statement for what
happens if a field in the format is inadequate for a particular value.) A possible final semicolon is ignored.
If a single row has more elements that the format string has fields, the format string is re-used from the beginning,
which includes starting a new line. This process continues without regard to ends of rows until all the elements of
the array have been printed. Thus, if you wish to display two-dimensional arrays, you should have as many
numeric-fields in the format-string as there are columns in the array. A subsequent array in the same statement
starts at the beginning of the format string.

Exceptions: 7004 Channel isn’t open.
7302 Can’t output to INPUT file.
7308 Can’t PRINT or WRITE for middle of this file.
8201 Badly formed USING string.
8202 No USING item for output.
8203 USING value too large for field. (nonfatal)
8204 USING exponent too large for field. (nonfatal)

MAT READ Statement
MAT READ readarraylist
MAT READ IF MISSING THEN action: readarraylist
MAT READ #rnumex: readarraylist
MAT READ #rnumex, read-option …, read-option: readarraylist
readarraylist:: readarray  …, readarray
readarray:: array

array redim
(See the READ statement for details of the read-options and their effects.)

263Statements, Built-in Functions and Subroutines



MAT READ, with or without #rnumex,  assigns values to the elements of each of the arrays in the readarraylist,
in order. For each array in the readarraylist, the values are assigned in “odometer” order – that is, the last sub-
script changes most rapidly, then the next to last, and so on. If a redim is present, the array being read into is first
redimensioned. The new dimensions are precisely those of the redim.
The MAT READ statement without #rnumex assigns to its variables the next series of data from the DATA list in the
current invocation of the program-unit containing the READ statement. (See the DATA statement.)
A strvar can receive any valid datum. A numvar can receive only a datum that happens to be a valid and unquoted
numeric-constant. 
If the IF MISSING clause is present, then its action will take effect if and when the DATA become exhausted while
the reading is still in progress.
The MAT READ statement with #rnumex assigns to its readarrays values obtained from a file. If the BYTES
clause is present as a read-option, then the file must be of type BYTE.
For a STREAM file, values from the file are assigned to the elements of the arrays in the READ statement in
odometer order. The file pointer will advance to the next item after reading each value.
For a RANDOM file, values from the record in the file at the file-pointer are assigned to the elements of the arrays
in the READ statement in odometer order. There must be the same number of elements as there are values in the
record. The file pointer will advance to the next record after reading each record.
For a RECORD file, the next array element is read from the file at the current position. The file pointer will
advance to the next value (record) after reading each value (record). The number of records remaining in the file
must be sufficient to supply each element in the array.
For a BYTE file, if the BYTES clause is present as a read-option, you may read only into string arrays. A number of
bytes equal to the second rnumex is read from the BYTE file and assigned to the next array element. The array ele-
ments are accessed in odometer order. If there are fewer bytes remaining in the file than are in the second rnumex,
but there is at least one, those remaining are assigned, but there must be sufficient bytes in the file to supply all the
array elements. The number of characters specified in the BYTES clause overrides the record size specified in a pre-
vious SET RECSIZE statement or in a RECSIZE OPEN option.
For a BYTE file, if  the BYTES clause is absent, you may read into string or numeric arrays, or any combination
thereof. The number of bytes assigned to each element of a string array is determined by a SET RECSIZE state-
ment or an OPEN RECSIZE option. The number of bytes assigned to each element of a numeric array is always
eight, regardless of the current RECSIZE. These eight bytes must be in the IEEE floating point representation of
a number, equal to that produced by the NUM$() function.
The file pointer will be advanced to the next byte after the reading is completed.

Exceptions: 1006 Overflow in file READ.
1053 String too long in READ.
7004 Channel isn’t open.
7303 Can’t input from OUTPUT file.
8001 Reading past end of data.
8011 Reading past end of file.
8012 Too few data in record.
8013 Too many data in record.
8101 Data item isn’t a number.

-8104 Data item isn’t a string.
8302 Input item bigger than RECSIZE.

-8503 Can’t use READ or WRITE for TEXT files.

MAT REDIM Statement
MAT REDIM arrvar redim …, arrvar redim

MAT REDIM redimensions the array according to the redim provided. In the redimensioning, some of the original
values may be retained. In particular, if the array is one-dimensional and the new dimensions lead to a smaller
size, then the obvious original values will be discarded. If the new dimensions lead to a larger size, then all the

264 True BASIC Language System



original values will be retained, and the new elements will be filled with zero or the null string, depending on the
type of the array. If the new dimensions change the lower and upper bounds but leave the size intact, then all of
the original values will be retained.
If the array is two-dimensional, and the number of rows is changed (made smaller or larger), then some of the orig-
inal rows will be discarded (if smaller), or new rows of zero or null strings will be added (if larger). If the number
of columns is changed, then the elements will be reorganized. The rule is that the values in the original array stay
put. The new dimensions may associate the old values with new array positions, which can be determined through
applying odometer order.
If the array has more than two dimensions, the rules are an extension of the rules for two-dimensional arrays.

Exceptions: 5000 Out of memory.
6005 Illegal array bounds.

MAT WRITE Statement
MAT WRITE #rnumex: matwritelist
MAT WRITE #rnumex, write-option …, write-option: matwritelist
matwritelist:: array …, array
array:: numarr

strarr
(See the WRITE statement for a detailed description of the write-options and their effects.)
MAT WRITE writes the elements, in odometer order, of the arrays in the matwritelist to the file specified.
For a STREAM file, the values from all the arrays in the MAT WRITE statement are written to the file in odome-
ter order without regard to records.
For an RANDOM file, the values from all the arrays in the MAT WRITE statement are written, in odometer order,
to the same record in the file. The record must be large enough to contain all the values. New records may be added
to the end of the file by using SET #n: POINTER END or by using the record-setter END.
For a RECORD file, the values from all the arrays in the MAT WRITE statement are written, in odometer order,
one to a record, starting with the current record. The record must be large enough to contain the largest single ele-
ment. New records may be added to the end of the file by using SET #n: POINTER END or by using the record-set-
ter END.
For a BYTE file, the elements of each array are written as bytes to the file. For a numeric array, eight bytes in the
IEEE floating point representation are written for each array element; that is, the eight-byte string produced by
the function NUM$ is written. For a string array, the characters of each string are written without headers. It is
important to remember that, unlike STREAM, RANDOM, or RECORD files, a BYTE file does not keep track of
whether particular bytes were originally part of a number or part of a string.

Exceptions: 7004 Channel isn’t open.
7302 Can’t output to INPUT file
8301 Output item bigger than RECSIZE.

-8304 Must SET RECSIZE before WRITE.
(In addition, see the exceptions for SET POINTER.)

MAX Function
MAX (numex, numex)

Returns the larger of the values of the two arguments. (Note: -1 is larger than -2.) MAX can be defined in terms of
other True BASIC statements as follows:

DEF MAX (a,b)
IF a > b THEN LET MAX = a ELSE LET MAX = b

END DEF

265Statements, Built-in Functions and Subroutines



MAXLEN Function
MAXLEN (strvar)

Returns the maximum length (maximum number of characters) for the string variable or, if strvar refers to an
array, the maximum length for each string in the array. (The maximum length may have been set by a DECLARE
STRING statement or imposed by the operating system.) If there is no determinable maximum length, MAXLEN
returns MAXNUM.

MAXNUM Function
MAXNUM

A no-argument function, MAXNUM returns the largest number that can be represented in your computer. For
example, on an IBM-compatible PC without a numerical coprocessor, MAXNUM = 1.7976931e+308.

MAXSIZE Function
MAXSIZE (arrayarg) 

Returns 2^31. (This function serves no useful purpose in this version of True BASIC, but does in the ANSI-com-
patible version.)

MIN Function
MIN (numex, numex)

Returns the smaller of the values of the two arguments. (Note: -2 is smaller than -1.) MIN can be defined in terms
of these other True BASIC statements:

DEF MIN (a,b)
IF a < b then LET MIN = a ELSE LET MIN = b

END DEF

MOD Function
MOD(numex, numex)
MOD(x,y) returns x modulo y, provided y is not equal to zero. For example:
MOD(7, 3) returns 1
MOD(-7, 3) returns 2
MOD(7, -3) returns -2
MOD(-7, -3) returns -1

MOD can be defined in terms of INT as follows:
DEF MOD(x,y) = x - y*INT(x/y)

Exception: 3006 MOD and REMAINDER can’t have 0 as 2nd argument.
(See also REMAINDER.)

MODULE Structure
module-structure:: MODULE identifier

…module-header
…procedure-part
END MODULE

module-header:: …modstatement
modstatement:: public-statement 

share-statement
private-statement
other-statement

procedure-part:: … procedure

266 True BASIC Language System



A module consists of a collection of external routines together with a module header. The module header may con-
tain public-statements, share-statements, and private-statements, as well as ordinary True BASIC statements
(which we denote here by other-statement).
Public-statements name variables and arrays that are accessible throughout the program, including the proce-
dures in the module. To be accessible from a given program-unit not included in the module, a public variable or
array must be named in a DECLARE PUBLIC statement in that program-unit. Public arrays must be dimen-
sioned in the public-statement in which they are named, not in a separate DIM statement.
Share-statements name variables, arrays, and channels (files and logical windows) that are accessible to each rou-
tine in the module, but not to program units outside the module. Shared arrays must be dimensioned in the share-
statement in which they are named, not in a separate DIM statement.
A variable or array cannot appear in more than one of the following: a PUBLIC statement, a SHARE statement, a
DIM statement, or a LOCAL statement in a module header. A variable or array cannot appear in more than one
PUBLIC statement in the program. Every variable or array named in a DECLARE PUBLIC statement must be
named somewhere in a PUBLIC statement. In other words, one module or program unit “owns” a public variable,
but other program units can use it.
Private-statements name those procedures in the module that are not accessible from outside the module. Such
procedures may be described as private external procedures. All other external procedures in the module are
public.
Each of the external procedures of the module may contain any number of internal procedures.
The other-statements in the module header are executed at program startup and serve to initialize the module. The order
in which the modules are initialized at program startup is determined by the order in which they are loaded. Warning:
a module in a library will not be initialized unless it contains an external procedure that is used. Thus, if you wish to use
a module header to initialize public variables, you must include in the module at least one procedure and invoke it, even
if it is a dummy procedure or even if the invoking code is never executed. 
All variables, arrays, and channels named in PUBLIC and SHARE statements retain their existence throughout
the life of the program, though their values may change. 
A LOCAL or DIM statement in an external procedure of a module can be used to “override” the meaning of a vari-
able or array that is also named in a PUBLIC or SHARE statement in the module header.
A DECLARE PUBLIC statement in a module header makes the variables and arrays it names available to the
entire module.
A DECLARE PUBLIC statement cannot be used to override the meaning of a shared variable or array.
An OPTION ANGLE or OPTION BASE statement that appears in a module header applies to the subsequent por-
tion of the module-header and to all procedures in the module, although its effect can be overridden for a given pro-
cedure by a similar OPTION statement inside that procedure. An OPTION TYPO or OPTION NOLET statement
that appears in the module-header or any procedure of the module applies to the rest of that procedure and to the
entire rest of the file containing the module. (See also the PUBLIC, SHARE, PRIVATE, DECLARE PUBLIC, and
the various OPTION statements.)

NCPOS Function
NCPOS(strex, strex)
NCPOS(strex, strex, rnumex)

Returns the position of the first occurrence in the first argument of any character that is not in the second argu-
ment. If all characters in the first argument appear in the second argument, or the first argument is the null
string, then NCPOS returns 0. If the second argument is null but not the first, then NCPOS returns 1.
If a third argument is present, then the search for the first non-occurrence starts at the character position in the
first string given by that number and proceeds to the right. If the second argument is null but not the first, then
NCPOS returns the starting position.

267Statements, Built-in Functions and Subroutines



The first form of NCPOS is equivalent to the second form with the third argument equal to one. 
For example:

NCPOS (“banana”, “mno”) returns 1
NCPOS (“banana”, “pqr”) returns 1
NCPOS (“banana”, “mno”, 4) returns 4
NCPOS (“banana”, “mno”, 10) returns 0

NCPOS can be defined more precisely in terms of other True BASIC statements as follows:
DEF NCPOS(s1$,s2$,start)

LET start = MAX(1,MIN(ROUND(start),LEN(s1$)+1))
FOR c = start TO LEN(s1$)

FOR j = 1 to LEN(s2$)
IF s1$[c:c] = s2$[j:j] THEN EXIT FOR

NEXT j
IF j = LEN(s2$)+1 THEN

LET NCPOS = c
EXIT DEF

END IF
NEXT c
LET NCPOS = 0

END DEF

(See also POS, POSR, CPOS, CPOSR, and NCPOSR.)

NCPOSR Function
NCPOSR(strex, strex)
NCPOSR(strex, strex, rnumex)

Returns the position of the last occurrence in the first argument of any character that is not in the second argu-
ment. If all characters in the first argument appear in the second argument, or if the first argument is the null
string, then NCPOSR returns 0. If the second argument is null but not the first, then NCPOSR returns the
length of the first string.
If a third argument is present, then the search for the last non-occurrence starts at the character position in the
first string given by that number and proceeds to the left (that is, backwards). If the second argument is null but
not the first, then NCPOSR returns the starting value.
The first form of NCPOSR is equivalent to the second form with the third argument equal to the length of the
first argument.
For example:

NCPOSR (“banana”, “mno”) returns 6
NCPOSR (“banana”, “pqr”) returns 6
NCPOSR (“banana”, “mno”, 4) returns 4
NCPOSR (“banana”, “MNO”, 10) returns 6

NCPOSR can also be defined more precisely with these True BASIC statements:
DEF NCPOSR (s1$,s2$,start)

LET start = MAX(0,MIN(ROUND(start),LEN(s1$)))
FOR c = start TO 1 STEP -1

FOR j = 1 to LEN(s2$)
IF s1$[c:c] = s2$[j:j] THEN EXIT FOR

NEXT j
IF j = LEN(s2$)+1 THEN

LET NCPOSR = c
EXIT DEF

END IF
NEXT c

268 True BASIC Language System



LET NCPOSR = 0
END DEF

(See also POS, POSR, CPOS, CPOSR, and NCPOS.)

NEXT Statement
The NEXT statement can be used only as part of a FOR loop and is required. See the FOR structure.

NUL$ Array Constant
NUL$ redim
NUL$

NUL$ is an array constant that yields a string array consisting entirely of null strings. NUL$ can appear only in
a MAT assignment statement. The dimensions of the array of null strings are determined in one of two ways. If the
redim is present, then an array of those dimensions will be generated; the array being assigned to in the MAT
assignment statement will be resized (see the MAT Assignment statement) to these new dimensions. If the redim
is absent, then the dimensions of the array will match those of the array being assigned to in the MAT assignment
statement.

Exceptions: 6005 Illegal array bounds.
(See also CON, IDN, and ZER.)

NUM Function
NUM(strex)

Returns the numerical value that is stored as a string, which must contain exactly eight characters, using the
IEEE eight-byte format. Normally, the string will have been previously constructed with the NUM$ function.

Exception: -4020 Improper NUM string
(See also NUM$.)

NUM$ Function
NUM$(numex)

Returns a string of length 8 that contains the numerical value using the IEEE eight-byte format, whether or not your
machine has an IEEE-compatible numeric coprocessor. This gives a way to store numbers on disk in a machine-inde-
pendent format. Normally, the NUM function must be used to convert the string back to a number.
(See also NUM.)

Object Subroutine
CALL Object (numex, numex, strex, strex, numarr)

The subroutine Object provides access to the creation and manipulation of physical windows, controls, and
selected graphics objects.  A single calling sequence is used:

CALL Object (method, id, attributes$, values$, values())

Method is a number between 0 and 26 (usually represented by a variable name), and denotes the method to be
applied to the object or control. Id is the identification number of the object or control. Attributes$ is a string
expression that contains one or more attributes for which values need to be set (SET method) or interrogated
(GET method); if there is more than one, the items in the list are separated by vertical bars “|”. Additional string
information is communicated through values$; again, multiple items are separated by vertical bars “|”. Addi-
tional numeric information is communicated through a numeric list values().
For a complete and detailed discussion of the Object subroutine, see Chapter 19 “Object Subroutine.”

269Statements, Built-in Functions and Subroutines



ON GOSUB Statement
ON rnumex GOSUB line-number-list
ON rnumex GOSUB line-number-list ELSE simple-statement
line-number-list:: line-number …, line-number

The keyword GOSUB may also be written as GO SUB.
The rnumex is evaluated. If this value is in the range from 1 to the number of line-numbers in the line-number-list,
a GOSUB jump is made to the line-number whose position in the list is that value. If the value is outside the range
and the ELSE part is missing, an exception occurs. If the value is outside the range and the ELSE part is present,
then its simple-statement is executed, following which control passes to the next line.
The simple-statement may be replaced by a line-number, in which case it becomes a GOTO statement. (See the IF
statement for a list of simple-statements.)
Following the completion of the GOSUB subroutine (i.e., upon execution of an appropriate RETURN statement),
a jump is made to the first statement following the ON GOSUB statement.
The program must be line-numbered, and the target line-numbers must lie within the scope of the ON GOSUB
statement. 

Exception: 10001 ON index out of range, no ELSE given.

ON GOTO Statement
ON rnumex GOTO line-number-list
ON rnumex GOTO line-number-list ELSE simple-statement
line-number-list:: line-number ..., line-number

The keyword GOTO may also be written as GO TO.
The rnumex is evaluated. If this value is in the range from 1 to the number of line numbers in the line-number-
list, a jump is made to the line-number whose position in the list is that value. If the value is outside the range
and the ELSE part is missing, an exception occurs. If the value is outside the range and the ELSE part is pre-
sent, then its simple-statement is executed, following which control passes to the next line.
The simple-statement may be replaced by a line-number, in which case it becomes a GOTO statement. (See the
IF statement for a list of simple-statements.)
The program must be line-numbered, and the target line-numbers must lie within the scope of the ON GOTO
statement.

Exception: 10001 ON index out of range, no ELSE given.

OPEN Statement
OPEN #rnumex: NAME strex
OPEN #rnumex: NAME strex, open-list
OPEN #rnumex: PRINTER
OPEN #rnumex: SCREEN screen-coords
open-list:: open-clause …, open-clause
screen-coords:: numex, numex, numex, numex
open-clause:: ACCESS INPUT

ACCESS OUTPUT
ACCESS OUTIN
ACCESS strex
CREATE NEW
CREATE OLD
CREATE NEWOLD
CREATE strex

270 True BASIC Language System



ORGANIZATION TEXT
ORGANIZATION STREAM
ORGANIZATION RANDOM
ORGANIZATION RECORD
ORGANIZATION BYTE
ORGANIZATION strex
RECSIZE rnumex

The keyword ORGANIZATION may be replaced by the keyword ORG. The keywords for the ACCESS, CREATE,
and ORGANIZATION clauses may be in upper, lower, or mixed.
The open-list may contain no more than one open-clause of ACCESS type, no more than one of CREATE type, no
more than one of ORGANIZATION type, and no more than one of the RECSIZE type.
If a file is opened with ACCESS INPUT, only INPUT (or READ) statements may be subsequently used to access
that file. If a file is opened with ACCESS OUTPUT, only PRINT (or WRITE) statements may subsequently be used
to access that file. If a file is opened with ACCESS OUTIN (default), both input and output may occur with the file.
If a strex is used with an ACCESS clause, it must evaluate to one of the ACCESS keywords. If no ACCESS clause
occurs, ACCESS OUTIN is assumed.
Besides the restrictions that may be placed on file operations by the ACCESS clause, there may be additional
restrictions placed on the file by the operating system.
If CREATE NEW occurs in a file OPEN statement, then the file must not already exist, but a new one will be cre-
ated. If CREATE OLD occurs, then the file must already exist. If CREATE NEWOLD occurs, then the file will be
opened if it exists, or a new one will be created and opened if it does not already exist. If the CREATE clause has a
strex, it must evaluate to one of the CREATE keywords. If no CREATE clause occurs, CREATE OLD is assumed.
Using ORGANIZATION (ORG) TEXT for an empty file that has been erased will make it a TEXT file, regardless
of the file’s previous organization. If the file is not empty, it must be of TEXT type; otherwise, an exception will
occur.
A newly created file opened without an ORG clause will have the default organization TEXT. A newly created file
opened without a RECSIZE clause will have the default record size 0.
Using ORGANIZATION (ORG) STREAM for an empty file will make it a STREAM file, regardless of the file’s pre-
vious organization. If the file is not empty, it must be of STREAM type; otherwise, an exception will occur.
Using ORGANIZATION (ORG) RANDOM for an empty file will make it a RANDOM file, regardless of the file’s pre-
vious organization. If the file is not empty, it must be of RANDOM type; otherwise, an exception will occur.
Using ORGANIZATION (ORG) RECORD for an empty file will make it a RECORD file, regardless of the file’s pre-
vious organization. If the file is not empty, it must be of RECORD type; otherwise, an exception will occur.
Using ORGANIZATION (ORG) BYTE for any file specifies that that file will subsequently be accessed with BYTE
file operations.
If the ORGANIZATION (ORG) clause contains a strex, it must evaluate to one of the ORGANIZATION keywords.
If no ORGANIZATION (ORG) clause occurs, then ORGANIZATION RANDOM will be assumed if the file is a random
file, ORGANIZATION RECORD will be assumed if the file is a record file, ORGANIZATION STREAM will be
assumed if the file is a stream file, ORGANIZATION BYTE will be assumed if the file is a True BASIC compiled file.
The RECSIZE clause establishes the record size for a RANDOM, RECORD or BYTE file, provided the file is empty
or is newly created. (If no RECSIZE clause occurs, then a SET RECSIZE statement must be executed before the
first write to the file.) If a RANDOM or RECORD file is not empty, then the RECSIZE clause, if present, must
agree with the record size of the file. If a BYTE file is not empty, then the RECSIZE clause, if present, establishes
a new record size that will be used in subsequent READ statements that do not have BYTE clauses. (WRITE to a
BYTE file is not affect by RECSIZE.)
OPEN with PRINTER assigns the default printer, if it exists, to that channel. The printer is treated like an OUT-
PUT only TEXT file. 

271Statements, Built-in Functions and Subroutines



OPEN with SCREEN assigns to the channel a logical window which occupies that portion of the physical window
denoted by the screen-coords. The screen-coords refer to, respectively, the left edge, the right edge, the bottom, and
the top of the logical window. The full physical window is (0, 1, 0, 1), with fractional values denoting portions of the
physical window. Thus, (.5, 1, .5, 1) specifies that the logical window occupies the upper right quadrant of the phys-
ical window. The screen-coords must follow the following rules:

0 <= left edge < right edge <= 1

0 <= bottom edge < top edge < = 1

Exceptions: 7001 Channel number must be 1 to 1000.
7002 Can’t use #0 here. (nonfatal)
7003 Channel is already open.
7100 Unknown value for OPEN option.
7102 Too many channels open.
7103 File’s record size doesn’t match OPEN RECSIZE.
7104 Wrong type of file.
9001 File is read or write protected.
9002 Trouble using disk or printer.
9003 No such file.
9004 File already exists.
9007 Too many files open.
9101 Can’t open PRINTER.

-11002 Screen minimum >= maximum.
-11003 Screen bounds must be 0 to 1.

(See also the ERASE statement.)

OPTION Statements
There are seven OPTION statements, which are described below. None of them is executable; their effect is gov-
erned by their lexical position in a program or file and not by whether they are actually encountered in the
course of execution.

OPTION ANGLE
OPTION ARITHMETIC
OPTION BASE
OPTION COLLATE
OPTION NOLET
OPTION TYPO
OPTION USING

Several OPTION statements may be combined:
OPTION option …, option
option:: ANGLE RADIANS

ANGLE DEGREES
ARITHMETIC DECIMAL
ARITHMETIC NATIVE
BASE signed-integer
COLLATE NATIVE
COLLATE STANDARD
NOLET
TYPO
USING TRUE
USING ANSI

If several options of the same type appear, the last one takes effect.
The definitions of each of the options are given in the definitions of the individual OPTION statements that follow.

272 True BASIC Language System



OPTION ANGLE Statement
OPTION ANGLE DEGREES
OPTION ANGLE RADIANS

The OPTION ANGLE statement allows you to specify the type of angle measure to be used with trigonometric
functions and graphics transforms (SIN, COS, TAN, SEC, CSC, COT, ASIN, ACOS, ATN, ANGLE, ROTATE, and
SHEAR). The OPTION ANGLE statement affects all evaluations of trigonometric functions and graphics trans-
forms that follow it lexically, until either the end of the program-unit or another OPTION ANGLE statement is
encountered. In the absence of an OPTION ANGLE statement, the default angle measure is RADIANS.
An OPTION ANGLE statement that occurs in a MODULE header or a procedure of the module applies to the
trigonometric functions and transforms that follow it lexically in that module, including those in later procedures,
until the end of the module or another OPTION ANGLE statement is encountered.

OPTION ARITHMETIC Statement
OPTION ARITHMETIC NATIVE
OPTION ARITHMETIC STANDARD

The OPTION ARITHMETIC statement has no effect and is included for compatibility with ANSI.

OPTION BASE Statement
OPTION BASE signed-integer

The OPTION BASE statement allows you to specify the lower bound of all arrays and array constants whose lower
bounds are not explicitly set in DIM, LOCAL, PUBLIC, or SHARE statements, or in certain redims. The OPTION
BASE statement specifies the default lower bound for array declarations and redims that follow it lexically, until
either the end of the program-unit or another OPTION BASE statement is encountered. In the absence of an
OPTION BASE statement, the default lower bound is 1.
An OPTION BASE statement that occurs in a MODULE header or a procedure of the module applies to all array
declarations that follow it lexically in that module, including those in later procedures, until the end of the mod-
ule or another OPTION BASE statement is encountered.
(See also the MAT statement.)

OPTION COLLATE Statement
OPTION COLLATE NATIVE
OPTION COLLATE STANDARD

The OPTION COLLATE statement has no effect and is included for compatibility with ANSI.

OPTION NOLET Statement
OPTION NOLET

The OPTION NOLET statement allows LET statements to be written without the keyword LET.
An OPTION NOLET statement can appear in a module-header or in any program-unit. It then applies to all
assignment statements which occur lexically after the OPTION NOLET statement and continues to be in effect to
the end of the file containing it.
Certain reserved words cannot be used as variable or array names, whether OPTION NOLET is in effect or not.
These reserved words are as follows:

Keywords: ELSE, NOT, PRINT, REM
Numeric functions: DATE, EXLINE, EXTYPE, MAXNUM, PI, RND, RUNTIME, TIME
String functions: DATE$, TIME$ 
Array constants: CON, IDN, NUL$, ZER

273Statements, Built-in Functions and Subroutines



All other keywords of True BASIC can be used as variables whether OPTION NOLET is in effect or not. The only
restriction is that IF and ELSEIF cannot be used as variables on the left in a LET statement if the keyword LET
is omitted under OPTION NOLET.
The keyword DATA is not a reserved word and can be used in a LET statement if LET is included. It cannot, how-
ever, be used as a numvar in a LET statement if the LET is omitted under OPTION NOLET, because it will be
interpreted as a DATA statement. For example, in

OPTION NOLET
DATA = 3

the second line will be interpreted as a DATA statement with a data-item equal to “= 3” rather than as a LET state-
ment without the LET.

OPTION TYPO Statement
OPTION TYPO

The OPTION TYPO statement requires that all non-array variables that appear after it be declared explicitly.
They must be declared in a LOCAL, PUBLIC, SHARE, or DECLARE PUBLIC statement, or by appearing as
parms in a SUB, DEF, FUNCTION, or PICTURE statement.
An OPTION TYPO statement can appear in a MODULE header or in any program-unit. It then applies to all
variables whose first appearance occurs after the OPTION TYPO statement and continues to be in effect to the
end of the file containing it.

OPTION USING Statement
OPTION USING TRUE
OPTION USING ANSI

The OPTION USING statement determines which form of the PRINT USING statement or USING$ built-in
function you wish to use. Selecting OPTION USING ANSI will use the ANSI standard version of these state-
ments, while OPTION USING TRUE will use the traditional True BASIC version. OPTION USING TRUE is the
default. 

ORD Function
ORD(strex)

Returns the ordinal position in the ASCII character set of the character given by strex, which must be either a
single character or an allowable two- or three-character name of certain ASCII characters as described in
Appendix A, except that ORD(“”) = -1. ORD is the opposite of the CHR$ function in that ORD(CHR$(n)) = n
for all n in the range 0 to 255. However, CHR$(ORD(a$)) = a$ only if the value of a$ is a single ASCII charac-
ter. 
For example:

ORD(CHR$(1))  returns 1
ORD(“A”)      returns 65
ORD(“BEL”)    returns 7
ORD(“cr”)     returns 13

Exception: 4003 Improper ORD string.

PACKB Subroutine
True BASIC provides two routines, PACKB and UNPACKB, for packing and unpacking numeric integer values
as bits in a string. PACKB is a callable subroutine, while UNPACKB is a function.
The action of CALL PACKB (s$, bstart, blen, value) may be described as follows:

1. Bstart, blen, and value are first rounded.
2. If value is greater than 2^31 - 1, it is replaced by 2^31 - 1. If value is less than -2^31, it is replaced by -

2^31.

274 True BASIC Language System



3. Blen should be in the range -32 to 32, inclusive. If blen is not in this range, the results will be machine-
dependent.

4. If blen is less than zero, it is replaced by ABS(blen).
5. If bstart is less than 1, it is replaced by 1.
6. If bstart is greater than the number of bits in the string s$ (which is always a multiple of eight) then it is

replaced by the actual number of bits in s$ plus 1.
7. If the adjusted value falls in the range -2^(blen-1) to 2^(blen-1)-1, inclusive, the two’s-complement

binary representation of the adjusted value is stored in the field of length blen bits starting at bit posi-
tion bstart. The string is extended, if necessary, but always by a whole number of eight-bit characters. 

8. If the adjusted value falls outside the range defined in step 7, only the least significant bits are retained
and stored. 

For example:
CALL PACKB (s$, 1, 8, 12)
! Places the bits “00001100” into the 1st byte of s$.

CALL PACKB (s$, 1, 16, 12)
! Places the bits “0000000000001100” into
!      the first two bytes of s$.

CALL PACKB (s$, 9, 8, 0)
! Places the bits “00000000” into the 2nd byte of s$.

CALL PACKB (s$, 33, 1, 0)
! Places the bit “0” into the 33rd bit of s$.

CALL PACKB (s$, 33, 1, 1)
! Places the bit “1” into the 33rd bit of s$.

(See also UNPACKB.)

PAUSE Statement
PAUSE numex

The PAUSE statement will cause the execution of the program to stop for a number of seconds given by numex
and then continue. The pausing will be as accurate as possible on a given system. Negative values will be treated
as 0.

PI Function
PI

A no-argument function, PI returns the value of pi, the ratio of a circle’s circumference to its diameter (approxi-
mately equal to 3.14159265). It gives as much accuracy as possible on your computer, but in any case at least ten
decimal places.

PICTURE Structure
picture-statement
. . .
END PICTURE

picture-statement:: PICTURE identifier
PICTURE identifier (subparmlist)

See the SUB statement for the definition of subparmlist.
A PICTURE is invoked with a DRAW statement. Other than that, a PICTURE acts exactly like a subroutine.
The parameter passing mechanism is that of subroutines. In fact, PICTURES can be used in all cases in place of
a subroutine, except that they may not execute SET WINDOW statements.

275Statements, Built-in Functions and Subroutines



If the PICTURE contains PLOT statements (PLOT, MAT PLOT, FLOOD, GET POINT, or GET MOUSE) or con-
tains CALL or DRAW statements to other pictures or subroutines, then the final picture will reflect all the
transforms applied through all the DRAW statements.
If the system does not support graphics, the PICTURE structure is legal and acts like a subroutine although any
graphics statements used in it will generate an exception.

Exception: 11004 Can’t SET WINDOW in picture.

PLAY Statement
PLAY strex

The strex defines the tune and is made up of characters that have the following meanings:
A to G Play the note in the current octave, in the current tempo, and with the current dynamics.

Optional # or + may follow to indicate a sharp; or a - may follow to indicate a flat. 
A n to G n Play the note in the current octave but with the length of this note given only by n (see L

n, below.) Optional #, +, or - signs may be added, as in A#2.
O n Set current octave to that indicated by n. Octaves run from 0 to 7. A given octave runs

from C to the next higher B. Middle C is the first note of octave 4. If no “O” command has
yet been executed, the default is octave 5.

> and < Move up (>) or down (<) one octave.
L n Set the length (duration) of the subsequent notes and rests. The lengths are the recipro-

cals of n – that is, 1 stands for a whole note, 2 for a half note, 4 for a quarter note, and so
on. Note that n must be a whole number. The default value for n is 4 – a quarter note.

. A dot after a note indicates that the note is to be played as a dotted note; that is, 1.5 times
its normal length. Thus, “A4.” means the note A played as a dotted quarter. Several
dots may be used to increasingly lengthen the note. Rests may also be dotted.

R n or P n Rest (pause) for length n. Lengths are measured as in the L command above.
T n Set the tempo. Here, n stands for the number of quarter notes in one minute. The default

tempo is 120, or 120 quarter notes to the minute.
MF Subsequent music will be played “in the foreground”; that is, no other statement will be

executed until the entire music string has been played. This is the default.
MB Play subsequent music “in the background” – that is, your program will continue to run

while the remainder of the music string is played.
MN Play the music with “normal” dynamics, as opposed to “legato” or “staccato.” This means

that each note plays for 7/8 of the time specified by the L command; the remaining 1/8 is
silence. This is the default.

ML Play the music with “legato” dynamics. This means that each note plays for the full time
specified by the L command.

MS Play the music with “staccato” dynamics. This means that each note plays for 3/4 of the
time specified by the L command. (Not available for Windows 3.x)

Uppercase and lowercase letters are equivalent in play strings. Spaces may be inserted to improve legibility, but
True BASIC ignores them. No characters, other than those listed above, are allowed in play strings.
If the music is being played in the foreground, the program waits until the play string is finished before executing
the next statement. If the music is being played in the background, the music continues until it is completed or
until it encounters another PLAY or SOUND statement.
If the system does not support sound, the PLAY statement is ignored.

Exception: -4501 Error in PLAY string.

276 True BASIC Language System



PLOT Statements
There are five types of PLOT statements: 

PLOT POINTS
PLOT LINES
PLOT AREA 
PLOT TEXT
Vacuous PLOT

The terms pointslist and point are used with these statements and are defined as:
pointslist:: point; point
point:: numex, numex

All PLOT statements in pictures are subject to the effects of the current transform. (See the DRAW statement.)
All PLOT statements, except for PLOT TEXT, are clipped at the edges of the current logical window. That is, the
portion of the drawing that is inside the logical window is shown, while the portion outside the logical window is
not. No error occurs if part or all of the drawing lies outside the logical window.

PLOT Statement (Vacuous PLOT)
PLOT
PLOT LINES
PLOT LINES:

These statements turn off the beam in case a previous PLOT or PLOT LINES statement ended with a semicolon.
They have no effect if the beam is already off.

PLOT AREA Statement
PLOT AREA: pointslist

PLOT AREA plots the region defined by the pointslist and fills it with the current foreground color. The last point
need not repeat the first point, as the line segment needed to close the polygon is automatically supplied.

PLOT LINES Statement
PLOT LINES: pointslist
PLOT pointslist
PLOT LINES: pointslist;
PLOT pointslist;

PLOT LINES plots the line consisting of the line-segments that connect the points in the pointslist. A line is drawn
from the previous point to the first point in the pointslist if and only if the beam was left on.
The following two statements are equivalent:

PLOT x1, y1; x2, y2; x3, y3
PLOT LINES: x1, y1; x2, y2; x3, y3

PLOT LINES and PLOT statements may end with a (;). In this case, the beam is left on so that subsequent
PLOT LINES or PLOT statements will continue plotting the line without a break. Otherwise, the beam is
turned off.

PLOT POINTS Statement
PLOT POINTS: pointslist
PLOT point

PLOT POINTS plots the points (x-y pairs) in the pointslist as dots in user-coordinates. PLOT x,y is an abbrevi-
ation for PLOT POINTS: x,y.

277Statements, Built-in Functions and Subroutines



PLOT TEXT Statement
PLOT TEXT, AT point: strex

PLOT TEXT plots the text string in the current color at the point specified in the AT clause. Which part of the
text string will fall at that point is determined by the current state of TEXT JUSTIFY.
(See also the SET TEXT JUSTIFY statement.) 

POS Function
POS(strex, strex)
POS(strex, strex, rnumex)

Returns the position of the first character of the first occurrence of the entire second string in the first string. If the
second string does not appear in the first string, or if the first string is null while the second is not, then POS
returns 0. If the second string is null, then POS returns 1.
If a third argument is present, then the search for the second string starts at that character position in the first
string given by that number and proceeds to the right. If the second string is null, POS returns the starting posi-
tion.
The first form of POS is equivalent to the second form with the third argument equal to one.
For example:

POS (“banana”, “ana”)     returns 2
POS (“banana”, “nan”)     returns 3
POS (“banana”, “n”, 4)    returns 5
POS (“banana”, “xyz”, 10) returns 0

POS can be defined more precisely in terms of other True BASIC statements as follows:
DEF POS(s1$,s2$,start)

LET start = MAX(1,MIN(ROUND(start),LEN(s1$)+1))
FOR c = start TO LEN(s1$)-LEN(s2$)+1

IF s1$[c:c+LEN(s2$)-1] = s2$ THEN
LET POS = c
EXIT DEF

END IF
NEXT c
LET POS = 0

END DEF

(See also POSR, CPOS, CPOSR, NCPOS, and NCPOSR.)

POSR Function
POSR(strex, strex)
POSR(strex, strex, rnumex)

Returns the position of the first character of the last occurrence of the entire second string in the first string. If the
second string does not appear in the first string, or if the first string is null but the second is not, POSR returns 0.
If the second string is null, then POSR returns the length of the first string plus one.
If a third argument is present, then the search for the last occurrence starts at the character position in the first
string given by that number and proceeds to the left (that is, backwards). If the second string is null, POSR returns
the starting position.
The first form of POSR is equivalent to the second form with the third argument equal to the length of the first
argument plus one. For example:

POSR (“banana”, “anan”)    returns 2
POSR (“banana”, “nan”)     returns 3
POSR (“banana”, “n”, 4)    returns 3
POSR (“banana”, “xyz”, 10) returns 0

278 True BASIC Language System



POSR can be defined more precisely in terms of other True BASIC statements as follows:
DEF POSR(s1$,s2$,s)

LET difflen = LEN(s1$)-LEN(s2$)+1
LET start = MAX(0,MIN(ROUND(s),difflen)
FOR c = start TO 1 STEP -1

IF s1$[c:c+LEN(s2$)-1] = s2$ THEN
LET POSR = c
EXIT DEF

END IF
NEXT c
LET POSR = 0

END DEF
(See also POS, CPOS, CPOSR, NCPOS, and NCPOSR.)

PRINT Statement
PRINT
PRINT print-list
PRINT using-option: using-list
PRINT #rnumex
PRINT #rnumex:
PRINT #rnumex: printlist
PRINT #rnumex, file-print-option …, file-print-option: print-list
PRINT #rnumex, file-using-option …, file-using-option: using-list
printlist:: printitem … separator printitem

printitem … separator printitem separator
using-list:: usingitem …, usingitem

usingitem …, usingitem ;
separator:: , or ;
printitem:: numex 

strex
tab-call
null 

usingitem:: numex
strex

tab-call:: TAB(rnumex)
TAB(rnumex, rnumex)

file-using-option:: using-option
file-print-option

using-option:: USING strex
USING line-number

file-print-option:: IF THERE THEN action
action: EXIT DO

EXIT FOR
line-number

The printitems are printed on the screen or, if #rnumex is present, at the end of the associated file, provided the
file pointer is at the end of the file. Numeric values are printed according to the semantics for the STR$ function,
except that a trailing space is always provided and, for positive numbers, a leading space is provided. String val-
ues are printed as is, with no additional leading or trailing spaces. If the separator between two items is a semi-

279Statements, Built-in Functions and Subroutines



colon, then the items are printed juxtaposed, except for the trailing and possibly leading space surrounding a
numeric value. If the separator is a comma, then the next item is printed in the next print zone.
A printitem can be omitted entirely, in which case nothing is printed, but the separator has its usual effect. Thus,

PRINT ,  ,”*”

will skip the current print zone and the next and print the asterisk in the zone after that.
If the IF THERE clause is present, its action is carried out if the file-pointer is not at the end of the file.
If a USING clause is present, the values are then printed according to the format specified, without regard to print
zones. If a strex follows the word USING, it will be used to determine the format. If a line-number follows the word
USING, the line-number must be that of an IMAGE statement; the characters following the colon of the IMAGE
statement then determine the format. (See the IMAGE statement.)
If there are not enough fields in the format string, the format string is re-used from its beginning, including start-
ing a new line. If there are left over fields at the end of the printing, they are ignored. 
If a field in the using string is inadequate (too short, not enough “^” for an exponent, no “–” for a negative number),
then what happens depends on whether or not the PRINT statement is contained in the protected-part of a WHEN
structure. If it is, an exception occurs. Otherwise, the following actions occur:

1. The field is filled with asterisks and printed.
2. The value is printed unformatted on the next line.
3. Printing continues on the following line.

The margin is ignored if a USING clause is included in a PRINT statement. That is, characters may be printed
beyond the margin.
The zonewidth is 16 characters wide by default. The zones begin with character position 1, character position 17,
etc. You can change the zonewidth with a SET ZONEWIDTH statement.
If the PRINT statement ends with a semicolon, subsequent printing will occur immediately following on the
same line. If the PRINT statement ends with a comma, then subsequent printing will occur on the same line but
in the next print zone. Otherwise, subsequent printing will start on the next line.
For items whose printing would extend beyond the right margin, two rules apply:

1. If the starting print position is not at the left margin, then the item will start printing on the next line.
2. If the item is too long to fit on the current line and the starting print position is at the left margin, then the

item will be printed “folded” – that is, only what fits on the line will be printed there, with the rest being
printed on the next line, and so on. The margin is set initially to 80 characters. You can change the margin
with a SET MARGIN statement.

TAB with one argument causes the next item to be printed, starting at the column position specified by the argu-
ment. If the cursor is already at that position, no action occurs. If the printed material on that line already extends
past the position specified, the new item is printed at that position but on the next line. If the TAB argument is less
than 1, it is replaced by 1, unless the PRINT statement is contained lexically within the protected-part of a WHEN
structure, when an exception occurs. If the TAB argument is greater than the margin, it will be reduced “modulo”
the margin. That is, in TAB(n), if n > margin, nwill be replaced by MOD(n – 1, margin) + 1. The effect of TAB with
one argument is the same whether or not the PRINT statement includes a channel, and whether the channel
refers to a file or a logical window.
TAB with two arguments may be used in a PRINT statement only when printing to a logical window. It causes the
next item to be printed starting at a row number given by the first argument and a column given by the second
argument. The row and column are in cursor coordinates; the top row of the window is numbered 1, and the left
column is numbered 1. The row and column must be within the limits for the current logical window, or the logi-
cal window specified.
TAB with two arguments is equivalent to the SET CURSOR statement; that is, the following two sequences are
equivalent:

PRINT TAB(r,c); “x”

280 True BASIC Language System



SET CURSOR r, c
PRINT “x”

(See the TAB function and SET CURSOR and IMAGE statements.)
Exceptions: 4005 TAB column less than 1. (nonfatal)

7004 Channel isn’t open.
7302 Can’t output to INPUT file.
7308 Can’t PRINT or WRITE to middle of this file.
8201 Badly formed USING string.
8202 No USING item for output.
8203 USING value too large for field. (nonfatal)
8204 USING exponent too large for field. (nonfatal)
9601 Cursor set out of bounds.

-11000 Can’t do graphics on this computer.

PRIVATE Statement
PRIVATE procname …, procname
procname:: identifier

string-identifier
The PRIVATE statement, which can appear only as part of a module header, specifies that the external procedures
(subroutines, functions, or pictures) named are private to that module. That is, they can be accessed by the other
procedures in the module, but not by procedures outside the module. The procedures named need not actually
exist. A module’s procedures can’t be named more than once in PRIVATE statements.

PROGRAM Statement
PROGRAM identifier
PROGRAM identifier (funparmlist)
funparmlist:: funparm … , funparm
funparm:: simple-numvar

simple-strvar
arrayparm

The PROGRAM statement, if used, must be the first statement of the main program, other than comment lines.
The identifier following the keyword PROGRAM must be present, although it is not used.
If the program is the target of a CHAIN statement containing a WITH clause, and the PROGRAM statement con-
tains the (funparmlist), then the parameters in the funparmlist receive the arguments sent in the CHAIN state-
ment. If the funparmlist is missing, or the number and type of the parameters do not match with the arguments,
an exception will occur at the CHAIN statement.
If there is no WITH clause in the CHAIN statement, the PROGRAM statement must not contain a funparmlist; if
it does, an exception will occur at the CHAIN statement.
If the program is run directly, the PROGRAM statement, if included with a parameter list, can be used to receive
data from the operating system command line. 
The parameter passing mechanism is that of defined functions – by value. Thus, even if the CHAIN statement con-
tains a RETURN clause, the parameters cannot carry information back to the original program.

281Statements, Built-in Functions and Subroutines



PUBLIC Statement
PUBLIC publicitem …, publicitem
publicitem:: simple-numvar 

simple-strvar
array bounds

The PUBLIC statement specifies that each variable and array named can be accessed from outside the module or
program-unit, provided that a program-unit desiring to access the variable or array specifies it in a DECLARE
PUBLIC statement. The appearance of an array bounds in a PUBLIC statement causes the array to be dimen-
sioned, as in a DIM statement.
A given publicitem cannot appear more than once in the PUBLIC statements of a program.
PUBLIC variables and arrays are similar to external variables and arrays (as in PL/I). The purpose and use of
PUBLIC variables and arrays is similar to the purpose and use of COMMON (as in FORTRAN). All these mecha-
nisms allow variables and arrays to be shared throughout the program without passing them as parameters to the
external procedures of the program.

RAD Function
RAD(numex)

RAD(x) returns the number of radians in x degrees. This function is not affected by the current OPTION
ANGLE. For example:

RAD(90) = PI/2 = 1.5708...

RAD can be defined in terms of other True BASIC statements as follows:
DEF RAD(x) = x*PI/180

(See also DEG and PI.)

RANDOMIZE Statement
RANDOMIZE

The RANDOMIZE statement produces a new seed for the random number generator. The new seed is calculated
from system parameters that are changing constantly, such as the date and the time. However, you should realize
that it is remotely possible that the same seed could be produced if the conditions under which the program is run
are identical, including the date and the time. The random numbers produced by the generator can be accessed
through the RND function.
It is not necessary, nor is it desirable, to use the RANDOMIZE statement more than once in the running of a program.

ReadCPixel Subroutine
CALL ReadCPixel (x, y, r, g, b)

where x and y are the user coordinates of the pixel you wish to read, and r, g, and b are the red, green, and blue
intensities of the pixel, in the range 0-1 to match SET COLOR MIX values.

ReadPixel Function
DEF ReadPixel (x, y)

where x and y are the user coordinates of the pixel you wish to read, and the result is the True BASIC color
number of the pixel. Note that the color number is found by matching the intensities of the pixel with those in
the color mix table, so that if there is more than one color number with the same color mix set, the function will
return the lowest-numbered color. Note, too, that in some situations, there may be no match. This could be
because a) the system has modified the intensities slightly from what was requested in SET COLOR MIX; b) the
pixel is part of a dithered pattern (if the palette is unrealized); c) the color mix table has been modified since the
pixel in question was painted. For this reason, you should probably use ReadCPixel and compare the intensity
on each gun to determine if a color matches or not.

282 True BASIC Language System



READ Statement
READ var …, var
READ IF MISSING THEN action: var …, var
READ #rnumex: var …, var
READ #rnumex: var …, var SKIP REST
READ #rnumex, read-option …, read-option: var …, var
READ #rnumex, read-option …, read-option: var …, var SKIP REST
read-option:: record-setter

IF MISSING THEN action
BYTES rnumex

record-setter:: BEGIN
END
NEXT
SAME

action:: EXIT DO
EXIT FOR
line-number

var:: numvar 
strvar
strvar substrex

If the action of an IF MISSING clause is EXIT FOR or EXIT DO, then the READ statement must be contained
within a loop of that type. If the action is a line-number, it must follow the same rules as a GOTO statement with
that line-number.
The READ statement without #rnumex assigns to its variables the next datum from the DATA list in the current
invocation of the program-unit containing the READ statement. (See the DATA statement.)
A strvar can receive any valid datum. A numvar can receive only a datum that is unquoted and is a valid numeric-
constant. If the strvar is followed by a substrex, the string datum replaces the characters specified in the substrex.
If the IF MISSING clause is present, then its action will take effect if and when the data become exhausted while
the reading is still in progress.
The READ statement with #rnumex assigns to its vars values obtained from the associated file. If the BYTES
clause is present, then the file must be of type BYTE. If the record-setter is present, the file-pointer is repositioned
before the actual reading begins. If the record-setter is BEGIN, the file-pointer is positioned at the beginning of the
file. If END, it is positioned at the end of the file. If SAME, it is positioned to where it was at the beginning of the
previous READ or similar operation carried out on that file. If NEXT, the file-pointer is not changed unless it was
left in the middle of a record because an exception occurred; in this case, NEXT causes the file-pointer to move to
the beginning of the next record.
After the record-setter, if any, has been applied, the action of the IF MISSING clause, is carried out if the file-
pointer is at the end of the file.
For a STREAM file, values from the file are assigned to the variables in the READ statement. The file pointer is
set to the next value after the READ is completed.
For a RANDOM file, values from the record in the file at the file-pointer are assigned to the variables in the READ
statement. There must be the same number of variables as there are elements in the record; if the SKIP REST
clause is present, there may be more values in the record than there are variables – the unused ones are skipped.
The file pointer is set to the next record after the READ is completed.
For a RECORD file, values from successive records in the file starting at the file pointer are assigned to the vari-
ables in the READ statement. The file pointer is set to the next record after the READ is completed.
For STREAM, RANDOM, and RECORD files, strings and numbers may be mixed in any order in the file (or in the
records of a RANDOM file), but they must be read into the proper type of variable, that is, strings into string vari-

283Statements, Built-in Functions and Subroutines



ables and numbers into numeric variables.
For a BYTE file, if the BYTES clause is present, you may read only into strvars. A number of bytes equal to the
BYTES rnumex is read from the BYTE file and assigned to the next strvar. If there are fewer bytes remaining in
the file than are requested by the second rnumex, but if there is at least one, the remaining are assigned. The num-
ber of characters specified in the BYTES clause overrides the record size specified in a previous SET RECSIZE
statement or in a RECSIZE OPEN option.
If the BYTES clause is absent, you may read into strvars or numvars, or any combination thereof. The number of
bytes assigned to each strvar is determined by a previous SET RECSIZE statement or an OPEN RECSIZE option.
If there are fewer bytes in the file, but there is at least one, the remaining are assigned. The number of bytes
assigned to each numvar is always eight, regardless of the current RECSIZE. These eight bytes must be in the
IEEE floating point representation of a number, as if produced by the NUM$() function.
The file pointer will be advanced to the next byte after the READ is completed.

Exceptions: 1053 String too long in READ.
7004 Channel isn’t open.
7303 Can’t input from OUTPUT file.

-7351 Must be BYTE file for READ BYTES.
8001 Reading past end of data.
8011 Reading past end of file.
8012 Too few data in record.
8013 Too many data in record.
8101 Data item isn’t a number.

-8104 Data item isn’t a string.
8105 Badly formed input line from file.

-8503 Can’t use READ or WRITE for TEXT file.
9001 File is read or write protected.

Read_Image Subroutine
CALL Read_Image (sourcetype$, imagedata$, filename$)

The Read_Image subroutine reads a graphics image from the file whose name is specified, converting it into the
local BOX KEEP format, which is then stored in the string imagedata$. The user should specify the type of the
image file in sourcetype$, which may contain one of: “JPEG”, “PICT” (Macintosh only,) “MS BMP”, possibly “OS/2
BMP”, and possibly “PCX”. These file types must be supplied exactly as shown, although they may be lower- or
mixed case. If the sourcetype$ is the null string, True BASIC will do its best to determine the actual type of the file
and act accordingly. (Note: The software behind this subroutine is based in part on the work of the Independent
JPEG Group.)

Exceptions: 7104 Wrong type of file.
9002 Trouble using disk or printer.
9003 No such file.

REM Statement
REM  … character

The REM statement allows you to add comments to your program. You can use any characters you want in the
REM statement except an end-of-line. REM statements are ignored.
A REM statement is equivalent to a comment line that begins with an exclamation mark (!). In addition, an excla-
mation mark (!) can be used to place comments on the same lines as other True BASIC statements.

REMAINDER Function
REMAINDER(numex, numex)

REMAINDER(x,y) returns the remainder obtained by dividing x by y; y must not be equal to 0. For example:

284 True BASIC Language System



REMAINDER(17,5)   returns 2
REMAINDER(-17,5)  returns -2
REMAINDER(-17,-5) returns -2

REMAINDER is equal to MOD when both arguments are positive or both arguments are negative, or if the remain-
der is zero. Otherwise, it will be MOD(x,y) - y.A simple rule is that, unless the remainder is zero, REMAINDER
will have the same sign as its first argument, while MOD will have the same sign as its second argument.
REMAINDER(x,y) can be defined in terms of the IP function as follows:

DEF REMAINDER(x,y) = x - y*IP(x/y)

Exception: 3006 MOD and REMAINDER can’t have 0 as 2nd argument.
(See also MOD.)

REPEAT$ Function
REPEAT$(strex, rnumex)

Returns the string consisting of rnumex copies of strex. For example:
REPEAT$ (“Hi”, 2.7)  returns  “HiHiHi”
REPEAT$ (“---”, 2) returns  “------”

Exception: 4010 REPEAT$ count < 0.

RESET Statement
RESET #rnumex: BEGIN
RESET #rnumex: END
RESET #rnumex: NEXT
RESET #rnumex: SAME
RESET #rnumex: RECORD rnumex

These statements are equivalent to, respectively,
SET #rnumex: POINTER BEGIN
SET #rnumex: POINTER END 
SET #rnumex: POINTER NEXT
SET #rnumex: POINTER SAME
SET #rnumex: RECORD rnumex

Exceptions: 7004 Channel isn’t open.
7202 Must be RECORD or BYTE file for SET RECORD. 

RESTORE Statement
RESTORE
RESTORE line-number

The RESTORE statement resets the data pointer to the start of the data-list. It lets you reuse the data-list in the
current invocation of the program-unit containing the RESTORE statement. The data pointers in other program-
units, or in other invocations of the containing program-unit, are not affected.
If a line-number is present, then the program-unit must be line-numbered. The data-pointer is reset to that point in
the data-list represented by the DATA statements at that line-number and beyond in the program-unit.
(See also the DATA statement.)

RETRY Statement
RETRY

The RETRY statement can appear only in the handler-part of a WHEN or HANDLER structure. It transfers
directly to the line that was being executed when the exception occurred.
(See the WHEN and HANDLER structures, and the EXIT HANDLER and CONTINUE statements.)

285Statements, Built-in Functions and Subroutines



RETURN Statement
RETURN

The RETURN statement is used in conjunction with the GOSUB statement. It transfers control to the first line
following the line containing the most recently executed GOSUB statement. There must be at least one GOSUB
statement in the current invocation of the current program-unit for which a RETURN has not yet been executed.

Exception: 10002 RETURN without GOSUB.

RND Function
RND

A no-argument function, RND returns the next “pseudo-random” number in the sequence. These numbers,
which have no obvious pattern, fall in the range 0 < = RND < 1. If the program containing RND is rerun, True
BASIC produces the same sequence of RND values. If you want your program to produce unpredictable results,
use a RANDOMIZE statement before you use the RND function.
(See also the RANDOMIZE statement.)

ROUND Function
ROUND(numex, rnumex)
ROUND(numex)

ROUND(x,n) returns the value of x rounded to n decimal places. Positive values of n round to the right of the dec-
imal point; negative values round to the left. ROUND(x) is the same as ROUND(x,0). For example:

ROUND(123.4567, 3)  returns  123.457
ROUND(123.4567, -2) returns  100
ROUND(123.4567)     returns  123

ROUND(x,n) can be defined in terms of the INT function as follows:
DEF ROUND(x,n) = INT(x*10^n + 0.5)/10^n

Exceptions: 1003 Overflow in numeric function.
(See also TRUNCATE and INT.)

RTRIM$ Function
RTRIM$(strex)

Returns the value of strex but with the trailing blank spaces removed. Leading spaces, if any, are retained. For
example:

RTRIM$(“     abc     “) returns  “     abc”
(See also LTRIM$ and TRIM$.)

RUNTIME Function
RUNTIME

A no-argument function, RUNTIME returns the number of seconds of processor time used since the start of exe-
cution. It is useful only in time-sharing systems where the TIME function can be used to measure elapsed time
only. On personal computers, RUNTIME may return -1.
(See TIME.)

SEC Function
SEC(numex)

Returns the value of the secant function.  If OPTION ANGLE DEGREES is in effect, the argument is assumed to
be in degrees.  If OPTION ANGLE RADIANS (default) is in effect, the argument is assumed to be in radians.
For example, if OPTION ANGLE DEGREES is in effect, then SEC(45) is approximately 1.41421...; if OPTION
ANGLE RADIANS is in effect, then SEC(1) is approximately 1.85082...

286 True BASIC Language System



SEC may be defined in terms of other True BASIC functions as follows:
DEF SEC(x) = 1/COS(x)

Exception: 1003 Overflow in numeric function.

SELECT CASE Structure
The SELECT CASE structure, which allows multi-way branches depending on the value of a particular expres-
sion, has the following form:

select-case-structure:: SELECT CASE selectex
CASE case-specifier
. . .
CASE case-specifier
. . .
. . .
CASE ELSE
. . .
END SELECT

selectex:: numex
strex

case-specifier:: case-part …, case-part
case-part:: constant

constant TO constant
IS relop constant

constant:: numeric-constant 
quoted-string

The SELECT CASE structure may have zero or more CASE parts, and zero or one CASE ELSE parts, but must
have at least one of either a CASE or CASE ELSE part. The constants in a case-specifier must be of the same type
(numeric or string) as the selectex in the SELECT CASE statement.
The selectex in the SELECT CASE statement is evaluated. The case-specifier in the first CASE part is examined.
If the selectex satisfies any of the case-parts, then the statements following that CASE statement are executed and
control passes to the first statement following END SELECT.
The selectex satisfies a case-part if (1) the case-part consists of a single value and the selectex equals it exactly, (2)
the case-part consists of a pair of values separated by the word TO and the selectex lies in the range, including end
points, defined by the two values, or (3) the case-part consists of an IS clause and the value of the selectex satisfies
the relation:

selectex relop constant

If no case-part in the first CASE statement is satisfied, then the second CASE statement is examined in a like man-
ner, and so on.
If no CASE statement is satisfied, then the statements following the CASE ELSE statement are executed. If no
CASE statement is satisfied and there is no CASE ELSE part, then an exception occurs.

Exception: 10004 No CASE selected, but no CASE ELSE.

SET Statements
A running program can set certain graphics and files parameters through the SET statement. Examples are
changing the color mix for a certain color, and setting the record size for a RANDOM file. Some SET statements
require a channel expression (which can refer to a file or a logical window), others forbid it, and a few can have it
or not. For those that allow or require a channel expression, channel #0 always refers to the default logical win-
dow. If the channel expression refers to neither a file nor a logical window, then an exception occurs.

Exception: 7004 Channel isn’t open.

287Statements, Built-in Functions and Subroutines



SET and ASK work together. All quantities that can be SET can be asked about. The reverse is not true, as there
are parameters beyond the control of the program. (See the ASK statement.)
Here is an alphabetical enumeration of the types of SET statements.

SET BACK
SET COLOR
SET COLOR MIX
SET CURSOR
SET DIRECTORY
SET MARGIN
SET MODE
SET NAME
SET POINTER
SET RECORD
SET RECSIZE
SET TEXT JUSTIFY
SET WINDOW
SET ZONEWIDTH

SET BACK Statement
SET BACK rnumex
SET BACKGROUND COLOR rnumex
SET BACK strex
SET BACKGROUND COLOR strex

SET BACK (SET BACKGROUND COLOR) with rnumex sets the background color to the color corresponding to
rnumex. Valid color numbers are those in the range 1 through the maximum color number. You can determine the
maximum color number through an ASK MAX COLOR statement. Numbers outside this range will have effects
that are dependent on your particular machine. If your machine does not support color, True BASIC may supply
a suitable patterm. The default background color is -2
SET BACK (SET BACKGROUND COLOR) with strex sets the background color to the color named in the strex
(upper, lower, or mixed case may be used.) 
SET BACK (SET BACKGROUND COLOR) sets the color for the current physical window, including any logical
windows it may contain. However, the background color is generally only used when a portion of a window needs
to be cleared; therefore, it is possible to limit its apparent effect by carefully controlling use of the CLEAR and BOX
CLEAR statements. 
See the SET COLOR statement for a list of legal color names.

Exception: -11008 No such color.

SET COLOR Statement 
SET COLOR rnumex
SET COLOR strex

SET COLOR with rnumex sets the foreground color to the color that corresponds to rnumex. Valid color numbers
are those in the range 0 through the maximum color number. You can determine this maximum color number with
an ASK MAX COLOR statement. Numbers outside this range will have effects that are dependent on the particu-
lar machine. If your machine does not support color, True BASIC may supply a suitable pattern. The default color
is -1.
SET COLOR with strex sets the foreground color of the current logical window to the color named in the strex,
which must evaluate to one of the following (upper, lower, or mixed case may be used):

MAGENTA CYAN WHITE
RED BLUE GREEN BACKGROUND
YELLOW BROWN BLACK

288 True BASIC Language System



A strex that names two colors separated by a slash can set the foreground and background colors at the same time.
For example:

SET COLOR “RED/GREEN”

will set the foreground color to red and the background color to green.
True BASIC may substitute for a color not available. For example, MAGENTA may be substituted for RED, if RED
is not available. The value BACKGROUND refers to the current background color. Set COLOR 0 will set the color
to that of color mix table entry 0, which is not necessarily the background color.

Exceptions: -11008 No such color. 

SET COLOR MIX Statement
SET COLOR MIX (rnumex) numex, numex, numex

Sets the intensities of the color whose number is given by (rnumex). The three remaining arguments represent,
respectively, the intensities of the red, green, and blue components of the color. Values < 0 will be replaced by 0, and
values > 1 will be replaced by 1. Other values will be adjusted to an available intensity. On some machines, or in
some modes, this statement has no effect.
For example, suppose that a particular graphics mode allows each of the three colors to take on the following four
intensities: 0, 1/3, 2/3, and 1. There then would be 4*4*4 = 64 different colors or hues, although they might not all
be available simultaneously. The value of the numex for each color will be converted to one of these four intensities
as shown below; these values will be returned in a subsequent ASK statement. 

! The SET COLOR intensity value is x
If x < .25 THEN

LET intensity = 0
ELSE IF x < .50 THEN

LET intensity = 1/3
ELSE IF  x < .75 THEN

LET intensity = 2/3
ELSE

LET intensity = 1
END IF
Exception: -11000 Can’t do graphics on this computer.

SET CURSOR Statement
SET CURSOR strex
SET CURSOR rnumex, rnumex

SET CURSOR with strex sets the mode of the text cursor as follows: 
“OFF” Turns the cursor off
Anything else Turns the cursor on

The value “OFF”can be in upper, lower, or mixed case.
SET CURSOR with numeric arguments sets the text cursor to the text cursor position whose row (line) and col-
umn (character) are given, respectively, by the two arguments. The top row of the logical window is 1, and the
same for the left most column.

Exceptions: 8601 Cursor set out of bounds.
-11000Can’t do graphics on this computer.

SET DIRECTORY Statement
SET DIRECTORY strex

SET DIRECTORY allows the program to change to another directory. The strex must contain the new directory
name using the conventions of the operating system.

Exceptions: 9002 Trouble using disk or printer.
9008 No such directory.

289Statements, Built-in Functions and Subroutines



SET MARGIN Statement
SET MARGIN rnumex
SET #rnumex: MARGIN rnumex

SET MARGIN without a channel changes the right margin for PRINT statements for the current logical window
or standard output. The margin must not be less than the current zonewidth.
SET MARGIN with a channel that refers to a text file sets the right margin for PRINT statements outputting to
that file. The effect of the margin with text files is identical to that with the screen. The margin for a text file must
be no less than the current zonewidth for that text file.
If you wish to output strings of arbitrary length to a file or printer, you can prevent unwanted end-of-lines by using
SET MARGIN MAXNUM.
SET MARGIN with a channel that refers to a logical window sets the margin for that window. SET MARGIN #0
refers to the default logical window. 

Exceptions: 4006 Margin less than zonewidth.
7312 Can’t set ZONEWIDTH or MARGIN for this file.
7313 Can’t set ZONEWIDTH or MARGIN for INPUT file.

SET MODE Statement
SET MODE strex

There are several modes. They may be expressed in uppercase, lowercase, or mixed case. Other modes will be
ignored.

COLORDOS16 This is the default mode, and conforms to the colors that have always been present
in the EGA or VGA modes of our DOS product. (There are still “maxcolor” entries
in the color mix table; this simply fills in the first 16.

COLOR16 This is another 16-color mode, with the colors arranged in a rainbow fashion.
(There are still “maxcolor” entries in the color mix table; this simply fills in the
first 16.)

COLOR256 This is like COLOR16 but with 256 colors instead of 16 colors.
COLORSYSTEM This fills the color mix table with the currently defined system colors.
COLORSTANDARD This fills the color mix table with the default system colors.

SET NAME Statement
SET NAME strex

SET NAME is provided for compatibility with earlier versions of True BASIC; it is ignored by this version of the
language.

SET POINTER Statement
SET #rnumex: POINTER record-setter
SET #rnumex: io-recovery
SET #rnumex: POINTER record-setter, io-recovery
record-setter:: BEGIN

END
NEXT
SAME

io-recovery:: IF MISSING THEN action
IF THERE THEN action

action:: EXIT DO
EXIT FOR
line-number

290 True BASIC Language System



If the POINTER clause is present, the file pointer is set according to the pointer-keyword, which must be one of
the following (these may be in upper, lower, or mixed case): 

BEGIN Sets the pointer to the beginning of the file
END Sets the pointer to the end of the file
NEXT Sets the pointer to the next record of the file
SAME Sets the pointer to the record just processed

BEGIN and END can be used with all types of files. Use END if you want to append to the end of the file.
NEXT and SAME can be used only with record files. NEXT does not move the file pointer forward one record
except when the previous file operation resulted in an exception. SAME moves the file pointer backward one
record. Thus, if you wish to read the record you have just written, use

WRITE #1: x
SET #1: POINTER SAME
READ #1: samex

If the IF MISSING THEN clause is present, the indicated action is taken if the file-pointer is at the END of the file.
If the IF THERE clause is present, the indicated action is taken if the file-pointer is not at the END of the file.

Exceptions: 7002 Can’t use #0 here. (nonfatal)
7202 Must be RECORD or BYTE for SET RECORD.
7204 Can’t use SAME here.

-7252 File pointer out of bounds.
9002 Trouble using disk or printer.

SET RECORD Statement
SET #rnumex: RECORD rnumex

Sets the pointer to the desired record in a RANDOM or RECORD file, or to the desired byte in a BYTE file. The
value must be in the range (1, filesize + 1). To add a record to the end of a record file #1, you can use:

ASK #1: FILESIZE n
SET #1: RECORD n+1

or:
SET #1: POINTER END

Exceptions: 7002 Can’t use #0 here. (nonfatal)
7202 Must be record or byte file for SET RECORD.

-7252 File pointer out of bounds.

SET RECSIZE Statement
SET #rnumex: RECSIZE rnumex

This statement sets the record size for a RANDOM, RECORD or BYTE file. If the file is a RANDOM or RECORD file,
then it must be newly created or empty. The RECSIZE must be set before you can WRITE to an empty RANDOM or
RECORD file. SET RECSIZE is not needed for a BYTE file if you use the BYTES clause on the READ statement.
Each record in a RANDOM file holds an arbitrary number of numeric or string values, which can be freely mixed. SET
RECSIZE for a RANDOM file must include the size of the items being stored plus all the hidden bytes.
The space required within a RANDOM file record is as follows:

ITEM LENGTH RECSIZE ACTUAL
(bytes) (bytes) (bytes)

——————————————————————————————————————
File header 5 0 5
Number 8 9 9
String length length + 4 length + 4
End of record 1 1 1

——————————————————————————————————————

291Statements, Built-in Functions and Subroutines



Thus, for a RANDOM record to contain two numbers and three strings of length 12 characters, its RECSIZE
must be at least

recsize >= 2*(8 + 1) + 3*(12 + 4) + 1 = 67 bytes.

(The actual total storage used will be 5 + filesize*recsize bytes.)
Each record in a RECORD file holds a single number or a single string. RECSIZE must reflect only the length of a
number (8) or the length (LEN) of the string. Numbers and strings can be freely mixed within the same RECORD
file, so that the RECSIZE must reflect the largest of these.
The space required within a RECORD file record is as follows:

ITEM LENGTH RECSIZE ACTUAL
(bytes) (bytes) (bytes)

——————————————————————————————————————
File header 5 0 5
Number 8 8 12
String length length length + 4
End of record 0 0 0

——————————————————————————————————————
Thus, the RECSIZE for a RECORD file must be, for numbers, at least 8, and, for strings, at least the maximum
length of the strings. (The actual total storage used will be 5 + filesize*(recsize + 4) bytes.
Notice that RECSIZE is different for RANDOM and RECORD files. For RANDOM files, RECSIZE must include
the extra characters. For RECORD files, RECSIZE includes only the length of the item to be stored.
If you are working with a BYTE file, the SET RECSIZE statement can be used to specify the size of each READ
statement. The BYTE file need not be empty, and its RECSIZE can be changed at any time. (See the READ statement.)

Exceptions: 7002 Can’t use #0 here. (nonfatal)
-7250 Can’t SET RECSIZE on non-empty RECORD file.
-7251 Must be BYTE file or empty for SET RECSIZE.

SET TEXT JUSTIFY Statement
SET TEXT JUSTIFY strex, strex

Sets the text placement point for subsequent PLOT TEXT statements.
The first strex specifies the horizontal position and must take on one of the following values, which may be in
upper, lower, or mixed case:

“LEFT” The point is at the left edge of the text
“RIGHT” The point is at the right edge of the text
“CENTER” The point is at the center of the text

The second strex specifies the vertical position and must take on one of the following values:
“TOP” The point is at the top of the text
“BOTTOM” The point is at the bottom of the text, i.e., the lowest pixel
“BASE” The point is at the baseline of the text, i.e., the lowest pixel of uppercase letters
“HALF” The point is at the center of the text

Exception: 4102 Improper TEXT JUSTIFY value.
-11000 Can’t do graphics on this computer.

SET WINDOW Statement
SET WINDOW numex, numex, numex, numex

Sets the user coordinates for graphics in the current logical window. The coordinates are specified in the order: left
edge, right edge, bottom edge, top edge. The edges may be out of order for picture reversal, but may not be equal.
That is, the left edge can be greater numerically than the right edge, and the same for the bottom and top edges.

Exceptions: -11000 Can’t do graphics on this computer.
-11001 Window minimum = maximum.
11004 Can’t SET WINDOW in picture.

292 True BASIC Language System



SET ZONEWIDTH Statement
SET ZONEWIDTH rnumex
SET #rnumex: ZONEWIDTH rnumex

SET ZONEWIDTH sets the zonewidth for PRINT statements in the current logical window. The zonewidth must
be greater than zero but not greater than the current margin.
SET ZONEWIDTH used with a channel that refers to a text file sets the zonewidth for PRINT statements out-
putting to that file. The effect of the zonewidth with text files is identical to that with the screen. The zonewidth
for a text file must be greater than zero but not greater than the margin for that file.
SET ZONEWIDTH with a channel that refers to a logical window sets the zonewidth for that window. SET
ZONEWIDTH #0 refers to the default logical window. 

Exception: 4007 ZONEWIDTH out of range.

SGN Function
SGN(numex)

SGN(x) returns the “sign” of x. SGN can be defined in terms of other True BASIC statements as follows:
DEF SGN(x)

IF x < 0 THEN LET SGN = -1
IF x = 0 THEN LET SGN =  0
IF x > 0 THEN LET SGN = +1

END DEF

SHARE Statement
SHARE share-item …, share-item
share-item:: simple-numvar

simple-strvar
array bounds
#integer

The SHARE statement can occur as a part of a module-header and is used to name the variables, arrays, and chan-
nels that can be shared among the procedures of the module. A share-item cannot also appear in a PUBLIC or
DECLARE PUBLIC statement. A shared array cannot also appear in a DIM statement in the same module-header
or program-unit. The appearance of an array bounds in a SHARE statement causes the array to be dimensioned,
as in a DIM statement.
A share-item that appears in a SHARE statement in the module header retains its value between calls to the proce-
dures of the module. The appearance of the share-item’s name in a procedure of the module shall be a reference to the
module’s share-item itself, provided that the name does not appear as a parameter in the SUB, DEF, FUNCTION, or
PICTURE statement for that procedure, and does not appear in a DIM or LOCAL statement in that procedure.
A share-item that appears in a SHARE statement in a procedure retains its value between invocations of that procedure.

SIN Function
SIN(numex)

Returns the sine of the angle numex. The angle is measured in radians unless OPTION ANGLE DEGREES is in
effect, in which case the angle is measured in degrees. For example, if OPTION ANGLE DEGREES is in effect,
then SIN(45) is 0.707107...; if OPTION ANGLE RADIANS is in effect, then SIN(1) = 0.841471...

SINH Function
SINH(numex)

Returns the value of the hyperbolic sine function.  For example, SINH(1) is 1.17520...
SINH may be defined in terms of other True BASIC functions as follows:

293Statements, Built-in Functions and Subroutines



DEF SINH(x) = (EXP(x) - EXP(-x))/2

Exception: 1003 Overflow in numeric function.

SIZE Function
SIZE(arrayarg, rnumex)
SIZE(arrayarg)

If there are two arguments, SIZE returns the number of elements in the array named in the first argument and in
the dimension specified by rnumex. If there is no second argument, or if the second argument is zero, then SIZE
returns the total number of elements in the entire array.  For illegal second arguments, SIZE returns -1.
SIZE(A,n) can be defined in terms of the UBOUND and LBOUND functions as follows:

DEF SIZE(A,n) = UBOUND(A,n) - LBOUND(A,n) + 1

For example:
! If the OPTION and DIM statements are
OPTION BASE 1
DIM A(2:5, -3:10), V(10)
! then the SIZE function will have these values
! SIZE(A,1) =  4
! SIZE(A,2) = 14
! SIZE(A)   = 56
! SIZE(V)   = 10

Exception: 4004 SIZE index out of range.
(See also LBOUND and UBOUND.)

Socket Subroutine available only in Gold Edition; see Chapter 25 of Gold manual.

SOUND Statement
SOUND numex, numex

The SOUND statement sounds a note with frequency (in Hertz) given by the first numex and duration (in seconds)
given by the second numex. The duration may be fractional. A negative duration is converted to 0.
True BASIC continues executing statements while the sound is being generated. The note stops when its time
runs out, or when a new SOUND statement with a zero duration is given. If a subsequent SOUND statement with
a non-zero duration is encountered before the first note stops, True BASIC waits for the first note to stop, then
starts the second note, and continues executing statements. The SOUND statement is ignored on systems that
don’t support sound. (See also the PLAY statement.)

SQL Subroutine available only in Gold Edition; see Chapter 26 of Gold manual.

SQR Function
SQR(numex)

SQR(x) returns the positive square root of x, where x must be greater than or equal to zero. For example:
SQR(196) returns   14
SQR(0)  returns  0
SQR(17)  returns 4.12311, approximately
SQR(-1) will cause an exception

The SQR function may be thought of as raising to the 1/2 power, as in:
DEF SQR(x) = x^(1/2)

This form suggests that a general n-th root function can be defined as:

294 True BASIC Language System



DEF ROOT(x,n) = x^(1/n)

Exception: 3005 SQR of negative number.

STOP Statement
STOP

Stops execution of the program.

STR$ Function
STR$(numex)

Returns the number converted to a string. The number is formatted just as for the PRINT statement, except
that leading and trailing spaces are omitted. For example:

STR$(pi)          returns  “3.1415927”
STR$(10000000000) returns  “1.e+10”
STR$(1e5)         returns  “100000”
STR$(-1e5)        returns  “-100000”

STR$(x) converts a numeric value x into a string as follows:
1. If x is negative, it is made positive and the minus sign is attached later.
2. If x is an integer and contains 8 or fewer decimal digits, it is converted into those digits without a decimal

point.
3. If x is a non-integer and contains 0 through 8 decimal digits before the decimal point, it is converted into an

8-digit form with the decimal point at the appropriate place, as in “.12345678” or “12345678.”. Trailing
zeroes, if any, are removed, as in “12.34” in place of “12.340000”.

4. If x is a non-integer and contains from 1 to 4 digits after the decimal point and there are at least that num-
ber of trailing zeroes in the 8-digit representation, it is converted to a form similar to that in case 3, as in
“.00123” or “.000012”.

5. If x is not covered by one of the cases in 2 through 4, it is converted to scientific notation of the form
“1.2345678e+3”, which is read as “1.2345678 times ten to the power +3.” In addition, the digit before the
decimal point is not “0”. Trailing zeroes, if any, are removed. The sign of the exponent is always included,
and the exponent contains from one or more digits (i.e., contains no leading zeroes.) 

6. If the minus sign was removed in step 1, it is now reattached, as in “-1.2345678”.

STRWIDTH Function
STRWIDTH(numex, strex)

This function returns the length of a string, in pixels, with reference to the current font, font style, and font size,
in a physical window. If the value of the first argument is not the ID number of a physical window that currently
exists, an error occurs. Note that the standard output window (the default physical window) is always opened
upon program startup (although it might not yet be visible,) and that this window has 0 as its ID.

Exceptions: -11220 Unknown or invalid ID.
-11221 Cannot reference a freed object ID.

SUB Structure
sub-structure:: sub-statement

…  statement
END SUB

sub-statement:: SUB identifier
SUB identifier (subparmlist)

subparmlist:: subparm …, subparm

295Statements, Built-in Functions and Subroutines



subparm:: simple-numvar
simple-strvar
arrayparm
#integer

The arguments in the CALL statement are matched with the subparms, the first argument with the first para-
meter, and so on, and must agree in type. Arguments that are numvars, strvars, arrays, or channels are passed to
the corresponding subparm by reference. That is, any changes in the value of a subparm also changes the corre-
sponding argument. Arguments that are more general expressions are evaluated and stored upon entry to the sub-
routine, and are therefore said to be passed by value.
If the subroutine is internal, the variables and arrays that appear in the body of the subroutine, but not in the SUB
statement or in a DIM, LOCAL, or DECLARE PUBLIC statement within the subroutine, refer to variables and
arrays in the containing program-unit. If the subroutine is external, then such variables and arrays will be local to
the subroutine and will have their usual default initial values (i.e., 0 or null) upon entry to the subroutine.
The statements of the subroutine are then executed in order. When the END SUB statement is reached, or when
an EXIT SUB statement is executed, control passes to the statement following the CALL statement that invoked
the subroutine.

SYSTEM Subroutine
CALL System (numex, strex, starget, starget)

The System subroutine accesses certain file management facilities provided by the operating system.
CALL System (op, result1$, result2$, result3$)

The System subroutine provides access to the following file management operations:
op Results

——————————————————————————————————————
0 Ask directory (ASKDIR), current directory returned in result1$.
1 Change directory (CHDIR) to a new directory named in result1$.
2 Read the current directory. The template is specified in result1$. The file names that match the

template and all directory names are returned in result2$. The file statistics are returned in
result3$, except that directory names that match the template have “d” as the first character 
of the type, while all other directories have a “D” as their type. This option can be used, and is used 
by ExecuLib, to “climb” a directory tree. (See below for the formats of result2$ and result3$.)

3 Make a new directory (MKDIR).The new directory name is specified in result1$.
4 Read the current directory (READDIR). The template is specified in result1$. The file

names are returned in result2$. The file statistics are returned in result3$.
(See below for the formats of result2$ and result3$.)

5 Rename a file (RENAME). The old name is specified in result1$, and the new name is
given in result2$. (Here, the third argument is a strex.)

6 Remove a directory (RMDIR.). The name of the directory to be removed is specified in
result1$.

7 Remove a file (DEL). The name of the file to be removed is specified in result1$.
8 Ask utilization of the disk. result1$ is the space in use, result2$ is the free space, and

result3$ is ignored. Units are in bytes.
9 Set the date. result1$ is the new date in the format "YYYYMMDD". result2$ and result3$

are ignored. If the format of the new date is wrong, then an exception occurs.
10 Set the time. result1$ is the new time in the format "HH:MM:SS". result2$ and result3$

ignored. If the format of the new time is wrong, then an expection occurs.
——————————————————————————————————————

296 True BASIC Language System



The file names resulting from op = 2 or op = 4 are contained in a single string with the names separated by the
system end-of-line for text files. (On some systems, this end-of-line is ASCII character 13 followed by ASCII char-
acter 10. On other systems it is simply ASCII character 13. Currently, using op=2 will return the file and direc-
tory names in the current directory, regardless of the template, but will not actually climb. You can use the sub-
routine Exec_ClimbDir for this purpose.)
The template is specified in a standard form across platforms. For example, “*.tru” will yield file names whose
extensions is “.tru”; note that the “*” is a “wild card” that matches anything.
The file statistics resulting from op = 2 or op = 4 are contain in a single string with the records (one per file) sepa-
rated by the system end-of-line. Each record has a fixed format, except for the file name, which occurs at the end of
the record. (In the following scheme the underline (_) stands for a character in a field. The hyphen (-) stands for a
space between fields. The pound sign (#) stands for ASCII character 10, for which a printing graphic may not exist.)

type      size  day mon dy     time year   filename
____-_________-___-___-__-________-____#--________

The type is a four-character string. The first character is a 'd' for a directory, and a '-' for a file. The second char-
acter is an 'r' if read permission is available on the file or directory, and a '-' if not. The third character is a 'w' if
write or modify permission is available on the file or directory, and a '-' if not. The fourth character is an 'x' if the
file can be executed, and '-' otherwise; a directory cannot be executed.
The size is the size of the file using the system conventions. For OS2 and Windows, the size is given in bytes. For
Unix systems, the size is given in blocks, which usually consist of 512 bytes.
The day, mon, dy, and time fields contain information on the date and time of the last modification. The day field
contains the first three letters of the day name.
The mon field contains the first three letters of the month name.
The dy field contains the day number, between 1 and 31, right justified.
The time field contains the time in the 24-hour format HH:MM:SS.
The year field contains the four-digit year number.
For example:

-rw-       497  Tue Jul 12 08:51:32 1994#  filename.tru

means that the entity whose name is “filename.tru” is a file with read and write permission available, that its size
(on non-Unix systems) is 497 bytes, and that it was last modified at 8:51:32 on Tuesday, July 12, 1994.

Exceptions: -11267 Unknown or invalid directory.
-11268 Can’t get current directory.
-11269 Unknown option for SUB System.
-11270 Can’t get STAT info for file in directory.

See also:
Exec_AskDir, Exec_ChDir, Exec_ClimbDir, Exec_MkDir, Exec_ReadDir, Exec_Rename, Exec_RmDir, all of
which are packaged in the Library file ExecLib.TRU and ExecLib.TRC and are described in Chapter 22 “Interface
Library Routines.” (The True BASIC statement UNSAVE provides for the direct deletion of a file.)

Sys_Event Subroutine
CALL Sys_Event (numex, starget, numvar, numvar, numvar)

As the user of the program manipulates the mouse, clicking it on various controls, selecting windows, etc., these
activities are reported back to the program as events. In True BASIC, these events do not generate interrupts, but
rather are placed on a single queue (list). Calling the built-in subroutine Sys_Event allows the program to exam-
ine the event, if any, at the front of the list.
This model, examining one at a time the events from the event queue by calling the subroutine Sys_Event, provides
the simplest possible way to respond to the many things that can happen within the user interface. These events
occur asynchronously and can be reported in an order different from that in which the user intended.

297Statements, Built-in Functions and Subroutines



For example, a typical use might be
CALL Sys_Event (timer, event$, window, x1, x2)

If timer is > 0, Sys_Event will return when that amount of time has elapsed, regardless of whether there is an
event on the event queue. If timer = 0, then Sys_Event will return immediately, again regardless of whether
there is an event on the event queue.
The variable event$will contain the event name, capitalized, unless there has been no event, in which case it will
contain the null string. Window will contain the number of the physical window in which the event occurred. X1
and x2 contain related information the exact nature of which depends on the type of the event.
This subroutine is used in conjunction with the Object subroutine, and cannot be used separately. The window
number is the ID of a physical window created by the Object subroutine, and bears no relation with True BASIC’s
logical windows accessed by the WINDOW statement.
A complete and detailed discussion of the Sys_Event subroutine can be found in Chapter 20 “Sys_Event Subrou-
tine.”

TAB Function
TAB(rnumex)
TAB(rnumex, rnumex)

TAB can appear only in PRINT statements. Strictly speaking, TAB is not a function, as it does not return a value.
TAB can take either one or two arguments.
TAB(c) causes the printing cursor to “tab” over to print position (column) c. (The first printing position is 1, the
second 2, and so on.) It can appear in PRINT statements with or without channel expressions, which can refer to
either text files or logical windows.
If the printing cursor is already beyond column c, then the printing cursor will first go to a new line and then tab
to column c. If the printing cursor is already exactly at c, no action takes place. If c represents a position less than
the printing cursor, then subsequent printing will start on the next line at the position specified. If c is greater
than the margin, it is replaced by MOD(c – 1, margin) + 1. For TAB(c), if c is less than 1, then the effect is the
same as TAB(1) unless the PRINT statement is continued in a WHEN structure, and an exception occurs.
TAB(r,c) causes the printing cursor to be positioned on the screen at row r and column c of the current logical
window. (The columns are numbered as with TAB(c). The rows are numbered from one starting at the top of the
window.) TAB(r,c) can appear only in PRINT statements without channel expressions. TAB(r,c) is equiva-
lent to SET CURSOR r,c.
For TAB(r,c), rmust be in the range 1 ≤ r ≤ number of rows, and c must be in the range 1 ≤ c ≤ MIN(margin of
the current logical window, number of available columns in the screen).

Exceptions: 4005 TAB column less than 1. (nonfatal)
9601 Cursor set out of bounds.

(See also the SET and ASK CURSOR statements.)

TAN Function
TAN(numex)

TAN(x) returns the tangent of x. Here, x is assumed to be in degrees if OPTION ANGLE DEGREES is in effect,
and in radians otherwise. 
For example, if OPTION ANGLE DEGREES is in effect, then TAN(45) is 1; if OPTION ANGLE RADIANS is in
effect, then TAN(1) is 1.5574077...

Exception: 1003 Overflow in numeric function.

TANH Function
TANH (numex)

Returns the value of the hyperbolic tangent function.  For example, TANH(1) = .76159416...

298 True BASIC Language System



TANH may be defined in terms of other True BASIC functions as follows:
DEF TANH (x) = (EXP(x) - EXP(-x))/(EXP(x) + EXP(-x))

Exception:  1003 Overflow in numeric function.

TBD Subroutine
CALL TBD (numex, numex, numex, strex, strex, strex, strex, strex, numex, numex, numex, numvar)

The TBD subroutine is a built-in subroutine that displays several types of modal dialog boxes. (A modal dialog
box is one in which control is retained in the dialog box until the user exits it and the box is closed. That is, no
other activities can occur until the dialog box closes.)
The calling sequence is:

CALL TBD(x, y, type, title$, msg$, btn$, name$, text$, st, dflt, timeout,
result)

The TBD subroutine is capable of producing four different types of dialog boxes – standard dialog boxes, open
file dialog boxes, save file dialog boxes, and list dialog boxes. The value of type determines the type of dialog box
that will be produced, and must be a value between 1 and 4, inclusive.
A complete and detailed discussion of the TBD subroutine can be found in Chapter 21 “TBD Subroutine.”

TBDX Subroutine
CALL TBDX (numex, numex, numex, numex, strex, numarr, numex, strex, strex, strex, strex, strex, numex, numex, numex,

numvar)
The TBDX subroutine is like the TBD subroutine, but gives more control over location and other options. The
first four parameters specify the location of the dialog box in pixels using pixel screen coordinates (the origin is
the upper-left corner of the screen.) If all four values are equal to -1, True BASIC will choose a default location
the same as is done for TBD. If the programmer specifies -1 for the second and third location parameters, True
BASIC will select a default size for the dialog box and will place its upper-left corner of the screen at pixel
location (l,t).
The use of the parameters, parm1$ and parm2(), are explained in Chapter 21. They apply only to dialog boxes of
types 1 or 4 (standard or list.)
The remaining parameters are the same as for the TBD subroutine.
The calling sequence is:

CALL TBDX(l,r,b,t,parm1$,parm2(),type,title$,msg$,btn$,name$,text$,st,
dflt,timeout,result)

Like the TBD subroutine, the TBDX subroutine is capable of producing four different types of dialog boxes –
standard dialog boxes, open file dialog boxes, save file dialog boxes, and list dialog boxes. The value of type
determines the type of dialog box that will be produced, and must be a value between 1 and 4, inclusive.
A complete and detailed discussion of the TBDX subroutine can be found in Chapter 21 “TBD Subroutine.”

Exceptions:  -11223 Attribute not used for specified object.
-11273 Not enough values for attribute list in SET/GET.

TIME Function
TIME

A no-argument function, TIME returns the number of seconds since midnight. At midnight, TIME returns 0. If
your computer does not have a clock, then TIME returns -1.
The TIME function is useful in timing loops. Its resolution (that is, the “tick” interval) varies from machine to
machine but is usually accurate to a tenth of a second or better. 

299Statements, Built-in Functions and Subroutines



TIME$ Function
TIME$

A no-argument function, TIME$ returns a string that contains the time as measured by the 24-hour clock. For
example, at 1:45 and 2 seconds P.M., TIME$ = “13:45:02”, and at midnight, TIME$ = “00:00:00”. If your computer
does not have a clock, then TIME$ returns “99:99:99”.

TRACE Statement
TRACE ON
TRACE ON TO #rnumex
TRACE OFF

This statement is included only for compatibility with the ANSI Standard. Its use is not recommended.
If debugging is active in the program-unit, execution of the TRACE ON statement causes the result of subsequent
statements to be printed. 
For assignment statements, the names of the variables changed and their new values are printed. For a statement
that causes a transfer to other then the following statement the line-number of the next statement is printed. If
the program-unit does not have line-numbers, the ordinal number of the line in the file containing the program-
unit is printed.
Once started, tracing continues until a TRACE OFF or DEBUG OFF statement is executed, or the program-unit
is exited.
If the file reference is present in the TRACE ON statement, the trace reports are directed to that file, which must
be a TEXT file open and available for output in that program-unit.
Execution of a TRACE OFF statement stops tracing.
If debugging is inactive for the program-unit, the TRACE ON and TRACE OFF statements have no effect. (See the
BREAK and DEBUG statements.)

Exceptions: 7302 Can’t print to input file.
7401 Channel is not open for TRACE.
7402 Wrong file type for TRACE.

TRIM$ Function
TRIM$(strex)

Returns the value of the argument but with all leading and trailing blank spaces removed.  For example:
TRIM(“     a b c      “) returns  “a b c”

TRIM$ may be  defined in terms of other True BASIC functions as follows:
DEF TRIM$(a$) = LTRIM$(RTRIM$(a$))

TRN Array Function
TRN(numarr)

Returns the transpose of its argument, which must be a two-dimensional numeric array. For example:
 1 2 3   1 4 

If A =   , then TRN(A) =  2 5 
 4 5 6   3 6 

TRUNCATE Function
TRUNCATE(numex, rnumex)

TRUNCATE(x,n) returns the value of x truncated to n decimal places. Positive values of n truncate to the right of the
decimal point; negative values truncate to the left. TRUNCATE(x,0) is the same as IP(x). For example:

TRUNCATE(123.4567, 3)  returns 123.456
TRUNCATE(-123.4567, 3) returns -123.456

300 True BASIC Language System



TRUNCATE(123.4567, -2) returns 100
TRUNCATE(123.4567. 0)  returns 123

TRUNCATE can be defined in terms of the IP function as follows:
DEF TRUNCATE(x,n) = IP(x*10^n)/10^n

Exception: 1003 Overflow in numeric function.
(See also ROUND.)

UBOUND Function
UBOUND(arrayarg, rnumex)
UBOUND(arrayarg)

The two-argument form returns the largest value (upper bound) allowed for the subscript in the dimension spec-
ified by rnumex in the array named. The one-argument form returns the largest value (upper bound) for the sub-
script in the array, which must be one-dimensional (i.e., a vector). 
For example:

DIM a(3), b(1970:1980, -3:3)
PRINT UBOUND(a)
PRINT UBOUND(b,1)
PRINT UBOUND(b,2)

produces the following output:
3
1980
3

Exception: 4009 UBOUND index out of range.
(See also SIZE and LBOUND.)

UCASE$ Function
UCASE$(strex)

Returns the value of strex with all lowercase letters in the ASCII code (see Appendix A) converted into their upper-
case equivalents. Characters outside the range of the ASCII lowercase letters are left unchanged. (This function
may thus fail to work properly on other character sets.) For example:

UCASE$(“Bob Smith is 65.”) returns “BOB SMITH IS 65.”
(See also LCASE$.)

UNPACKB Function
UNPACKB(strex, rnumex, rnumex)

True BASIC provides two routines, PACKB and UNPACKB, for packing and unpacking numeric integer values
as bits in a string. UNPACKB is a function, while PACKB is a callable subroutine.
The value produced by UNPACKB (s$, bstart, blen) is given by a process that may be described as fol-
lows:

1. Bstart and blen are first rounded. 
2. If bstart is less than 1, it is replaced by 1.
3. If bstart is greater than the number of bits in the string s$ (which is always a multiple of eight) then it is

replaced by the actual number of bits in s$ plus 1.
4. If the length of the bit field, as determined by ABS(blen), extends beyond the end of the string s$, the

nonexistent bits are treated as zeros.
5. If blen is positive, the bit field is treated as an unsigned integer. Thus, the value returned will lie in the

range 0 to 2^blen -1, inclusive.

301Statements, Built-in Functions and Subroutines



6. If blen is negative, its absolute value is used as the field length, and the bit field is treated as a two’s-comple-
ment signed integer. Thus, the value returned will lie in the range -(2^(blen-1)) to 2^(blen-1) -1, inclusive. 

7. If blen is 0, then 0 is returned.
8. Blen should be limited to the range -32 to +31, inclusive. Values outside this range may return different

values on different machines.
For example, assume the bits of the string s$ are 0101010110101010, then

LEN(s$) returns 2
UNPACKB(s$,1,8)  returns 85
UNPACKB(s$,9,8)  returns 170
UNPACKB(s$,1,16) returns 21930
UNPACKB(s$,1,-8) returns 85
UNPACKB(s$,9,-8) returns -85
UNPACKB(s$,9,1)  returns 1
UNPACKB(s$,10,1) returns 0
UNPACKB(s$,37,1) returns 0

(See also the PACKB subroutine.)

UNSAVE Statement
UNSAVE strex

Unsaves (deletes) the file named. It is a good idea to make sure that the file is not currently open, as this causes
problems for some operating systems.

Exception: 9002 Trouble using disk or printer.
9003 No such file.

USE Statement
The USE statement can occur only as a part of a WHEN structure and is required. (See the WHEN structure.)

USING$ Function
USING$(strex, expr  …, expr)
expr:: numex

strex
USING$ returns the string of characters that would be produced by a PRINT USING statement with strex as the
format string and with the exprs as the numeric or string expressions to be printed. That is, each of the following
statements:

PRINT USING f$: “The answer is “, x
PRINT USING$(f$, “The answer is”, x)

will produce the same printed result.
If the number of expressions is less than the number of fields in the format string, then the rest of the format
string, starting with the first unused field, is ignored. If the number of expressions is greater than the number of
fields in the format string, then the format string is reused, as many times as needed.
USING$ produces a string that you can use in WRITE and PLOT TEXT statements as well as in PRINT state-
ments. You can also manipulate the characters of the string to produce special formatting effects. For detailed
rules and examples for USING$, see Appendix D, which explains USING$ in terms of the equivalent PRINT
USING statement.
If a field is inadequate (too short, not enough “^” for an argument, no “–” for a negative number), then that field
will be filled with asterisks, but no exception will occur.

Exceptions: 8201 Badly formed USING string.
8202 No USING item for output.

302 True BASIC Language System



VAL Function
VAL(strex)

Returns the numerical value given by strex, provided it represents a numerical constant in a form suitable for
use with the INPUT or READ statement. The string can contain leading and trailing spaces, but not embedded
ones. For example:

VAL(“1e5”)      returns 100000
VAL(“ 123.5 “)  returns 123.5
VAL(“1,234,567.89”)   will cause an exception
VAL(“Hello”)          will cause an exception

Exceptions: 1004 Overflow in VAL.
4001 VAL string isn’t a proper number.

WHEN Structure
A WHEN structure, which is used for handling runtime errors (exceptions), has two forms:

when-structure:: WHEN EXCEPTION IN
protected-part
USE
handler-part
END WHEN

WHEN EXCEPTION USE handler-name
protected-part
END WHEN

protected-part:: ... statement
handler-part:: ... statement
handler-name:: identifier

The keyword ERROR may be used in place of the keyword EXCEPTION.
When the WHEN structure is encountered, the statements in the protected-part are executed. If no error (excep-
tion) occurs and the USE line or END WHEN line is reached, execution continues at the line following END
WHEN.
If an exception occurs, control then passes to the handler-part following the USE statement, or passes to the excep-
tion handler named in the WHEN EXCEPTION USE statement.
If the END WHEN statement is reached, the exception is “turned off” and control passes to the first statement
after END WHEN.
An error (exception) that occurs while the statements of the handler-part are being executed will not be handled
by that WHEN structure, but will be treated as a new error, which must be handled by a higher-level enclosing
WHEN structure, or which will stop the program and print an error message.
If a runtime error occurs in a low-level subroutine, True BASIC examines the CALL statements (or DRAW state-
ments or function call) that invoked the low-level subroutine, starting at that low-level subroutine. If any of the
invoking statements is contained in the protected-part of a WHEN structure, then the handler-part of that WHEN
structure, or of the named detached handler, is used.
As an example, if you have a large program with many subroutines, and if the top-level CALL statement is con-
tained in the protected-part of a WHEN structure, then that WHEN structure can be used to handle all runtime
errors that occur anywhere in the program. In addition, you can use a CAUSE ERROR statement to jump back
cleanly to the top level of your program, where the WHEN structure will handle it.
An EXIT HANDLER statement in the handler-part of a WHEN structure will cause the exception to “recur,” as if
the WHEN structure were not present. 

303Statements, Built-in Functions and Subroutines



A CONTINUE statement in the handler-part of a WHEN structure will transfer to the statement following the
statement being executed when the exception occurred, unless the offending statement is an essential part of loop
or choice structure, when the transfer will be made to the statement following the end of the structure.
A RETRY statement in the handler-part of a WHEN structure will transfer to the beginning of the statement
being executed when the exception occurred.
The values of EXLINE, EXLINE$, EXTEXT$, and EXTYPE are set when the exception occurs, and may be exam-
ined in the handler-part, or later. They retain their values until a new error occurs. (See the HANDLER structure,
and the EXIT HANDLER, RETRY, and CONTINUE statements.)

WINDOW Statement
WINDOW #rnumex

The WINDOW statement selects which of the open logical windows will be the current input and output window.
Except for WINDOW #0, which is always open, the window must have been opened in a previous OPEN statement.
WINDOW #0 refers to the default logical window, which occupies the entire default physical window.

Exception: 7004 Channel isn’t open.
-11005 Channel isn’t a window.

WRITE Statement
WRITE #rnumex: expr …, expr
WRITE #rnumex, write-option …, write-option: expr …, expr
write-option:: record-setter

IF THERE THEN action
record-setter:: BEGIN

END
NEXT
SAME

action:: EXIT DO
EXIT FOR
line-number

expr:: numex
strex

There can be no more than one of each of the two types of write-options. The WRITE statement causes its exprs to
be evaluated  and then writes them to the file referred to by #rnumex.
If a record-setter is present, then the file-pointer is repositioned before the actual writing begins. If the record-set-
ter is BEGIN, the file-pointer is positioned at the beginning of the file. If END, it is positioned at the end of the file.
If SAME, it is positioned to where it was at the beginning of the previous READ, WRITE, or similar operation car-
ried out on that channel. If NEXT, the file-pointer is not changed unless it was left in the middle of a record because
an exception occurred; in this case, NEXT causes the file-pointer to move to the beginning of the next record.
After the record-setter, if any, has been applied, the action of the IF THERE clause is carried out if the file-pointer
is not at the end of the file. If the action is an EXIT DO or EXIT FOR, the WRITE statement must be contained
within a DO loop or FOR loop, respectively; if the action is a line-number, it is treated as a GOTO statement, whose
rules it must follow.
For a STREAM file, the values from the WRITE statement are written to the file without regard to records. New
values may be added to the end of the file after using SET #n: POINTER END.
For a RANDOM file, the values from the WRITE statement form a single record, which is then written to the file.
New records may be added to the end of the file after using SET #n: POINTER END.
For a RECORD file, the values are written, one to a record, starting with the current record. New records may be
added to the end of the file after using SET #n: POINTER END.

304 True BASIC Language System



For a BYTE file, the values of the exprs are written as bytes to the file. If the expr is numeric, eight bytes in the
IEEE floating point representation are written; that is, the eight-byte string produced by the function NUM$() is
written. If the expr is a string, the characters of the string are written without headers. It is important to remem-
ber that, unlike RECORD files, a BYTE file does not keep track of whether particular bytes were originally part of
a number or part of a string.

Exceptions: 7004 Channel isn’t open.
7302 Can’t output to INPUT file
7308 Can’t PRINT or WRITE to middle of this file.
8301 Output item bigger than RECSIZE.

-8304 Must SET RECSIZE before WRITE.
9001 File is read or write protected.

(In addition, see the exceptions for SET POINTER.)

Write_Image Subroutine
CALL Write_Image (desttype$, imagedata$, filename$)

The Write_Image subroutine converts a BOX KEEP string in imagedata$ from the local format into a graphics
image, storing the image in the file whose name is specified. The user should specify the desired type of the
image file in desttype$, which may contain one of: “PICT” (Macintosh only,) “MS BMP”, and possibly “OS/2
BMP”. These file types must be supplied exactly as shown, although they may be lower- or mixed case.

Exceptions: 7104 Wrong type of file.
9002 Trouble using disk or printer.
9003 No such file.

ZER Array Constant
ZER redim
ZER

ZER is an array constant that yields a numeric array consisting entirely of zeros. ZER can appear only in a MAT
assignment statement. The dimensions of the array are determined in one of two ways. If a redim is present, then
an array of those dimensions will be generated. The array being assigned to in the MAT assignment statement will
then be resized (see the MAT Assignment statement) to these new dimensions. If there is no redim, then the
dimensions of the array will match those of the array that is being assigned to in the MAT statement.

Exceptions: 6005 Illegal array bounds.
(See also CON, IDN, and NUL$.) 

305Statements, Built-in Functions and Subroutines



306 True BASIC Language System



CHAPTER

19
Object Subroutine

The built-in subroutine OBJECT provides access to the creation and manipulation of windows, controls, and
selected graphics objects. A single calling sequence is used:

CALL Object (method, id, attributes$, values$, values())

Method is a number between 0..13 and 20..26 (usually represented by a variable) and denotes the method to be
applied to the object or control. The argument id is the identification number of the object or control. Attributes$
is a string expression that contains one or more attributes for which values need to be set (SET method) or interro-
gated (GET method); if there is more than one, the items in the list are separated by vertical bars “|”. Additional
string information is communicated through values$; again, multiple items are separated by vertical bars “|”.
Additional numeric information is communicated through a numeric list values().
———————————–––————————————————————————————
[ ! ] Note: The descriptions in this chapter use the public variable names to refer to methods, etc. They

are defined in a module at the end of the file containing True Controls (TrueCtrl.tru).
————————————————–––———————————————————————

Physical windows can be created with or without borders, title bars, close boxes, resize boxes, scroll bars, etc. All con-
trols and graphics objects will be created to belong to a certain window (the current physical window.)

The controls include:
Push buttons
Radio buttons and radio button groups
Check boxes
Horizontal and vertical scroll bars
Edit fields
Static text fields
List boxes
List buttons
List edit buttons
Group boxes
Text editors
Icons (not available on all platforms)

The graphics objects include:
Circles
Lines
Rectangles
Arcs
Pie segments
Arrowed lines
Round rectangles
Polygons

307



Polylines
Images (from a file or from box keep strings)

Push buttons can contain a short piece of text. Under certain conditions they can be outlined and activated by
pressing the Enter or Return key.

Radio buttons are round, and can come with identifying text to their right. If established in a group of radio but-
tons, no more than one radio button in the group can be “on” at a time. (Radio buttons that are “on” have a dark cir-
cle in their middle.)

Check boxes are small squares, and can come with identifying text to their left. A check box is “on” if an “X”
appears in it. On some platforms a check mark may appear instead of an “X”.

Horizontal and vertical scroll bars are equipped with arrows at each end, a slider region or trough, and a so-
called thumb or slider. Usually, clicking in one of the arrows causes the thumb to move one unit up or down.
Clicking in the gray area of the slider region causes the thumb to move several units up or down. Clicking and
dragging on the thumb can cause it to move as you direct.

Edit fields are one-line editable text regions. The OBJECT routine lets you store a format for each region so that
you may later check the text for consistency with the format.

Static text fields display a single text string, which may occupy several lines if the field is high enough. They can
not be edited.

List boxes are boxes that contain a possibly scrollable list of choices. Selections are made by clicking. Multiple
selections are allowed on some platforms. Selection list boxes can be combined with other controls to build, say, a
modeless File Open dialog box. (For modal dialog boxes, see the TBD subroutine and the section on True Dials.)

List buttons are small rectangular regions that, when selected, open up into a scrollable list. Selecting an item
from the list moves that item to the button area.
List edit buttons are like list buttons including the scrollable list, but the user may edit the button area.
Group boxes are merely rectangular figures, possibly with a title. They can be used to visually organize a set of
controls, such as a radio group. They do not actually “combine” elements.
Text editors are complex controls that can be used to construct a wide variety of editors. Features can include:
horizontal and vertical scrolling, wrapping of text at a margin, selecting subsets of the text, adding and deleting
characters, etc.
Icons are not available.

Methods
The methods include:

Method Numeric value Function
OBJM_CREATE 0 Create an object or control
OBJM_COPY 1 Create a copy of an object or control
OBJM_SET 2 Set one or more attributes
OBJM_GET 3 Get one or more attributes
OBJM_SHOW 4 Show (make visible) an object or control
OBJM_ERASE 5 Hide an object or control
OBJM_FREE 6 Remove an object or control and free the memory
OBJM_SELECT 7 Select a physical window to be active, or to select a control
OBJM_UPDATE 8 Redraw the contents of a physical window
OBJM_SYSINFO 9 Obtain certain system information
OBJM_PRINT 10 Print the contents of a physical window

308 True BASIC Language System



OBJM_PAGESETUP 11 Display a page setup box
OBJM_REALIZE 12 Realize or append True BASIC’s color mix table to the system

color mix table.
OBJM_SCROLL 13 Scroll contents of a window

There are additional methods that apply only to text edit controls:
OBJM_TXE_SUSPEND 20 Suspend activity for the text edit control
OBJM_TXE_RESUME 21 Resume activity for the text edit control
OBJM_TXE_ADD_PAR 22 Add a paragraph of text
OBJM_TXE_DEL_PAR 23 Delete a paragraph of text
OBJM_TXE_APPEND_PAR24 Append a paragraph of text
OBJM_TXE_VSCROLL 25 Scroll the text vertically
OBJM_TXE_HSCROLL 26 Scroll the text horizontally

Remember that the above identifiers are actually variable names that are assigned numeric values in the module
CONSTANT.TRU located in the TBLIBS directory. If you wish to use these variable names, you must include
CONSTANT.TRU in a LIBRARY statement and you must DECLARE each variable name. The variable names
may be used in upper, lower, or mixed case. (See that file for the numeric equivalents and definitions of other vari-
ables that can be used.)

The methods can be specified by numeric value, or (recommended) by the value of the publicly-declared variables
OBJM_CREATE, etc., when using either TrueCtrl.trc (True Controls) or Constant.trc. In what follows, we do not
include the equivalent numeric value; see Constant.tru for these.

The Create Method
When the OBJECT subroutine is used to create a new object or control, the attribute and string value parameters
are not used. The type of object is passed in values(1). Possible types are:

OBJT_GRAPHIC Create a graphic object
OBJT_WINDOW Create a window
OBJT_CONTROL Create a control
OBJT_MENU Create a menu
OBJT_GROUP Create a (radio button) group

For graphics objects, the type of the object must be established using the OBJM_SET method. Use “GRAPHIC
TYPE” as the attribute, and pass the type as the value of values(1). The types of graphics objects are:

GRFT_CIRCLE Circle or ellipse
GRFT_LINE Straight line
GRFT_RECTANGLE Rectangle
GRFT_ARC Arc
GRFT_PIE Pie segment
GRFT_ALINE Line with arrows at either end
GRFT_ROUNDRECT Rectangle with rounded corners
GRFT_POLYGON Closed polygon
GRFT_POLYLINE Open polygon (ends not joined)
GRFT_IMAGE Graphical image (from a file)

Additional attributes are established using the OBJM_SET method.

For windows, many attributes are possible. They can be established using the OBJM_SET method.

For controls, the type of control must be established. This is done using the OBJM_SET method with the attribute
“CONTROL TYPE”. The type of control is passed as the value of values(1). Possible types are:

309Object Subroutine



CTLT_PUSHBUTTON Push button
CTLT_RADIOBUTTON Radio button
CTLT_CHECKBOX Check box
CTLT_HSCROLL Horizontal scroll bar
CTLT_VSCROLL Vertical scroll bar
CTLT_EDIT Editable text field
CTLT_TEXT Static text field
CTLT_LBOX List box
CTLT_LISTBUTTON List button
CTLT_LISTEDIT List edit button
CTLT_GROUPBOX Group box rectangle
CTLT_TXED Text editor
CTLT_ICON Icon

Menus are always associated with windows. Each menu and menu item must be created separately. Values(1)
contains the value OBJT_MENU. The type of menu is passed as the value of values(2). Possible types are:

MENT_BAR A new menu bar item
MENT_ITEM A new menu item

You must also pass, in values(3), the ID of the parent of the menu or menu item. For menus, the parent ID is
the ID of the window. For menu items, the parent ID is the ID of the menu in which the item falls. For hierarchi-
cal menus, the parent ID is the ID of the menu item to which the sub-menu is associated.

There are several attributes that may be set for menus and menu items. They include the text of the menu or menu
item, the so-called mnemonic or hot key equivalent, whether the menu item is to be a separator, whether the menu
item is enabled or not (i.e., dimmed if disabled), whether it is checked or not, and whether it is indeed checkable at
all. These attributes are discussed in a later section.

Hierarchical menus may be established by passing, in values(3), the ID number of a menu item (rather than a
menu header) that is to serve as the start of the hierarchical menu.

Groups can be created only for groups of radio buttons. To create the group, you must have previously created all
the radio buttons in the group. You then create the group using the OBJM_CREATE method with values(1) =
OBJT_GROUP and with values(2) through values(n+4) containing, respectively: 0, 1, n (the number of but-
tons), ID of button 1, ..., ID of button n. You then can add items to the group using the SET method. (See the attrib-
utes for a group, later in this chapter.)
The CREATE method assigns a value to the second argument, id, as follows:

Value of id Element
0-99 windows
101-9999 controls and graphic objects
10001-14999 menus
15001-19999 group

The Copy Method
The COPY method can be used to make a copy of an existing object or control, to assign to the copy a new ID. The
new ID is returned in values(1). Even if the original object or control is visible, the new copy will not be shown
until the programmer uses the SHOW method with it.

For example, if pbid is the ID number of an existing push button, then

CALL Object (OBJM_COPY, pbid, “”, “”, values())
LET pbidnew = values(1)

310 True BASIC Language System



will generate an identical push button but with ID number pbidnew.

All attributes that make sense will be copied. For example, the new object or control will be in the same location
as the original. The programmer will almost certainly want to use the SET method with the RECTANGLE
attribute to specify a new location for the object or control, which can be done before showing it.

The Set and Get Methods
The SET and GET methods specify attributes parameters, or obtain the current state or value of these parame-
ters.

To set an attribute, use:
CALL Object (OBJM_SET, id, attributes$, values$, values())

OBJM_SET is an integer number (see the module CONSTANT in the file TRUECTRL.TRU for details.) Id is the
ID number for the object or control. Attrlist$ is a list of attribute names; if there are more than one, they are
separated by vertical bars “|”. Value$ is a string variable that will pass string information in either direction.
Values() is a numeric array that will pass numeric information in either direction.

To get the current value of an attribute, use:
CALL Object (OBJM_GET, id, attributes$, values$, values())

The GET method works exactly like the SET method. If an attribute has a string value, that value is passed in the
string variable values$, for both the SET and the GET method. If the attribute has one or more numeric values,
those values are passed in the numeric array values(), for both set and get.

For the SET method and for the GET method you can set the values of several attributes with one call to the
OBJECT subroutine. Just include the names of all the attributes, separated by vertical bars “|”, in a single
string. Then provide the values in the same order to the values$ string and the values() array. As an exam-
ple, suppose you wished to establish a Push Button in a certain location, provide its text, and center the text.
You might use:

MAT Redim v(5)
LET v(1) = left
LET v(2) = right
LET v(3) = bottom
LET v(4) = top
LET text$ = “My Button”
LET v(5) = 1                ! The code for center justification
CALL Object (OBJM_SET, pbid, “RECTANGLE|TEXT|TEXT JUSTIFY”, text$, v())

The Show and Erase Methods
All objects and controls are invisible when they are created. The SHOW method can make them visible:

CALL Object (OBJM_SHOW, id, “”, “”, values())

where id is the ID number of the object or control that is to be made visible. Values() is ignored.

To hide an object or control, use the ERASE method.
CALL Object (OBJM_ERASE, id, “”, “”, values())

This simply makes the object or control invisible; it still exists, and may be manipulated in all ways behind the
scenes. Values() is ignored.

You should be aware of several special conventions. If you erase a window (i.e., make it invisible), all the controls
within that window also become invisible. Thus, you don’t have to erase the controls individually. When you later
show the window, all the controls in it will also become visible. In other words, the visibility of a window overrides
the visibility of objects and controls in it.

Of course, during the time that a window is invisible (erased) you can erase any given object or control in it. Then

311Object Subroutine



when the window is made visible again, that particular object or control will remain invisible. With menus, it is nec-
essary only to show or erase one single menu item to show or erase the entire menu structure.

It is not possible to erase a single menu or menu item. However, if part of the menu structure is changed, you must
“show” one of the menus or items to display the entire revised menu structure.

The Free Method
If you no longer need a window, control, or graphical object, you can eliminate it entirely with the FREE method.
For example:

CALL Object (OBJM_FREE, id, “”, “”, values())

will cause the object or control to disappear and will release the ID number for possible reuse. All internal storage
associated with the object or control is also released.

Using the FREE method on a window will automatically free all graphics objects and controls within that window.
Freeing any one particular menu item with the negative of its ID will free the entire menu structure.

If a menu item is freed, the menu items following it will be moved up. Freeing a menu header will free it and all of
its items.

Note how this terminology differs from that used in regular True BASIC statements. In this context, show means
to make visible, erase means to make invisible, and free renders the object or control non-existent. Recall that the
ERASE statement used with files in True BASIC removes part or all of the contents of the file, and the UNSAVE
statement deletes file and its contents from the operating system.

The Select Method
The SELECT method can be applied to windows and to certain controls within windows. When applied to win-
dows, the value of values(1) specifies whether the window should become merely the front-most (active) win-
dow, or should be the one that responds to True BASIC INPUT and PRINT statements (target), or both.

LET v(1) = 1        ! Target (responds to input and output)
LET v(1) = 2        ! Make active (move to the front)
LET v(1) = 3        ! Both

CALL Object (OBJM_SELECT, wid, “”, “”, v())

Note that for physical windows, target means the same as current. Remember also that the choice of the target (or
current) physical window is under the sole control of the program, while the user may make any visible window
active merely by clicking in it.
When the SELECT method is applied to controls, values$ and values() are ignored. This method is mean-
ingful for push buttons, radio buttons, check boxes, edit fields, list edit buttons, and text edit controls. When
applied to an edit field or a text edit control, that control becomes active and absorbs keystrokes. When applied to
a push button, that button becomes selected and will be deselected when the Enter or Return key is pressed. When
applied to a radio button or check box, the result will be as if the user clicked on the button or box. Generally, the
effect of applying this method is the same as if the user had clicked on the window or control. In either case, a
SELECT or CONTROL SELECT event will occur.
The SELECT method is ignored if applied to other types of objects or controls.

The Update Method
If the value of method is OBJM_UPDATE, the OBJECT subroutine invokes the UPDATE method to redraw the
contents of the physical window whose ID is specified as id. The UPDATE method is applicable only to WINDOW
objects; any attempt to invoke it for an object that is not a window will result in an error.
The purpose of the UPDATE method is to redraw a specified portion of the contents of a physical window, refresh-
ing its earlier contents. The rectangular region of the window’s contents that will be updated should be specified
as values(2), values(3), values(4), and values(5) representing the left, right, bottom, and top coordi-

312 True BASIC Language System



nates of the update region, respectively.
These coordinates may be specified in either pixel coordinates or user coordinates, as determined by the value of
values(1). If values(1) equals 0, they will be interpreted as pixel coordinates. If values(1) equals 1, they
will be interpreted in the user coordinate system of the logical window that is currently in effect within the speci-
fied physical window.
In general, the UPDATE method will not be necessary for immune windows, since immune windows are updated
automatically by True BASIC. However, the UPDATE method can be extremely useful when working with WIN-
DOW objects that have not been defined as immune.

The Sysinfo Method
The SYSINFO method is used to obtain (get) certain True BASIC system information, and to obtain (get) or change
(set) certain operating system parameters.

The attributes (value of the variable attributes$) that are possible with this method are given below. All
numeric values are in pixels, and are returned in the values() numeric vector. String values are returned in the
values$ string variable. The attribute names can be in upper, lower, or mixed case, but exactly one space must
separate the words.

Attributes with OB JM_SYSINFO Method
——————————————————————————————————————

Attribute$ Value returned

DISPLAY SIZE The size of the entire physical screen is returned in values(1) ..
values(4). Values(1) contains the leftmost pixel, which is 0. Val-
ues(2) contains the rightmost pixel. Values(3) contains the bottom-
most pixel. Values(4) contains the topmost pixel, which is 0. The num-
ber of pixels available for use will be values(2)-values(1)+1 hori-
zontally and values(4)-values(3)+1 vertically.

MACHINE The platform; one of MAC, WIN32, OS/2, or UNIX.
NATIVE WID (Not implemented; for Unix only.)
PIPE IN (Not implemented; for Unix only.)
PIPE OUT (Not implemented; for Unix only.)
BLOCKING (Not implemented; for Unix only.)
PIPE ID (Not implemented; for Unix only.)
BOX KEEP ID (Not implemented; for Unix only.)
NO MENUS (Not implemented; for Unix only.)
STATIC TEXT HEIGHT The height of a static text field is returned in values(1)
BUTTON HEIGHT The height of a push button is returned in values(1)
EDIT TEXT HEIGHT The height of an edit text field is returned in values(1)
CHECK BOX HEIGHT The height (and width) of a check box is returned in values(1)
HORZ SBAR HEIGHT The height of the horizontal scroll bar is returned in values(1)
RADIOBUTTON HEIGHT The height of a radio button field is returned in values(1)
VERT SBAR WIDTH The width of a vertical scroll bar is returned in values(1)
ENV See below.
DEFAULT BACKGROUND COLOR values(1) .. values(3) are the r-, g-, and b- values, respectively,

of the background color
VERSION The XVT version the current implementation is based upon

313Object Subroutine



KEY CODES See below.
MENU HEIGHT The height of the menu bar is returned in values(1).
APPLICATION NAME Value$ will contain the complete application name, including the path-

name. This is ignored by True BASIC; it is only for the convenience of the
programmer.

FONTS AVAILABLE The names of the available fonts are returned in value$, separated by
vertical bars.

LANGUAGE “US English”or “Japanese” is returned in value$
GRAB CURSOR See below.
TITLE BAR HEIGHT The height of the title bar, in pixels, is returned in values(1).
BORDER WIDTH The width of a full border, in pixels, is returned in values(1).
BORDER HEIGHT The height of a full border, in pixels, is returned in values(1).
DOUBLE BORDER WIDTH The width of a double border, in pixels, is returned in values(1).
DOUBLE BORDER HEIGHT The height of a double border, in pixels, is returned in values(1).
RESIZE BORDER WIDTH The width of a full border with resize box is returned in values(1).
RESIZE BORDER HEIGHT The height of a full border with resize box is returned in values(1).
PREFFOLDER (Macintosh only) The system-defined preferences folder is returned in

value$.

TMP (Macintosh only) The system-defined temporary folder is returned in
value$.

——————————————————————————————————————

W You can both set and get the values of the following attribute, but on the Windows platform only:
KEY CODES

To set the key code conventions, set values(1)=1 and values(2) to 0 (for cross-platform compatible codes; the
default) or to 1 (for True BASIC for DOS compatible codes.) To get the key code conventions, set values(1)=0.
Upon return, values(2)=0 if cross-platform codes are in effect, and values(2)=1 if DOS 4.0 compatible codes
are in effect. Note that the cross-platform-compatible codes may not correspond to the codes on any particular plat-
form. Some typical values are:

F1 .. F15 331 .. 345
up arrow 301
down arrow 302
right arrow 303
left arrow 304
page up 305
page down 306
home 309
end 310

These may not be available on all platforms. Also, some platforms may offer additional key codes. You may have
to write a simple program using GET KEY key to find out.

The attribute, ENV, is used to obtain or change certain operating system parameters. For example, to get the
PATH parameter, you might use:

LET parameter$ = “PATH”
LET values(1) = 0           ! Get

314 True BASIC Language System



CALL Object (OBJM_SYSINFO, 0, “ENV”, parameter$, values())
PRINT parameter$

You might see something like “C:\;C:\WINDOWS;C:\TBSILVER”.

Note that the fourth argument must be a string variable as it is used as both an input and an output parameter.
If there is an error, the null string will be returned.

To set the PATH parameter, you might use something like this:

LET parameter$ = “PATH= .... “
LET values(1) = 1           ! Set
CALL Object (OBJM_SYSINFO, 0, “ENV”, parameter$, values())

It may not be possible to set environment variables using this method on all systems.

M The Macintosh operating system does not use environment variables. However, you can obtain the path
names of the system-defined preferences folder and the system-defined temporary folder as follows:

LET v$ = "PREFOLDER"
LET v(1) = 0
CALL Object (OBJM_SYSINFO, 0, "ENV". v$, v)

Upon return, v$ = “PREFOLDER|<path-name of the preference folder“ For the temporary folder, use: 
LET v$ = "TMP
LET v(1) = 0
CALL Object (OBJM_SYSINFO, 0, "ENV". v$, v)

Consult your operating system manual for more information about the environment variables.

The Print Method
If the value of method is OBJM_PRINT, the OBJECT subroutine invokes the PRINT method to redraw on a
printer the contents of the physical window specified by id. The PRINT method applies only to WINDOW objects;
any attempt to invoke it for an object which is not a window will result in error -11240.

The purpose of the PRINT method is to redraw the graphical contents of a physical window to a printer.

When invoked, the PRINT method will produce a standard printing dialog box allowing the user to configure the
printing task. If the user chooses to print the window by accepting the dialog box, the method completes the task.
If the user cancels the dialog box, the method is aborted and no output is sent to the printer.

Note that the PRINT method draws only the graphics and text contained within the specified physical window.
Any controls in that window will not appear on the printed results.

The Page Setup Method
The PAGE SETUP method merely displays a typical page setup box, allowing the user to vary the parameters of
the PRINT method. The page setup parameters also control the properties of printing to text files. Thus, the
page setup associated with print to text files is given by the currently-targeted window.

————————————————————–––———————————————————
[ ! ] Note: There is a print record for each window and each may be different. It is highly recommended

that you give the user some way of confirming the page setup before printing.
——————————————————————–––—————————————————

The Realize Method
On most modern platforms there is a system color mix palette in addition to the local color mix table that True
BASIC maintains. When you specify a particular color mix in True BASIC and then attempt to draw in that color,
the underlying system may “map” your color mix values to an entry in the system’s color mix table that is “closest”

315Object Subroutine



but not exactly equal to your color. Or the underlying system may attempt to approximate the color you want by
mixing several of its own colors in a process called dithering.

The realize method helps get around this problem. When invoked, this method adds the entries in the True BASIC
color mix table that are now already in the system’s color mix table to the system color mix table. Note: it will add
only those that are not already there. Thus, when you attempt to draw in a certain color, there will be an exact
match of that color in the system’s color mix table.

For newly added colors to be properly displayed after invoking this method, it is necessary to Refresh the contents
of the window. This method will automatically refresh.

The Scroll Method
The SCROLL method allows scrolling part or all of the contents of the physical window specified by id. The
details are provided in the values() vector, as follows:

values(1) 0 for pixel coordinates, 1 for user coordinates
values(2) left edge of the rectangle to scroll
values(3) right edge of the rectangle to scroll
values(4) bottom edge of the rectangle to scroll
values(5) top edge of the rectangle to scroll
values(6) amount to scroll horizontally; positive to the right, negative to the left
values(7) amount to scroll vertically; positive up, negative down

The TXE Methods Calling Sequence
The next seven methods apply only to the text-edit control. The calling sequence is

CALL Object (method, txid, “”, values$, values())

The TXE Suspend Method
If method is OBJM_TXE_SUSPEND, the text edit control is suspended; that is, changes to the underlying text
are not reflected on the screen. Value and values() are ignored.

The TXE Resume Method
If method is OBJM_TXE_RESUME, the text edit control resumes; that is, changes are reflected on the screen as
they occur. Changes that occurred during the time of suspension are also reflected. Value and values() are
ignored.

The TXE Add Paragraph Method
If method is OBJM_TXE_ADD_PAR, the paragraph that appears in values$ is inserted into the text of the text
edit control before the paragraph whose paragraph number appears in values(1).

The TXE Delete Paragraph Method
If method is OBJM_TXE_DEL_PAR, the paragraph whose paragraph number appears in values(1) is deleted.

As an example, suppose you wish to replace paragraph 17 with a new paragraph. You might use:
LET values(1) = 17
CALL Object (OBJM_TXE_DEL_PAR, txid, “”, “”, values())
CALL Object (OBJM_TXE_ADD_PAR, txid, “”, newtext$, values())

The TXE Append Paragraph Method
If method is OBJM_TXE_APPEND_PAR, the paragraph in values$ is inserted into the text of the text edit con-
trol at the end of the paragraph whose paragraph number appears in values(1).

316 True BASIC Language System



The TXE VScroll Method
If method is OBJM_TXE_VSCROLL, the text of a text edit control is scrolled vertically by the number of lines
specified in values(1). If values(1) is positive, the text is scrolled down; that is, a portion nearer the end will
be displayed. If values(1) is negative, the text is scrolled up.

The TXE HScroll Method
If method is OBJM_TXE_HSCROLL, the text of a text edit control is scrolled horizontally by the number of pix-
els specified in values(1). If values(1) is positive, the text is scrolled to the right; that is, a portion nearer the
right margin will be displayed. If values(1) is negative, the text is scrolled to the left.

Attributes
Generally speaking, each type of object or control has one or more properties that can be set using the OBJM_SET
method. In addition, the current state of the attributes can be obtained using the OBJM_GET method.

CALL Object (OBJM_SET, id, attributes$, values$, values())
or

CALL Object (OBJM_GET, id, attributes$, values$, values())

The sections below list the attributes for each type of object or control, together with any limitations. The large
number of window attributes are organized here according to general purpose: structure, features, contents, scroll
bars, and auxiliary. The name of the attribute itself is supplied as the third parameter in the call to the OBJECT
subroutine. String-valued arguments, if any, are passed as the fourth parameter. Numeric-valued arguments, if
any, are passed as values in the numeric array that is passed as the fifth parameter.

If the argument if string-valued, then the values that might be present in the numeric array are ignored, and
vice versa. (There are a small number of attributes that require both a string-valued and numeric-valued argu-
ments.)

Window Structure Attributes
RECTANGLE The four coordinates of the rectangle are passed in values().

values(1) left edge
values(2) right edge
values(3) bottom edge
values(4) top edge
These values are in pixels and in full screen coordinates. Recall that the left edge of the
screen is 0 with values increasing to the right, and the top edge of the screen is 0 with
values increasing downward.

These coordinates specify the available user “real estate” within the window, assuming
that the window has a title bar and a menu bar. On Windows, if you fail to specify a
menu, then you will actually have more space than these RECTANGLE values would
suggest. Also on Windows, if you specify a window larger than the actual screen size,
the window will be truncated and may be displayed somewhat offset vertically. On the
Macintosh, you may specify anything you want for the usable region, and that is what
you will get. For child windows, the RECTANGLE coordinates are relative to the client
area of the parent window.

PARENT The id is the number of the current window, which will become a child window. Val-
ues(1) should contain the id number of the parent window. This attribute must be set
before the window is shown the first time.

TYPE Values(1) contains the type of the window. Possible types are:
LET values(1) = WINT_DOC ! 1
LET values(1) = WINT_PLAIN ! 2

317Object Subroutine



LET values(1) = WINT_DOUBLE ! 3
LET values(1) = WINT_NO_BORDER ! 7

Document windows are standard windows and may contain embellishments such as a
title bar, close box, etc.

Plain windows have a single line border and may not contain embellishments.

Double windows have a double line border and may not contain embellishments.

Windows with no borders are just that, and they may not contain embellishments, but
they may be child windows of another window.

Regular windows, or parent windows, cannot be of type 7. Child windows cannot be of
type 1 or 3.

CLOSE BOX If values(1)=0 (default), then no close box will be included in the window. If val-
ues(1) = 1, then a close box will be included. (This attribute must be set before the
window is shown for the first time.)

TITLE The title bar will contain the string in values$ as the title of the window.

RESIZE BOX If values(1)=0 (default,) then no resize box will be included in the window. If val-
ues(1)=1, then a resize box will be included. (This attribute must be set before the
window is shown for the first time.)

Window Feature Attributes
IMMUNE If values(1) = 1 (default,) then the window will be made an immune window. If val-

ues(1) = 0, the window will not be immune.

If a window is immune, and it is partially or completely covered by another window, you
do not have to regenerate its contents when the window becomes completely visible
again.

If a window is RESIZEd, then you may wish to regenerate its contents, whether the
window is immune or not. The previous contents will be shown in their previous size: if
the window is made smaller, they will be clipped; if the window is made larger, they will
no longer fill it. If you wish to have your graphics expand or contract to the new size of
the window, you will have to re-draw them.

If a window is merely moved to another location on the screen, nothing needs to be done,
for either an immune or non-immune window.

VISIBLE This attribute is used for two purposes with windows. If values(1) = 0 with the SET
method before the window is shown for the first time, there will be a one-step delay in
showing the window. That is, two invocations of the SHOW method will be needed to
actually show the window. This feature may be needed for setting certain properties
that can be set only after the window is “shown”. Or, you may wish to generate all the
contents of the window before showing it the first time. Then later the window will be
actually made visible with a second invocation of the SHOW method. 

If values(1)=1 (default), with the SET method, then the window will be made visible
when it is first shown.

Once the window has been shown for the first time, the SET method cannot be used for
this attribute. Instead, use ERASE and SHOW to make it invisible or visible.

When this attribute is used with the GET method, values(1) = 1 if the window is
showing, and = 0 if it is not.

318 True BASIC Language System



ICONIZABLE If values(1)=1, then this window is iconizable; that is, it can be reduced to a small
icon on the screen. If values(1)=0 (default), it cannot. This attribute must be set
before the window is shown.
This attribute may have no effect on some systems.

FOCUS ORDER The focus order of controls, such as edit fields, determines the order in which they are
selected by, for example, pressing the Return key. Generally speaking, the focus order is
the order in which the controls were created.
Used with the GET method, values(1) is the ID of a window. Upon return, val-
ues(1) is the number of controls, and values(2) through values(n+1) are the
IDs of the individual controls. All controls are included, regardless of sensitivity, visibil-
ity, or activeness.
Used with the SET method, the focus order can be modified. Values(1) must be the
ID of the item to be moved to a new position, and values(2) is that new position in
the focus order list. (The list positions start with 0.) The IDs between the new position
and the former position of the item being moved are moved up in the list. Thus, if the
focus order list looks like this:
101   102   103   104   105   106   107

and you use
LET v(1) = 104
LET v(2) = 1
CALL Object (OBJM_SET, window, “FOCUS ORDER”, “”, v)

the resulting focus order list will now look like this:
101   104   102   103   105   106   107

If the ID is not in the focus order list in the first place, an error occurs.

MOUSE MOVE This attribute controls whether the MOUSE MOVE event is returned by the subroutine
Sys_Event for the window. If values(1) = 0 (default,) this event is not returned; if
values(1) = 1, this event is generated each time the system detects that the mouse is
in a different position than previously.

NO HIDE This attribute controls the automatic hiding of a window when the close box is clicked
and event handling is turned on. If values(1) = 1, the window will not be automaticall
hidden; if values(1) = 0 (default) it will be hidden. In either case, Sys_Event will return
the HIDE event.

Window Content Attributes (Pen, Brush, Color, Font) 
WIDTH Values(1) contains the width in pixels of the pen that is used for line drawings. The

default pen width is one pixel. If the width is more than one pixel, the approximate cen-
ter of the line lies on the path or line given.

PEN COLOR Values(1) contains the pen’s color number, which is an index into the color map
table. The color map table can be changed using the True BASIC SET COLOR MIX
statement. The default color is -1 (black.)

PEN STYLE Values(1) contains the style for the pen. Possible values are:
LET values(1) = PENS_SOLID        ! Solid
LET values(1) = PENS_DOT          ! Dotted
LET values(1) = PENS_DASH         ! Dashed

These styles apply only if the WIDTH of the pen is one pixel. Otherwise, the pen will be
solid. The default style is “SOLID”.

319Object Subroutine



PEN PATTERN Values(1) contains the pattern to use for the pen. Possible values are:
LET values(1) = PBP_SOLID         ! Solid
LET values(1) = PBP_HOLLOW        ! Hollow
LET values(1) = PBP_RUBBER        ! Rubber

Rubber is the pattern used when a rectangle is stretched with the mouse; it often
appears as a dashed line in motion. The default pattern is “SOLID”.

BRUSH COLOR Values(1) contains the brush’s color number, which is an index into the color map
table. The color map table can be changed using the True BASIC SET COLOR MIX
statement. The default color is -1 (black.)

BRUSH PATTERN Values(1) contains the brush pattern. Possible values are:
LET values(1) = PBP_SOLID ! Solid (default)
LET values(1) = PBP_HOLLOW ! No visible pattern
LET values(1) = PBP_HORZ ! Horizontal lines
LET values(1) = PBP_VERT ! Vertical lines
LET values(1) = PBP_FDIAG ! Forward diagonal lines
LET values(1) = PBP_BDIAG ! Backward diagonal lines
LET values(1) = PBP_CROSS ! Crossed lines, a la

checkerboard
LET values(1) = PBP_DIAGCROSS ! Crossed lines, diagonal

BACKGROUND Values(1) contains the background color number, which is an index into the color
COLOR map table. The color map table can be changed using the True BASIC SET COLOR

MIX statement. The default background color is -2 (white.)

DRAWMODE Values(1) contains the logical drawing mode for the window. Possible modes are:
LET values(1) = DM_COPY ! Ignore what is there (default)
LET values(1) = DM_OR   ! Bit-by-bit logical OR with what is there
LET values(1) = DM_XOR  ! Bit-by-bit logical XOR with what is there
LET values(1) = DM_CLEAR ! Clear what is there to color 0
LET values(1) = DM_NOT_COPY ! Logical negation of COPY
LET values(1) = DM_NOT_OR ! Logical negation of OR
LET values(1) = DM_NOT_XOR ! Logical negation of XOR
LET values(1) = DM_NOT_CLEAR ! Logical negation of CLEAR

The drawing mode determines how the window’s pen and brush interact with the back-
ground, including what has already been drawn. As an example, suppose there are four
bit planes (i.e., there are sixteen entries in the color map table),the background is color 6
(binary 0110), and the pen is color 10 (binary 1010). Then the above drawing modes would
give, for each pixel covered by the pen:

DM_COPY Color 10 (binary 1010)
DM_OR Color 14 (binary 1110)
DM_XOR Color 12 (binary 1100)
DM_CLEAR Color 0 (binary 0000)
DM_NOT_COPY Color 5 (binary 0101)
DM_NOT_OR Color 1 (binary 0001)
DM_NOT_XOR Color 3 (binary 0011)
DM_NOT_CLEAR Color 15 (binary 1111)

SOLID MIX If values(1)=1, then colors will be mapped to the nearest solid color. If values(1)=0
(default), then they will be not so mapped.
When you use the SET COLOR MIX statement, the system will normally attempt to cre-
ate a color that exactly matches the mix you requested. This may result in a dithered color,

320 True BASIC Language System



where not every pixel is the same color. Using the SOLID MIX attribute will mean that the
system, instead of creating the exact color, will find the nearest color that is solid, where
every pixel is the same color.
This attribute is effective only for the Windows operating system environments.

PLOT TEXT OPAQUE Executing the SET method with values(1)=1 will cause all PLOT TEXT statements in
the specified window to be opaque (like PRINT statements). Executing it with val-
ues(1)=0, will restore it to its default non-opaque state. Executing the GET method will
return 1 in values(1) if the attribute is set, and 0 if it is not set. 

FONT NAME Value$ contains the name of the font to be used, or currently in use. The available fonts
will vary with the operating system. However, certain common fonts can be found on all
systems; they are:

HELVETICA FIXED TIMES SYSTEM

The FIXED font is a mono-spaced font; it may be Courier, Monaco, or similar font. The
SYSTEM font is Helvetica on some systems. The default font is FIXED.

FONT STYLE Values$ contains the style of the font to be used, or currently in use. The available
styles are:

PLAIN BOLD ITALIC BOLD ITALIC

On many systems, the name of the font and its style may be combined into the font name.
For example, you could specify “Times Roman Italic” as the font name instead of having
to specify “Times Roman” as the font name and “Italic” as the font style. The default style
is PLAIN.

FONT SIZE Values(1) contains the size of the font, in points, to be used or currently in use. The
default font size is ten points.

FONT METRICS Usable only with the GET method, values(1) through values(6) return the follow-
ing properties on the font in use; the units are in pixels (not points):

values(1) leading
values(2) ascent
values(3) descent
values(4) horizontal size
values(5) vertical size
values(6) bearing

The leading is the space between lines in the font. The ascent is the distance in pixels of
the top of the highest character above the base line. The descent is the distance in pixels
of the lowest descender before the base line. The horizontal size is the size of the “M” for
proportional fonts. The vertical size is the total vertical space in pixels needed to display
a line of text, and is the sum of the leading, the ascent, and the descent.. The bearing is
always 1.

These values are related to the font size specified by the FONT SIZE attribute, but the
actual appearance depends on the system, the pixels-per-inch of the monitor, etc.

CURSOR Values$ contains the name of the cursor to be used, or currently in use. Possible names
are:

ARROW IBEAM CROSS
PLUS WAIT USER

Cursor type USER is not currently implemented; an attempt to set the cursor to “USER”
is ignored.

321Object Subroutine



Window Scroll Bar Attributes
VSCROLL If values(1)=1, there is an attached vertical scroll bar; if 0, there is not.

HSCROLL If values(1)=1, there is an attached horizontal scroll bar; if 0, there is not.

POSITION VERTICAL Values(1) contains the position of the slider (thumb) in the vertical scroll bar
attached to the window. For the OBJM_GET method, the current position is
returned in values(1). For the OBJM_SET method, the new position is pro-
vided in values(1). The default value is 0.

START RANGE VERTICAL Values(1) contains the start of the range of values that the vertical scroll bar
represents. If the slider (thumb) is in its topmost position, the POSITION VER-
TICAL will be this value. The default value is 0. The value must be a non-nega-
tive integer.

END RANGE VERTICAL Values(1) contains the end of the range of values that the vertical scroll bar
represents. If the slider (thumb) is in its bottom-most position, the POSITION
VERTICAL will be this value minus the PROPORTION VERTICAL. The
default value is 100. The value must be a non-negative integer.

PROPORTION VERTICAL Values(1) contains the proportional size of the slider for an attached vertical
scroll bar. The proportion is defined in terms of the START RANGE VERTICAL
and END RANGE VERTICAL attributes. Proportional sliders are not available
on all systems. The default value is 1. The value must be a non-negative integer.

POSITION HORIZONTAL Values(1) contains the position of the slider (thumb) in the horizontal scroll
bar attached to the window. For the OBJM_GET method, the current position is
returned in values(1). For the OBJM_SET method, the new position is pro-
vided in values(1). The default value is 0. The value must be a non-negative
integer.

START RANGE HORIZONTAL Values(1) contains the start of the range of values that the horizontal
scroll bar represents. If the slider (thumb) is in its leftmost position, the POSI-
TION HORIZONTAL will be this value. The default value is 0. The value must
be a non-negative integer.

END RANGE HORIZONTAL Values(1) contains the end of the range of values that the horizontal scroll
bar represents. If the slider (thumb) is in its rightmost position, the POSITION
HORIZONTAL will be this value minus the PROPORTION HORIZONTAL.
The default value is 100. The value must be a non-negative integer.

PROPORTION HORIZONTAL Values(1) contains the proportional size of the slider for an attached hori-
zontal scroll bar. The proportion is defined in terms of the START RANGE HOR-
IZONTAL and END RANGE HORIZONTAL attributes. Proportional sliders
are not available on all systems. The default value is 1. The value must be a non-
negative integer.

Window Auxiliary Attributes
NAME The name to use is passed in values$. This attribute is used only to store the name

of an object or control, and is for user convenience only. It is not used by True BASIC
in any way.

SINGLE VERTICAL Values(1) contains the value to be used as the vertical increment when the up or
down arrow is clicked in the vertical scroll bar attached to the window. This
attribute is not used by TRUE BASIC; it stores a value for programmer convenience
only. The default value is 1.

322 True BASIC Language System



PAGE VERTICAL Values(1) contains the value to be used as the vertical increment when the user
clicks in the grayed area of the vertical scroll bar attached to the window. This
attribute is not used by TRUE BASIC; it stores a value for programmer convenience
only. The default value is 10.

SINGLE HORIZONTAL Values(1) contains the value to be used as the horizontal increment when the
left or right arrow is clicked in the horizontal scroll bar attached to the window. This
attribute is not used by TRUE BASIC; it stores a value for programmer convenience
only. The default value is 1.

PAGE HORIZONTAL Values(1) contains the value to be used as the horizontal increment when one
clicks in the grayed area of the horizontal scroll bar attached to the window. This
attribute is not used by TRUE BASIC; it stores a value for programmer convenience
only. The default value is 10.

TEXTEDIT Values(1) contains the ID of an attached text edit control, if there is one. If there
isn’t, values(1) = -1. This attribute is provided as a convenient storage spot for
the programmer; True BASIC does not use this number.

Menu Attributes
The following menu attributes may be set (using the OBJM_SET method) or found (using the OBJM_GET
method). The menu or menu item ID is passed as the second parameter in the call to the OBJECT routine. The
attribute name is passed in the third parameter of the call to the OBJECT routine. It may be in lower or upper
or mixed case.
Several of the attributes (TEXT, MKEY, SEPARATOR, CHECKABLE) will not take effect until the menu is
later reshown. The attributes ENABLED and CHECKED will have their effects displayed immediately.

TEXT The text is passed as a string in values$. Values() is ignored.

MKEY The ASCII value of the hot-key or mnemonic is passed in values(1). Value$ is
ignored. In some systems, such as Windows and OS/2, the ASCII code must be one of
the letters in the text of the menu item. This attribute is not allowed for menu head-
ers on the Macintosh.

SEPARATOR If values(1)=1, then that menu item will be displayed as a separator. If val-
ues(1)=0, then the text of the menu item will be shown. Values$ is ignored. This
attribute is not allowed for a menu header.

ENABLED If values(1)=1 then that particular menu item will be enabled, i.e., allowed to be
selected. If values(1)=0, that menu item will be disabled and not selectable. In
addition, it will appear dimmed. If you disable a menu header, the entire menu below
it will be disabled. Value$ is ignored

CHECKABLE If values(1)=1 (default), then that particular menu item can be checked. If val-
ues(1)=0, it cannot be checked. (If the menu item was previously checked and the
checkable attribute is set to 0, the check mark will be removed.)  Value$ is ignored.
There are several restrictions. For example, you cannot check a separator.

CHECKED If values(1)=1, then that particular menu item will be checked. If values(1)=0
(default), it will not be checked; if there was a check mark, it will be removed.
Value$ is ignored.

Graphics Attributes — Overview
The graphics objects described here are, in a sense, another form of True BASIC output such as BOX LINES or
printing. Thus, controls (such as push buttons) “float” above these objects on most systems, just as they float above
ordinary printed output. If the output scrolls, which it will if there are many PRINT statements, these graphics

323Object Subroutine



objects will also scroll.

The graphics type, location, content, and name attributes apply to all types of graphics objects. The several attrib-
utes are grouped below according to general purpose.

Graphics Type Attributes
GRAPHIC TYPE Values(1) is the type of the graphic object. Possible types are:

GRFT_CIRCLE Circle or ellipse
GRFT_LINE Straight line
GRFT_RECTANGLE Rectangle
GRFT_ARC Arc
GRFT_PIE Pie segment
GRFT_ALINE Line with arrows at either end
GRFT_ROUNDRECT Rectangle with rounded corners
GRFT_POLYGON Closed polygon
GRFT_POLYLINE Open polygon (ends not joined)
GRFT_IMAGE Graphical image (from a file or box keep string)

This attribute should be set when the object is created, and before it is shown for the
first time.

VISIBLE For the GET method, values(1) = 1 if the object is visible, and = 0 if the object is
invisible. (Visibility may be overridden by the visibility of the containing window.)
Attempting to use the SET method with this attribute will cause an error.

Graphics Location Attributes
RECTANGLE The four coordinates of the rectangle are passed in values().

values(1) left edge
values(2) right edge
values(3) bottom edge
values(4) top edge

These values may be either in pixels or in user coordinates, depending on the value
of the UNITS attribute. In either case, the coordinates refer to the interior of the
containing window and not to the full screen.
If units are in pixels, the left edge of the interior of the physical window is 0 with val-
ues increasing to the right, and the top edge of the interior of the physical window is
0 with values increasing downward.
If the units are user coordinates, then the current user coordinates will be used.
Note that when a new physical window is created, the default user coordinates for
the interior portion of the physical window are 0, 1, 0, 1. That is, the left edge is 0,
the right edge is 1, the bottom edge is 0, and the top edge is 1.

UNITS If values(1)=0 (default), the RECTANGLE attribute values are interpreted as
pixels; if = 1, then they are interpreted in terms of user coordinates.

RELATIVE If values(1)=1, then the sides of the graphics object will be positioned relative to
the sides of the window. For example, if the window is enlarged, the graphics object
will also be enlarged in proportion.

If values(1) = 0 (default), then no such proportional sizing or positioning will be
done.

324 True BASIC Language System



LEFT RELATIVE If values(1)=1, then the left side of the graphics object will be positioned relative
to the left side of the window, but the size of the graphics object will not be changed,
unless another side is also positioned to be relative.

If values(1)=0 (default), then the left side will not be so positioned when the size
of the window is changed.

RIGHT RELATIVE If values(1)=1, then the right side of the graphics object will be positioned rela-
tive to the right side of the window, but the size of the graphics object will not be
changed, unless another side is also positioned to be relative.

If values(1)=0 (default), then the right side will not be so positioned when the
size of the window is changed.

BOTTOM RELATIVE If values(1)=1, then the bottom edge of the graphics object will be positioned rel-
ative to the bottom edge of the window, but the size of the graphics object will not be
changed, unless another side is also positioned to be relative.

If values(1)=0 (default), then the bottom edge will not be so positioned when the
size of the window is changed.

TOP RELATIVE If values(1)=1, then the top edge of the graphics object will be positioned relative
to the top edge of the window, but the size of the graphics object will not be changed,
unless another side is also positioned to be relative.
If values(1)=0 (default), then the top edge will not be so positioned when the size
of the window is changed.

Graphics Contents  Attributes (Pen, Brush, Color)
WIDTH Values(1) contains the width of the pen, in points. The default width is one pixel.

See the description of the WIDTH attribute for windows for further details. 
PEN COLOR Values(1) is the color of the pen, referring to the color mix table. See the descrip-

tion of the PEN COLOR attribute for windows for further details. The default value is
-1 (black.)

PEN STYLE Values$ is the name of the pen style. See the description of the PEN STYLE
attribute for windows for further details. The default style is “SOLID”.

PEN PATTERN Values$ is the name of the pen pattern. See the description of the PEN PATTERN
attribute for windows for further details. The default pattern is “SOLID”.

BRUSH COLOR Values$ is the name of the brush color. See the description of the BRUSH COLOR
attribute for windows for further details. The default color is -2 (white).

BRUSH PATTERN Values$ is the name of the brush pattern. See the description of the BRUSH PAT-
TERN attribute for windows for further details. The default brush pattern is
“SOLID”.

BACKGROUND COLOR Values(1) is the color number of the background color. See the description of the
BACKGROUND COLOR attribute for windows for further details. The default back-
ground color is -2 (white.)

DRAWMODE Values(1) contains the number of the drawing mode to be used. See the descrip-
tion of the DRAWMODE attribute for windows for further details.

325Object Subroutine



Graphics Name Attributes
NAME The name to use is passed in values$. This attribute is used only to store the name

of an object or control, and is for user convenience only. It is not used by True BASIC.

Graphics Circle, Line, and Rectangle Attributes
There are no circle, line, or rectangle attributes beyond those common to all graphics objects. However, specify-
ing the RECTANGLE attribute for a line is interpreted as follows:

Starting point of line: (xleft, ybottom)
Ending point of line: (xright, ytop)

It will often be the case that xleft will be greater than xright, and the same for the y-values. As an example,
suppose you want to draw a line from (300,200) to (100,400). You would use:

MAT Redim v(4)
LET v(1) = 300
LET v(2) = 100
LET v(3) = 200
LET v(4) = 400
CALL Object (OBJM_SET, rid, “RECTANGLE”, “”, v())

Graphics Arrowed Line Attributes
See the section above on line attributes for an explanation on how setting the RECTANGLE attribute deter-
mines the starting and ending points of the arrowed line.

START ARROW Values(1) = 1 if the starting end of the line should have (has) an arrow head; = 0
(default) if it should (does) not.

END ARROW Values(1) = 1 if the ending end of the line should have (has) an arrow head; = 0
(default) if it should (does) not.

Graphics Round Rectangle Attributes
OVAL WIDTH Values(1) is the width, in the units specified at creation, of the oval (ellipse) defin-

ing the roundedness.

OVAL HEIGHT Values(1) is the height, in the units specified at creation, of the oval (ellipse) defin-
ing the roundedness.

Graphics Arc and Pie Attributes
Arc and pie segments are defined as follows:
The circumference of the arc or pie segment falls on the ellipse inscribed in the defining rectangle. The start of
the arc is defined by the intersection of the ellipse circumference with a line drawn from the center of the rectan-
gle to the point defined by the START X and START Y attributes. The end of the arc is similarly defined but
using the STOP X and STOP Y attributes.
For arcs, only that portion of the ellipse circumference between the start line and the stop line is drawn. For pie
segments, two lines are drawn from the ends of the arc to the center of the rectangle.

START X Values(1) is the x-starting value.
START Y Values(1) is the y-starting value.
STOP X Values(1) is the x-stopping value.
STOP Y Values(1) is the y-stopping value.

These four attributes may be combined into one invocation of the OBJECT subroutine as follows:
LET attribute$ = “START X|START Y|STOP X|STOP Y”
MAT Redim values(4)
LET values(1) = startx

326 True BASIC Language System



LET values(2) = starty
LET values(3) = stopx
LET values(4) = stopy
CALL Object (OBJM_SET, gid, attribute$, “”, values())

Graphics Polygon and Polyline Attributes
POINTS Values() contains the points that define the polygon or polyline. Values(1) con-

tains the number of points. Values(2) contains the x-coordinate of the first point.
Values(3) contains the y-coordinate of the first point. And so on.
To draw an isosceles triangle with the polygon object, you would use:

MAT Redim v(7)
LET v(1) = 3
LET v(2) = 100
LET v(3) = 400
LET v(4) = 300
LET v(5) = 400
LET v(6) = 200
LET v(7) = 100
CALL Object (OBJM_SET, gid, “POINTS”, “”, v())

Graphics Image Attributes
FILENAME When this attribute is set, the graphical image will be loaded from the named file into

the graphics object, and the width and height information set. Values()are not used.
The image may be a BMP file. On the Macintosh, it may also be a PICT file. On X
(Unix), it may also be an xbm or pbm file. The graphical image will be forced to fit
exactly in the specified RECTANGLE coordinates. If you require no distortion, find out
the IMAGE WIDTH and IMAGE HEIGHT (see below) and adjust the rectangle before
showing the image.
When used with OBJM_GET, the filename used will be returned in values$.

FILETYPE This attribute specifies the type of the graphical image. It may be one of “JPEG”, “MS
BMP”, “OS/2 BMP”, “PICT” (Macintosh only), and possibly “PCX”. The type must be
specified after creating the graphical image but before specifying the filename con-
taining the image. If a null string is supplied as the file type, the system will attempt
to determine the type from the contents of the file.

IMAGE This attribute used with the OBJM_SET method converts a BOX KEEP string in
value$ into an image and displays it on the screen, and in the “graphics layer.” When
used with the OBJM_GET method, it converts an image on the screen into the local
BOX KEEP format, storing it in the string variable specified by value$.

IMAGE WIDTH When used with the OBJM_GET method, the image width in pixels will be returned in
values(1). This attribute cannot be used with the OBJM_SET method.
If the RECTANGLE attribute does not have the same width, the image will be shrunk
or expanded to fit into the rectangle.

IMAGE HEIGHT When used with the OBJM_GET method, the image height in pixels will be returned
in values(1). This attribute cannot be used with the OBJM_SET method.
If the RECTANGLE attribute does not have the same height, the image will be shrunk
or expanded to fit into the rectangle.

FORCE PALETTE When used with the OBJM_SET method, the value of values(1) determines which
of two palettes to use. If 0 (default), the current palette will be used. If 1, the image will
force its palette to become the current palette.

327Object Subroutine



General Control Attributes
The following attributes apply to all types of controls.

CONTROL TYPE The type of a control is normally set just after the control is created using the CRE-
ATE method. And it must be set before the control is first shown. Its value, which is
passed in the values() array, must be one of:

CTLT_PUSHBUTTON Push button
CTLT_RADIOBUTTON Radio button
CTLT_CHECKBOX Check box
CTLT_HSCROLL Horizontal scroll bar
CTLT_VSCROLL Vertical scroll bar
CTLT_EDIT Editable text field
CTLT_TEXT Static text field
CTLT_LBOX List box
CTLT_LISTBUTTON List button
CTLT_LISTEDIT List edit button
CTLT_GROUPBOX Group box rectangle
CTLT_TXED Text editor
CTLT_ICON Icon

SENSITIVE The value of this attribute is passed in the values() array; 0 means insensitive and
1 (default) means sensitive. (A control is sensitive if clicking on it causes an event that
reflects the click.)

VISIBLE Available only with the GET method, the value of this attribute is passed in the val-
ues() array. If values(1)=1, the control is visible (subject to the visibility of the
containing window); otherwise, the control is not visible.

An attempt to set this attribute will cause an error.

General Control Location Attributes
RECTANGLE This attribute requires, or returns, four values in the values() array. The values

are left edge, right edge, bottom edge, and top edge. These values will be in pixels, with
the (0,0) point being in the upper left corner of the physical window, unless the UNITS
attribute has been set. In this case, and only for the OBJM_SET method, the rectan-
gle positions are in user coordinates for current logical window. (User coordinates are
specified by the True BASIC statement SET WINDOW. If none have yet been speci-
fied, the defaults are 0, 1, 0, 1, with (0,0) in the lower-left corner of the window.)

UNITS If values(1)=0 (default), the RECTANGLE attribute values are interpreted as pix-
els; if = 1, then they are interpreted in terms of user coordinates of the current logical
window. This attribute applies only to the OBJM_SET method.

RELATIVE If values(1)=1, then the sides of the control will be positioned relative to the sides
of the window. For example, if the window is enlarged, the graphics object will also be
enlarged in proportion.

If values(1)=0 (default), then no such proportional sizing or positioning will be
done.

LEFT RELATIVE If values(1)=1, then the left side of the control will be positioned relative to the left
side of the window, but the size of the graphics object will not be changed, unless
another side is also positioned to be relative.

If values(1)=0 (default), then the left side will not be so positioned when the size of
the window is changed.

328 True BASIC Language System



RIGHT RELATIVE If values(1)=1, then the right side of the control will be positioned relative to the
right side of the window, but the size of the graphics object will not be changed, unless
another side is also positioned to be relative.

If values(1)=0 (default), then the right side will not be so positioned when the size
of the window is changed.

BOTTOM RELATIVE If values(1)=1, then the bottom edge of the control will be positioned relative to the
bottom edge of the window, but the size of the graphics object will not be changed,
unless another side is also positioned to be relative.

If values(1)=0 (default), then the bottom edge will not be so positioned when the
size of the window is changed.

TOP RELATIVE If values(1)=1, then the top edge of the control will be positioned relative to the top
edge of the window, but the size of the graphics object will not be changed, unless
another side is also positioned to be relative.

If values(1)=0 (default), then the top edge will not be so positioned when the size
of the window is changed.

General Control Name Attribute
NAME The value of this attribute is passed in values$. This attribute is for user convenience

only. It is not used by True BASIC or the system in any way.

Push Button Attributes
TEXT Value$ is the text (to be used) for the push button. The text appears inside the button,

and may be truncated if too long.

TEXT JUSTIFY If values(1) = 0, left justification is in effect (to be used). If values(1) = 1 (default),
center justification is used. If = 2, right justification is used. (This may have no effect on
some systems.)

DEFAULT If values(1) = 1, the button will appear with a special outline, as if it were “active”. If val-
ues(1) = 0, the button will appear normal. This attribute has an effect only on the appear-
ance of the button. Any use is up to the programmer.

Radio Group Attributes
Groups can be created only for groups of radio buttons. To create the group, you must have previously created all
the radio buttons in the group. You then create the group using the OBJM_CREATE method with values(1) =
OBJT_GROUP and with values(2) through values(n+4) containing, respectively: 0, 1, n (the number of but-
tons), ID of button 1, ..., ID of button n. You then can add items to the group using the SET method.
—————————————–––——————————————————————————
[ ! ] Note: The  Radio Button groups are NOT controls; general attributes such as RECTANGLE, do not

apply. radio buttons, however, are controls, and the general attributes apply.
——————————————————–––—————————————————————

STATE With the SET method, if values(1)=0 (default), then the radio button whose ID is
given is turned off. If values(1)=1, then that button is turned on, and the others in the
group are turned off. With the GET method, values(1)=1 if the radio button is on, and
0 otherwise.

ON Available only for the GET method, values(1) gives the ID of the radio button that is on,
if any, or is 0 otherwise. Values(2) gives the ordinal number of the button that is on,
starting the count at 0. For example, if the IDs of three radio buttons are 110, 111, and 112,

329Object Subroutine



and button 111 is on, then values(1)=111 and values(2)=1. Note: the id (second
parameter) must be the ID of the radio group as a whole.

TEXT Value$ is the text (to be used) for the radio button. The text appears to one side of the
button.

TEXT JUSTIFY The justification that is in effect (get) or to be used (set) is: If values(1) = 0 (default,) left
justification is in effect (to be used). If values(1) = 1, center justification is used. If = 2,
right justification is used. The justification is relative to the available space specified by the
RECTANGLE attribute for the individual radio buttons.

"" When used with the SET method, will add new radio buttons to the group. Values(1) = 1
(add), values(2) = number of new buttons, values(3)... values (n+2) = id numbers
of the buttons to be added.

""  or GROUP When used with the GET method, will return the id numbers of the buttons in the group.
Values(1) = 0, values(2)... values (n+1) = the id numbers.

Check Box Attributes
STATE With the SET method, if values(1)=0 (default), then the check box whose ID is given

is unchecked. If values(1)=1, then that check box is checked. With the GET method,
returns 1 in values(1) if the check box is checked, and 0 otherwise.

TEXT Value$ is the text (to be used) for the check box. The text appears to one side of the
check box.

TEXT JUSTIFY The justification that is in effect (get) or to be used (set) is: If values(1) = 0 (default), left
justification is in effect (to be used). If values(1) = 1, center justification is used. If val-
ues(1) = 2, right justification is used. The justification is relative to the available space
specified by the RECTANGLE attribute for the check box.

Scroll Bar Property Attributes
These attributes are for scroll bars that are not attached to windows.

POSITION For the GET method, values(1) contains the current position of the slider (thumb) in
the scroll bar. For the SET method, values(1) contains the new desired position of the
slider in the scroll bar. The value must be a non-negative integer.

The position is determined relative to the current values of the START RANGE, END
RANGE, and PROPORTION attributes. In particular, when the slider is at the top of its
range, the POSITION value will be that of the START RANGE value. When the slide is
at the bottom of its range, the POSITION value will be that of the END RANGE value
minus the PROPORTION value. The default value is 0. The value must be a non-negative
integer.

START RANGE Values(1) is the value to be used for the start of the slider range. The start is the top for
vertical scroll bars, and the left for horizontal scroll bars. The default value is 0. The value
must be a non-negative integer.

END RANGE Values(1) is the value to be used for the end of the slider range. But note that the slider
can move no farther than the END RANGE value reduced by the PROPORTION value.
The default value is 100. The value must be a non-negative integer.

PROPORTION Values(1) is the proportional size of the slider computed with reference to the START
RANGE and END RANGE values. For example, if the PROPORTION value is the same
as the difference between the END RANGE and the START RANGE, the slider will fill
the entire slide bar area. Proportional sliders are not available on all systems. The
default value is 1. The value must be a non-negative integer.

330 True BASIC Language System



Scroll Bar Auxiliary Attributes
These attributes are for scroll bars that are not attached to windows.

TEXTEDIT Values(1) contains the ID of the text edit control associated with the scroll bar.
This is provided as a convenient storage spot for the programmer; True BASIC does
not use this number.

SINGLE INCREMENT Values(1) is the increment (default is 1) to be used for a click in an up or down
arrow in the scroll bar. This is provided as a convenient storage spot for the user; True
BASIC does not use this value.

PAGE INCREMENT Values(1) is the increment (default is 10) to be used for a click in the trough in the
scroll bar. This is provided as a convenient storage spot for the user; True BASIC does
not use this value. 

Edit Field Attributes
TEXT Value$ contains the text to be used in the edit field. For the GET method, it contains

the text currently in the field.

EXIT CHAR Values(1) is the ASCII code for the character to be registered as an exit character,
in addition to the Escape (27) and Horizontal Tab (9) characters. For example, the
return-key character (13) is often used to advance to the next edit field in the form.

Supplying the negative of the ASCII code with the SET method will unregister that
character as the exit character.

Note: when an edit field is deselected by means of an exit character, the particular
character code will be returned as the x1 parameter, along with the CONTROL DES-
ELECTED event, in the call to the Sys_Event subroutine.

FORMAT Values$ contains the format of the text to be used in the edit field. True BASIC does
not use this value; it is provided for the convenience of the programmer. When a partic-
ular edit field has been deselected, the programmer may wish to check the text against
the desired format, but this does not happen automatically.

Static Text Field Attributes
TEXT Values$ contains the text to be used in the static text field. If the field is tall enough, the

text will be wrapped. If the text is still too long to fit into the field, the text is truncated on
the right. If you wish to have the text break at a certain point, simply insert chr$(13)
into the text string at the desired break point.

TEXT JUSTIFY The justification that is in effect (get) or to be used (set) is: If values(1)=0 (default), left
justification is in effect (to be used). If values(1)=1, center justification is used. If val-
ues(1)=2, right justification is used. The justification is relative to the available space
specified by the RECTANGLE attribute for the static text field.

List Box Attributes
SELECTION MODE Values(1) contains the selection mode to be used. 0 (default) means to allow single

selections only; 1 means to permit multiple selections; 2 means to allow the list to be
viewed but not selected, i.e., read-only. The selection mode must be set before the list box
is shown the first time. (Multiple selection mode may not be available on all systems.)

LIST Values$ contains the items to appear in the selection list; the items are separated by
vertical bars “|”.

331Object Subroutine



SELECTION When used with the GET method, values(1) contains the number of items selected,
and values(2) .. values(values(1)+1) contain the ordinal numbers of the
selected items, starting the counting with 0. When used with the SET method, val-
ues(1) contains 1 (or any non-zero) to highlight a list item and 0 to unhighlight a list
item; values(2) contains the item to be highlighted or unhighlighted. Items are num-
bered 0...n-1, where n is the number of items.

List Button Attributes
LIST Values$ contains the items to appear in the list button; the items are separated by ver-

tical bars “|”. Note that the first item in the list also appears as the button name.

SELECTION When used with the GET method, Values(1) contains the number of items selected,
and v(2) contains the ordinal number of the selected item, starting the counting with 0.
(Since the multiple selection mode is not available for list buttons, the selection list will
never contain more than one element.)  When used with the SET method, v(1) contains
the ordinal number of the item initially shown, starting the counting with 0.

List Edit Button Attributes
TEXT When used with the SET method, values$ contains the text to appear in the edit field

of the list edit button. When used with the GET method, values$ contains the current
(latest,) possibly edited, value in the edit field. The programmer can interrogate this
value at any time.

LIST Values$ contains the items to appear in the scrollable list beneath the editable button;
the items are separated by vertical bars “|”. Note that selecting an item from the list
moves that item into the editable field, where it can be further edited.

FORMAT Values$ contains the format to be applied to the edit field. This is ignored by True
BASIC and is provided only as a convenience to the programmer.

Group Box Attributes
TITLE Values$ gives the title of the group box. Note that the group box is a rectangle that visu-

ally groups whatever it contains, such as a radio group. It does not actually combine sev-
eral controls into a single group.

Text Editor Attributes — Overview
Text editor attributes include the following: TEXT, SELECTION, INSERTION, BORDER, ACTIVE, WRAP, MAR-
GIN, NUM LINES, NUM PARS, ORIGIN, TRAP CHAR, CHAR LIMIT, KEY EVENTS, MOUSE EVENTS, FORE
COLOR, BACK COLOR, BORDER COLOR, FONT NAME, FONT STYLE, FONT SIZE, FONT METRICS, READ-
ONLY, NUM CHARS, LINES IN PAR, LINE MAX WIDTH, VSCROLL, and HSCROLL.

The text editor attributes are grouped below according to general purpose: properties, contents, manipulation,
and auxiliary.

Text Editor Property Attributes
BORDER Values(1)=1 if there is (to be) a border around the text edit control, and =0 (default) if

there is not (to be).

ACTIVE Values(1)=1 if the text edit control is (to be) active; that is, can process keystrokes and
events. Values(1)=0 if the text edit control is inactive.
If a control is sensitive, it can be either active or inactive; if it is not sensitive, it cannot be
active.

332 True BASIC Language System



WRAP If values(1)=1, the text is to be wrapped at the margin, which is in pixels. The wrap-
ping point of the text need not take place at the right edge of the text edit control. If val-
ues(1)=0 (default), the text will not be wrapped, and the value of the margin attribute
will be ignored.

MARGIN Values(1)= the size of the margin, in pixels, to be used with the text edit control. If
there is no WRAPing, the margin is ignored. The default value is 0 for both cases.

READONLY Values(1)=1 if the text edit control is (to be) read only; otherwise, values(1)=0
(default).

CHAR LIMIT Values(1) contains the maximum number of characters allowed in one paragraph. The
programmer can use this attribute to limit the amount of text a user can enter. The
default value is 65535 characters.

Text Editor Contents Attributes
FORE COLOR Values(1) gives the color to be used for the foreground (text) in the text edit control.

The default foreground color is black.

BACK COLOR Values(1) gives the color to be used for the background in the text edit control. The
default background color is white.

BORDER COLOR Values(1) gives the color to be used for the border of the text edit control. The default
border color is black.

FONT NAME Values$ contains the name of the font to be used, or currently in use. The available fonts
will vary with the operating system. However, certain common fonts can be found on all
systems; they are:

HELVETICA FIXED TIMES SYSTEM
The FIXED font is a mono-spaced font similar to the Courier or Monaco type faces. The
SYSTEM font is Helvetica on some systems. The default font is HELVETICA.

FONT STYLE Values$ contains the style of the font to be used, or currently in use. The available styles
are:

PLAIN BOLD ITALIC BOLD ITALIC
On many systems, the name of the font and its style may be combined into the font name.
For example, one might specify “Times Roman Italic” as the font name instead of having
to specify “Times Roman” as the font name and “Italic” as the font style. The default style
is PLAIN.

FONT SIZE Values(1) contains the size of the font, in points, to be used or currently in use. The
default font size is ten (points).

FONT METRICS Usable only with the GET method, values(1) through values(6) return the following prop-
erties on the font in use; the units are in pixels (not points):

values(1) leading
values(2) ascent
values(3) descent
values(4) horizontal size
values(5) vertical size
values(6) bearing

The leading is the space between lines in the font. The ascent is the distance in pixels of
the top of the highest character above the base line. The descent is the distance in pixels
of the lowest descender before the base line. The horizontal size is the size of the “M” for

333Object Subroutine



proportional fonts. The vertical size is the total vertical space in pixels needed to display
a line of text, and is the sum of the leading, the ascent, and the descent.. The bearing is
always 1.

These values are related to the font size specified by the FONT SIZE attribute, but the
actual appearance depends on the system, the pixels-per-inch of the monitor, etc.

Text Editor Manipulation Attributes
TEXT The entire text is passed via the values$ parameter. It is assumed to consist of lines of

text delimited by the platform-specific end-of-line (EOL) sequence. The lines of the text are
treated as paragraphs in the text edit control. (If the text edit control wraps the lines, there
may be several “lines” visible per paragraph. In other words, lines in the text edit control do
not necessarily correspond to lines in the text file. In fact, what are called lines in the text
file are called paragraphs in the text edit control. See also the WRAP attribute.)

SELECTION The parameters of selected text (selected text usually is shown in reversed color) are
passed as six elements in the values() array. They are, in order, the paragraph, line,
and character of the starting point of the selection, and then the paragraph, line, and
character of the ending point of the selection. If nothing has been selected and the GET
method is used, the starting values will equal the ending values.

INSERTION The parameters of the text insertion cursor are passed as three elements in the val-
ues() array. They are, in order, the paragraph, line, and character position of the cur-
sor. The cursor is in front of the character specified; remember that the numbering of
paragraphs, lines, and characters all start with 0. Thus, character position 0 for the cur-
sor means in front of the first character on the line. And a character position equal to the
number of characters in the line means in back of the last character on the line.

NUM LINES Values(1) gives the total number of lines in the text of the text edit control. This is
available only for the GET method.

NUM PARS Values(1) gives the total number of paragraphs in the text of the text edit control. This
is available only for the GET method. Note that the number of lines is the same as the
number of paragraphs for unWRAPped text.

NUM CHARS Values(1) gives the number of characters in the text of the text edit control. This is
available only for the GET method.

LINES IN PAR This is available only for the GET method. Values(1) contains the paragraph number.
Upon return, values(2) contains the number of lines in the paragraph. Note: para-
graph numbering starts with 0.

LINE This is available only for the GET method. Values(1) contains the number of the para-
graph, and values(2) contains the number of the line within the paragraph. Upon
return, values$ contains the text of the line. Note that paragraph and line numbering
both begin with 0.

MAX WIDTH This is available only for the GET method. Values(1) is the length in pixels of the
longest line if WRAP is set to off, or the margin itself if WRAP is set to on. Note: if the text
edit control is not visible, this value will be some large number.

ORIGIN This attribute returns the position within the text of the upper left corner of the text edit
control. There are four values:

Values(1) The starting paragraph number
Values(2) The starting line number within that paragraph
Values(3) The absolute line number
Values(4) The number of pixels the text has been shifted to the left

334 True BASIC Language System



TRAP CHAR Values(1) contains the number of key code/stop code pairs. Values(2) through
values(2n+1) contain the key code/stop code pairs. The key codes are the ASCII codes
for the key; for example, the RETURN key has the key code  13. The stop codes are defined
as follows:

Stop Code Result
1 The key code is returned as a KEYPRESS event.

The text edit control is suspended.
The key is not absorbed by the text edit control.

2 The key code is returned as a KEYPRESS event.
The text edit control is not suspended.
The key is absorbed by the text edit control.

3 Exactly like stop code 1, but will be treated as an ordinary 
character unless there is selected text.

< 0 The particular key code is unregistered.

All other stop codes are ignored.

As examples, if  you wish to use the escape character as a way of exiting from the text edit
control, give it a stop code of 1. If you wish to readjust the scroll bars whenever the user
presses the return key, give it a stop code of 2. If you wish to indent selected text when the
user enters a “>”, give it a stop code of 3.

KEY EVENTS If values(1)=0 (default), all key events, except those specified as TRAP CHARs,  will
be absorbed by the text edit control, and will not be returned by the Sys_Event subrou-
tine. If values(1)=1, then all key events will be returned by the Sys_Event subrou-
tine, as well as being acted on by the text edit control.

MOUSE EVENTS If values(1)=0 (default), all mouse events within the text edit control will be absorbed
by the text edit control, and not returned by the Sys_Event subroutine. If val-
ues(1)=1, mouse events will be acted on by the text edit control and also returned by
the Sys_Event subroutine.

Text Editor Auxiliary Attributes
VSCROLL Values(1) = the ID number of an attached vertical scroll bar, if any. True BASIC does

not use this value; it is provided only for the convenience of the programmer.

HSCROLL Values(1) = the ID number of an attached horizontal scroll bar, if any. True BASIC
does not use this value; it is provided only for the convenience of the programmer.

Exceptions
These exceptions apply in general.

Unknown or invalid object ID. (-11220)
Cannot reference a freed object ID. (-11221)
Attribute not used for specified object. (-11223)
Unknown or invalid group method. (-11224)
Unknown or invalid attribute in SET/GET. (-11225)
Unknown or invalid font name. (-11226)
Unknown in invalid font style. (-11227)
Font size must be greater than zero. (-11228)
Can’t set FONT METRICS. (-11249)
Object ID out of range. (-11236)
Unknown window method. (-11237)

335Object Subroutine



Unknown object method. (-11238)
Unable to SHOW window. (-11239)
Unknown or invalid object type specification in CREATE. (-11240)
Too many EXIT CHARS for Edit Field. (-11241)
Can’t set ACTIVE until object is visible. (-11242)
Color must be >= 0. (-11251)
Unknown or invalid menu item type specification. (-11254)
Can’t check a menu separator. (-11255)
Menu separators are not checkable. (-11256)
Unknown or invalid control object type. (-11257)
Unknown or invalid graphic object type. (-11258)
Unknown or invalid window object type. (-11259)
Unknown or invalid group object type. (-11260)
Can’t check a menubar item. (-11261)
Can’t make menubar item a separator. (-11262)
Menu parent incorrect for menu type. (-11263)
Can’t SELECT an unSHOWn window. (-11264)
Unknown or invalid brush pattern. (-11265)
Unknown or invalid pen pattern. (-11266)
RECTANGLE minimum = maximum. (-11271)
No Help File opened. (-11272)
Not enough values for attribute list in SET/GET. (-11273)

These exceptions apply only to the Text Edit control.
TextEdit method passed to non-TextEdit object. (-11229)
Can’t SUSPEND TextEdit object when not visible. (-11230)
Can’t RESUME TextEdit object when not visible. (-11231)
Error adding paragraph. (-11232)
Paragraph number is too large. (-11233)
Error deleting paragraph. (-11234)
Error appending paragraph. (-11235)
Can’t set NUM LINES. (-11243)
Can’t set NUM PARS. (-11244)
Can’t set NUM CHARS. (-11245)
Can’t set LINES IN PAR. (-11246)
Can’t set MAX WIDTH. (-11248)
Too many trap chars for TextEdit. (-11250)
Paragraph out of range for GET LINE. (-11252)
Line out of range for GET LINE. (-11253)

336 True BASIC Language System



CHAPTER

20
Sys_Event Subroutine

As the user of the program manipulates the mouse, clicking on various controls, selecting windows, etc., these
activities are reported back to the program as events. In True BASIC, these events do not generate interrupts, but
rather are placed on a single queue (list). Calling the built-in subroutine SYS_EVENT allows the program to
examine the event, if any, at the front of the list.

(We strongly recommend that you use True Controls. Its subroutine, TC_Event, calls Sys_Event and then per-
forms several operations on scroll bars, check boxes, radio buttons, etc. Call Sys_Event directly only for special
purposes not covered by True Controls.)

This model, examining one at a time the events from the event queue by calling the subroutine SYS_EVENT, pro-
vides the simplest possible way to respond to the many things that can happen within the user interface. These
events occur asynchronously and can be reported in an order different from that in which the programmer
intended.

The standard way to build a program might be illustrated as follows:
DO
CALL Sys_Event ...
SELECT CASE event$
CASE “event 1”
CALL Response1

CASE “event 2”
CALL Response2

...

CASE “event n”
CALL Responsen

CASE else
! Must be an error

END SELECT
LOOP

Of course, the event names from SYS_EVENT are more suggestive, and additional information is also provided.
The rest of this chapter lists the different events that can occur for each of the windows, menus, and controls.

———————————————–––————————————————————————
[ ! ] Note: Graphics objects in themselves cannot be the cause of any events
—————————————————–––——————————————————————

The Sys_Event Subroutine
The calling sequence for the SYS_EVENT subroutine is

CALL Sys_Event (timer, event$, window, x1, x2)

The value of timer specifies the amount of time to wait for an event if the event queue is empty. The subroutine

337



will return immediately if timer = 0. In either case, if there is no event on the event queue, then event$ will
be the null string.

The name of the event itself is returned in event$ and is capitalized. Event names are listed later according to
the type of object or control that generated them.

The ID number of the physical window in which the event occurred is returned in the third argument window. This
is the physical window ID number, and has no relation to any True BASIC logical windows that might be in use.

The last two parameters, x1, and x2, provide additional numeric information in most cases. If either, or both, is
not used, it is set to 0.

The rest of this chapter lists the events, by type of object or control that can generate them.

Events for Windows
KEYPRESS The user has pressed a key. The window ID will be that of the active window, the one des-

ignated to receive input. X1 is the ASCII number of the character generated. X2 contains
the shift key codes; if x2 = 1, the shift key was held down; if 2, the control key was held
down; if 0, neither key was held down; if 3, both keys were held down.

The following thirteen events are mouse events. They all have the same definition for x1 and x2.
x1 x-coordinate mouse position
x2 y-coordinate mouse position

SINGLE A single click of the left button, or of the only button, on the mouse has occurred. Note that
a mouse click that selects a window will return a SELECT event. But a second click in the
window, once the window has been selected, will return this event or one like it.

DOUBLE A double mouse click has occurred with the left or only mouse button. Note that this event
will always be preceded by a SINGLE event. That is, if a second click has occurred within
a small time increment, this second click will generate a DOUBLE event.

EXTEND A mouse click with the shift key held down has occurred. This is used most commonly to
select multiple items from a list.

SINGLE RIGHT
DOUBLE RIGHT
EXTEND RIGHT

These events are just like the three above, but apply to the right mouse button.
SINGLE MIDDLE
DOUBLE MIDDLE
EXTEND MIDDLE

These events are like those above, but apply to the middle mouse button.
MOUSE UP
MOUSE UP RIGHT
MOUSE UP MIDDLE

The mouse button has been released. The first event applies to the left button, the next
two to the right and middle buttons, if any.

MOUSE MOVE

The mouse has moved since the last time Sys_Event was called. This event will not be
returned unless the MOUSE MOVE attribute has been turned on.

SIZE The window (see the third argument) has been resized. Note that just moving the win-
dow without resizing it will generate no event. x1 and x2 are not used.
When a window has been resized, it may be necessary to regenerate its contents.

338 True BASIC Language System



REFRESH The window, which was formerly partially or completely hidden or covered by other win-
dows, is now fully visible. If the window is not IMMUNE, then its contents will have to be
regenerated. X1 and x2 are not used.

If the window is IMMUNE, then its contents will not have to be regenerated, but the
REFRESH event will still occur.

SELECT The window has been selected (made active) or deselected. x1 = 1 if the window was
selected, and = 0 if the window was deselected. (This says nothing about the window
being a target for input and output.) The window selected will also have focus.

HIDE The window has been hidden or closed. This can occur by clicking in the close box. x1 and
x2 are not used.

The following twelve events can occur if there are scroll bars attached to the window. x1
and x2 are not used.

UP The up arrow in an attached vertical scroll bar has been clicked.

DOWN The down arrow in an attached vertical scroll bar has been clicked.

LEFT The left arrow in an attached horizontal scroll bar has been clicked.

RIGHT The right arrow in an attached horizontal scroll bar has been clicked.

PAGEUP The trough above the slider in an attached vertical scroll bar has been clicked.

PAGEDOWN The trough below the slider in an attached vertical scroll bar has been clicked.

PAGELEFT The trough to the left of the slider in an attached horizontal scroll bar has been clicked.

PAGERIGHT The trough to the right of the slider in an attached horizontal scroll bar has been clicked.

VSCROLL The slider in an attached vertical scroll bar is being moved. (By how much and in what
direction can be determined using the OBJM_GET method.)

HSCROLL The slider in an attached horizontal scroll bar is being moved. (By how much and in what
direction can be determined using the OBJM_GET method.)

END VSCROLL The end of a slider movement in an attached vertical scroll bar has occurred. This will
happen when the user releases the mouse button.

END HSCROLL The end of a slider movement in an attached horizontal scroll bar has occurred. This will
happen when the user releases the mouse button.

MENU The user has selected a menu item. X2 contains the ID number of the menu item selected.

Events for Graphics Objects
Graphics objects cannot generate events.

Events for Controls
Many controls can generate the same event. For completeness, all such events are listed for the particular type of
control.

Events for Push Buttons
CONTROL The user has clicked the mouse on a push button. X2 contains the ID number
SELECT of the push button.

Normally, this event will not be returned by the SYS_EVENT subroutine until the
matching CONTROL DESELECTED event has occurred.

339Sys_Event Subroutine



CONTROL The user has released the mouse button whilst still pointing to a push button.
DESELECTED X2 contains the ID number of the push button.

Events for Radio Buttons
CONTROL The user has clicked the mouse on a radio button. X2 contains the ID number
SELECT of the radio button.

Normally, this event will not be returned by the SYS_EVENT subroutine until the
matching CONTROL DESELECTED event has occurred.

CONTROL The user has released the mouse button whilst still pointing to a radio button.
DESELECTED X2 contains the ID number of the radio button.

Which radio button is on can also be determined by using the OBJM_GET method.

Events for Check Boxes
CONTROL The user has clicked the mouse on a check box. X2 contains the ID number of
SELECT the check box.

Normally, this event will not be returned by the SYS_EVENT subroutine until the
matching CONTROL DESELECTED event has occurred.

CONTROL The user has released the mouse button whilst still pointing to a check box.
DESELECTED X2 contains the ID number of the check box.

The current state of the check box can be determined by using the OBJM_GET method.

Events for Scroll Bars
The events for scroll bars that are not attached to windows follow. In each case, x2 contains the ID number of the
scroll bar control.

UP The user has clicked in the up arrow of a vertical scroll bar.
DOWN The user has clicked in the down arrow of a vertical scroll bar.
LEFT The user has clicked in the left arrow of a horizontal scroll bar.
RIGHT The user has clicked in the right arrow of a horizontal scroll bar.
PAGEUP The user has clicked in the trough above the slider in a vertical scroll bar.
PAGEDOWN The user has clicked in the trough below the slider in a vertical scroll bar.
PAGELEFT The user has clicked in the trough to the left of the slider in a horizontal scroll bar.
PAGERIGHT The user has clicked in the trough to the right of the slider in a horizontal scroll bar.
VSCROLL The user is in the process of moving the vertical slider in a scroll bar.
HSCROLL The user is in the process of moving the horizontal slider in a scroll bar.
END VSCROLL The user has released the mouse button after having moved the vertical slider.
END HSCROLL The user has released the mouse button after having moved the horizontal slider.

Events for Edit Fields
CONTROL The user has clicked the mouse on an edit field. X2 contains the ID number of
SELECT the edit field.

CONTROL The user has finished editing one edit field, and has moved the mouse to a new edit
DESELECTED field, causing the first edit field to be deselected. Certain key strokes can also be used to

advance to the next edit field, causing the former edit field to become deselected. At this
point it is possible to interrogate the text the user has edited and to match the text against
a desired format. x2 contains the ID number of the edit field deselected.

340 True BASIC Language System



If the deselection was caused by the user pressing a key specified as an EXIT CHAR, then
the character number is returned in x1.

Events for Static Text
Static Text cannot generate events.

Events for Selection List Boxes
CONTROL SINGLE The user has clicked on an item in the selection list. X2 contains the ID number of the

selection list box control. Which item has been selected can be determined using the
OBJM_GET method.

CONTROL DOUBLE The user has double-clicked on an item in the selection list. X2 contains the ID num-
ber of the selection list box control. Which item has been selected can be determined
using the OBJM_GET method.

This event will always be preceded by a CONTROL SINGLE event. (Note: the CON-
TROL DOUBLE event often is a signal that the user has completed the examination
of the selection list box; thus it is the equivalent of selecting an “Ok” button, were
there one to select.)

Events for List Buttons
CONTROL SINGLE The user has clicked on an item in the list button. X2 contains the ID number of the

list button control. Which item has been selected can be determined using the
OBJM_GET method.

Events for List Edit Buttons
CONTROL SELECT The user has clicked the mouse on a list edit button. x2 contains the ID number of the

list edit button.

CONTROL The user has finished editing the list edit button, and has moved the mouse 
DESELECTED elsewhere. Certain key strokes can also be used to generate this event. At this point it

is possible to interrogate the text the user has edited. X2 contains the ID number of
the edit field deselected.

KEYPRESS The user has pressed a key that has been defined to cause a focus shift. X1 contains
the ASCII value of the key.

Events for Group Boxes
Groups Boxes cannot generate events.

Events for Text Edit Controls
TXE MOUSE The user has clicked the mouse in a text edit control when MOUSE EVENTS had been

selected as an option.
TXE VSCROLL The user is in the process of scrolling the text vertically by holding the mouse button down

while moving the mouse to the extreme top or bottom of the text edit control.
TXE HSCROLL The user is in the process of scrolling the text horizontally by holding the mouse but-

ton down while moving the mouse to the extreme left or right of the text edit control.
TXE KEYPRESS The user has pressed a key when KEY EVENTS has been selected as an option, or the

user has pressed one of the TRAP characters. If the Shift Key is also pressed, 256 will
be added to the key code. If the Control Key is also pressed, 512 will be added to the
key code. If both are pressed, 768 (256 + 512) will be added to the key code.

341Sys_Event Subroutine



Events for Groups (currently, only Radio Groups)
CONTROL SELECT The user has clicked the mouse on a radio button. X2 contains the ID number of the

radio button.
Normally, this event will not be returned by the SYS_EVENT subroutine until the
matching CONTROL DESELECTED event has occurred.

CONTROL The user has finished clicking on a radio button, and has moved the mouse 
DESELECTED elsewhere. X2 contains the ID number of the button deselected. (At this point it is pos-

sible to interrogate the radio group control to learn which button is on.)

Summary of Events
All the possible events are listed below, followed by the objects or controls that can generate them.

The following nine events can be generated by mouse clicks within windows, but not clicks on most controls (which
generate events like CONTROL SELECT.) Window contains the window ID number. X1 contains the x-coordinate of
the mouse position in window coordinates, and x2 contains the y-coordinate of the mouse position.

SINGLE
DOUBLE
EXTEND
SINGLE RIGHT
DOUBLE RIGHT
EXTEND RIGHT
SINGLE MIDDLE
DOUBLE MIDDLE
EXTEND MIDDLE
MOUSE UP
MOUSE UP RIGHT
MOUSE UP MIDDLE
MOUSE MOVE

The following four events are all window-related. The window ID is returned in window. x1 and x2 are ignored.
SIZE
REFRESH
SELECT
HIDE
MENU

The following twelve events are generated by scroll bars. If the scroll bars are attached to a window, then x1 and
x2 are ignored. If the scroll bars are not attached to a window, then x2 contains the ID number of the scroll bar.

UP
DOWN
LEFT
RIGHT
PAGEUP
PAGEDOWN
PAGELEFT
PAGERIGHT
VSCROLL
HSCROLL
END VSCROLL
END HSCROLL

342 True BASIC Language System



The following two events can be generated only from selection list boxes, but only the first for list buttons. In
each case window gives the window ID, and x2 gives the control ID.

CONTROL SINGLE
CONTROL DOUBLE

The following two events can be generated from push buttons, radio buttons, check boxes, edit fields, list edit
buttons, and text edit controls. In each case window gives the window ID, and x2 gives the control ID.

CONTROL SELECT
CONTROL DESELECTED

The following event can be generated from a window. Window gives the window ID, x1 gives the ASCII values of
the key stroke, and x2 gives the shift key code; if x2 = 1, the shift key was held down; 2, the control key was held
down; if 0, neither key was held down; if 3, both keys were held down.

KEYPRESS

The following four events can be generated only from a text edit control. For TXE KEYPRESS, x1 is the key and
x2 is the control ID. For the other three, x1 is 0 and x2 is the ID.

TXE KEYPRESS
TXE MOUSE
TXE VSCROLL
TXE HSCROLL

343Sys_Event Subroutine



344 True BASIC Language System



CHAPTER

21
TBD or TBDX Subroutines

The TBD subroutine is a built-in subroutine that displays several types of modal dialog boxes. A modal dialog
box is one in which control is retained in the dialog box until the user exits it and the box is closed. That is, no other
activities can occur until the dialog box closes.

The calling sequence is:
CALL TBD(x, y, type, title$, msg$, btn$, name$, text$, st, dflt, timeout, result)

The TBD subroutine is capable of producing four different types of dialog boxes – standard dialog boxes, open
file dialog boxes, save file dialog boxes, and list dialog boxes. The value of type determines the type of dialog
box that will be produced, and must be a value between 1 and 4, inclusive.
Since each of these four types of dialog box is significantly different from the others, each will be discussed sepa-
rately in the sections below.
For dialog boxes of type 1 and type 4, the values of x and y determine the upper left corner of the dialog box in pix-
els in the coordinate system of the full screen. If x < 0, then True BASIC will choose a convenient value for the left
edge that roughly centers the dialog box across the screen. If y < 0, then True BASIC will do the same for the top
edge to center the dialog box vertically on the screen. This feature is not available for dialog boxes of type 2 or type
3.
If you want the dialog box to have a title bar, specify the actual title you wish it to have as the value of title$. If
the value of title$ is the null string, the dialog box will not have a title bar. Note: the title bar feature is not
available for Standard Dialog Boxes (type 1) on the Macintosh.
The TBD subroutine also allows you to determine the timeout for dialog boxes of type 1 and type 4 (open file and
save file dialog boxes may not be timed out). A dialog box’s timeout is the length of time in seconds that the user
will be given to respond to that dialog box. If the timeout period expires before the user selects one of the dialog
boxes push buttons, control will return to the line immediately following the CALL statement; the value of
resultwill be set to the number of  the default button. If there is no default button, the TBD subroutine returns
to the line following the CALL statement and sets the value of result to 0. If the value of timeout is 0, then the
resulting dialog box will never time out; that is, it will remain on the screen until the user selects one of its push
buttons.
As mentioned above, location and timeout refer to type 1 and type 4 dialog boxes only. The remaining sections
discuss each type of dialog box separately.

Standard Dialog Boxes
If type equals 1, TBD produces a standard dialog box. These include message and warning boxes, and single-
line and multi-line input boxes. A standard dialog box may contain from one to four push buttons and from zero to
ten editable text fields.

The value of msg$ specifies a message that will appear above the edit fields (if any) and push buttons. By default,
the value of msg$will appear on a single line (truncated to fit within the dialog box). However, you may insert line
breaks into the value of msg$ by including vertical bar characters (|). The TBD subroutine will treat each occur-
rence of a vertical bar as a line break. The dialog box will be resized to make room for as many lines as specified.

345



It is your responsibility to ensure that the resulting dialog box fits in the visible region of the screen. Note: the title
bar feature is not available for Standard Dialog Boxes on the Macintosh.

A standard dialog box may contain from one to four push buttons, which will be evenly spaced along the bottom
edge of the dialog box. The value of btn$ specifies the text to appear in up to buttons. Use the vertical bar (|) to
separate values for individual buttons. The buttons are of a fixed size, and the text is centered within the button.
It is your responsibility to ensure that the text you have specified fits within the buttons. If the value of btn$ is
the null string, an error will be generated.

A standard dialog box may also contain one or more edit fields. The value of name$ determines the number of edit
fields included in the dialog box. Name$ may contain up to ten items separated by the vertical bar (|). Each item,
in order, will be used as the label for an edit field, and there will be as many edit fields as there are items in the
value of name$. Each label appears to the left of the edit field with which it is associated. If a label is too long to fit
in the space allotted, it will be truncated. 
The value of text$ may be used to specify the default text (if any) for each edit field. Like name$, text$ may
contain up to ten items separated by the vertical bar (|). Each item, in order, will be used as the default text for an
edit field. If there are fewer items in text$ than there are in name$, then the remaining edit fields specified by
name$ will be empty by default. If there are more items in text$ than there are in name$, then the dialog box
will contain an edit field for each item in the value of text$ but the extra fields will not have labels. In other
words, the number of fields displayed will be the maximum of the number of fields in name$ and the number of
fields in text$.
If both name$ and text$ are equal to the null string, the TBD subroutine produces a dialog box with no edit fields.
If a standard dialog box contains edit fields, the value of st determines which edit field will be active when the dia-
log box is displayed. The active edit field is the one that  will receive anything typed by the user. If the value of st
is 0 (or greater than the number of edit fields), none of the edit fields will be active when the dialog box is displayed.
The value of dflt specifies which button, if any, should be treated as the default button. The buttons are num-
bered sequentially beginning with 1 in the order in which they appear within the value of btn$. The default but-
ton will be identified in a system-dependent manner, and once the dialog box has been displayed, the user can
select the default button simply by pressing the Enter (or Return) key. If the value of dflt is 0, the resulting dia-
log box will not contain a default button; the user will be required to click on a specific button with the mouse.
Once displayed, a standard dialog box remains on the screen until the user selects one of its push buttons or until
its timeout period expires, whichever occurs first.
Upon returning to the CALL statement, TBD returns the number of the selected push button in result. If the
standard dialog box contained edit fields, the value of text$will contain the contents of the edit fields at the time
the push button was selected. The contents of each edit field will be separated by vertical bars (|) within the value
of text$, and the number of the edit field which was active when the push button was selected will be returned
as the value of st.

Open File Dialog Boxes
If type equals 2, the TBD subroutine produces an open file dialog box that is standard for the current operating
system. The exact nature and operation of this dialog box will vary between operating systems, but in general it pre-
sents a list of files in the current directory and allows the user to choose a filename. It also allows the user to locate
files in other directories.

In an open file dialog box, the value of msg$ specifies the file name extension that can be used, on some platforms,
to limit the files displayed in the dialog box’s file list. On Windows and similar platforms, simply provide the exten-
sion without the period. You can use upper or lower or mixed case. Thus, supplying “TRU” or “tru” will limit the file
names displayed to those having the extension .tru. 

On the Macintosh, the msg$ field is used to specify the file type, such as TEXT or TEXTTRUE. There is no way to
limit the file names displayed based on the extension.

346 True BASIC Language System



The value of dflt determines whether the current directory may be changed by the user’s actions. If the value of
dflt is 0, then the user may specify a file in any directory, but the current directory will remain unchanged. In this
case, the TBD subroutine returns the full pathname of the selected file. If the value of dflt is 1, then if the user
specifies a file in a directory other than the current directory, the directory containing that file is made the new cur-
rent directory. In this case, the TBD subroutine returns only the file name; a pathname is not necessary since the
file will be in the current directory.

For an open file dialog box, the TBD subroutine ignores the values of btn$, name$, text$, and st.

Once displayed, an open file dialog box remains on the screen until the user selects a file name and pushes a button.

Upon returning to the CALL statement, the TBD subroutine returns the number of the push button selected as the
value of result. If the user selected the “Open” push button, result will be returned equal to 1, and the speci-
fied file name, possibly including an appropriate path, is returned as the new value of btn$. If the user selected the
“Cancel” push button, result will be returned equal to 0 and btn$will be the null string.

Note that the open file dialog box does not actually open the file; it merely returns the file name selected by the
user.

Save File Dialog Boxes
If type equals 3, the TBD subroutine produces a save file dialog box that is standard for the current operating sys-
tem. The exact nature and operation of this dialog box will vary between operating systems, but in general it allows
the user to specify a name and location for the file being saved.

In a save file dialog box, the value of msg$ specifies the file name extension that can be used, on some platforms, to
limit the files displayed in the dialog box’s file list. On Windows and similar platforms, simply provide the exten-
sion without the period. You can use upper or lower or mixed case. Thus, supplying “TRU” or “tru” will limit the file
names displayed to those having the extension .tru. 

In a save file dialog box, the value of btn$ specifies the default file name. This file name will be provided as a sug-
gestion to the user. Of course, they user may edit this value to any legal filename before pushing a button.

For a save file dialog box, the TBD subroutine allows the user to specify a different directory in which the file should
be saved, but it does not change the current directory. Thus, when the TBD subroutine is used to create a save file
dialog box, it always returns a complete pathname for the specified file.

When used to create a save file dialog box, the TBD subroutine ignores the values of name$, text$, st, and dflt.

Once displayed, a save file dialog box remains on the screen until the user selects a file name and pushes one of the
buttons. 

Upon returning to the CALL statement, the TBD subroutine returns the number of the push button selected as the
value of result. If the user selected the “Save” push button, resultwill be returned equal to 1, and the specified
file name, including the appropriate path, is returned as the new value of btn$. If the user selected the “Cancel”
push button, resultwill be equal to 0 and btn$will be the null string.

——————–––—————————————————————————————————
[ ! ] Note: The save file dialog box does not actually save the file; it merely returns the file

name provided by the user.
———————————–––————————————————————————————

List Dialog Boxes
If type equals 4, the TBD subroutine displays a list dialog box. The list may contain any number of items. If nec-
essary, the list box will include a vertical scroll bar to allow the user to view all of the available choices. The user
may select any one of the items appearing in the list box.

347TBD or TBDX Subroutine



The value of msg$ specifies a message that will appear above the list box and push buttons. By default, the value
of msg$ will appear on a single line (truncated to fit within the dialog box). However, you may insert line breaks
into the value of msg$ by including vertical bar characters (|). Each occurrence of a vertical bar will be treated as
a line break by the TBD subroutine. The dialog box will be resized to make room for as many lines as specified. It
is your responsibility to ensure that the resulting dialog box fits in the visible region of the screen.

A list dialog box may contain from one to four push buttons which will be evenly spaced along the right-hand edge
of the dialog box. The value of btn$ specifies the text to appear in up to buttons. Use the vertical bar (|) to sepa-
rate values for individual buttons. The buttons are of a fixed size, and the value is printed centered within the but-
ton. It is your responsibility to ensure that the text you have specified fits properly within the buttons. If the value
of btn$ is the null string, an error will be generated.

This list box displays one or more items, any one of which may be selected by the user. The number and contents
of the items in this list is determined by the value of name$. The value of name$ specifies the text to appear in list.
Use the vertical bar (|) to separate values for individual list items. The list box is of a fixed size, and the list items
are printed left-justified within the list box, one item per line. If a list item is longer than can be displayed in the
allotted width of the list box, only the left-most portion will be seen. If there are more items that can be shown, a
vertical scroll bar will be provided.

For a list dialog box, the value of st determines which list item will be selected (highlighted) when the dialog box
is displayed. The active list item is the one which is highlighted. If the value of st is less than 0, the first list item
will be highlighted when the dialog box is displayed. If the value of st is greater than the number of list items in
the list box, none of the list items will be highlighted initially.

For a list dialog box, the value of dflt specifies which button, if any, should be treated as the default button. The
buttons are numbered sequentially beginning with 1 in the order in which they appear within the value of btn$.
The default button will be identified by a heavy black border, and once the dialog box has been displayed, the user
can select the default button simply by pressing the Enter (or Return) key. If the value of dflt is 0, the resulting
dialog box will not contain a default button; the user will be required to click on a specific button with the mouse. 

Once displayed, a list dialog box remains on the screen until the user pushes one of its buttons or until its timeout
period expires, whichever occurs first.

Upon returning from the CALL statement, result contains the number of the push button selected. The TBD
subroutine returns the number of the selected list item in st.

Exceptions: -11300 Dialog box has no buttons specified.
-11301 Unknown or invalid dialog box specification.

The TBDX Subroutine
CALL TBDX (l, r, b, t, parm1$, parm2(), type, title$, msg$, btn$,

name$, text$, st, dflt, timeout, result)

The TBDX subroutine is like the TBD subroutine except that the first two parameters of TBD (x, y) have been
replaced by six parameters (l, r, b, t, parm1$, parm2().) All subsequent parameters remain the same in sequence
and meaning. It allows placing a dialog box of almost any size in any location on the screen.

L, r, b, and t specify the location of the dialog box in pixels, measuring from the top left corner of the screen. If all
four are >= 0, it is the programmer’s responsibility to ensure that the dialog box is large enough to contain any
elements in it. If all four are = -1, True BASIC will automatically size the dialog box and center it in the currently-
targeted physical window. (If True BASIC does not have a currently-targeted window, it will be centered on the
screen.) If r = -1 and b = -1, then True BASIC will automatically size the dialog box and place the top left corner
at the point (l, t) in pixel screen coordinates.

Parm1$ and parm2() allow extended functionality and user control. These parameters are ignored for dialog boxes
of type 2 or 3 (open file and save file.)

348 True BASIC Language System



Parm1$ is a string of attributes or values with the usual “|” as a delimiter. Parm2() is an array of numeric values.
If there are not enough values in parm2() to satisfy the attributes specified in parm1$, an exception occurs. The
following parameters are defined:

If parm1$ includes “MAXLENGTH”, True BASIC will take the next value from parm2() and use it as the
maximum length, in pixels, of each line of message information in the dialog box. (Note: there may be many lines.)
Message lines which exceed this will be truncated. (For the TBD subroutine, True BASIC decides the maximum
length.) If the value for MAXLENGTH is 0, then True BASIC will decide on a maximum length and automatically
wrap the message text. A “|” in the message text will still be treated as a “hard return.” If MAXLENGTH is not
present, then the message length will be treated as in the TBD subroutine.

If parm1$ includes “MULTIPLE” and the dialog box is of type 4 (a selection list box,) then the list box will allow
multiple selections. The number of selections will be returned in parm2(), followed by the index of each selected
item. If you attempt to use this attribute with a type 1 dialog box, an exception will occur.

If parm1$ includes “SELECTIONS”, if “MULTIPLE” has already been defined, and if the dialog box is of type 4 (a
selection list box,) True BASIC will look in parm2() for the number of selections to pre-select and the index of each
selection to pre-select. If you attempt to use this attribute with a type 1 dialog box, an exception will occur.

If parm1$ includes “MESSAGE JUSTIFY”, and the dialog box is of type 1, True BASIC will “justify” the message
text according to the corresponding value in parm2().  A value of 0 means left justify, 1 means center, and 2 means
right justify. If this attribute is used for a type 4 dialog box, an exception will occur.

If parm1$ includes “BUTTON JUSTIFY”, and the dialog box is of type 1, True BASIC will justify the text in the
buttons according to the corresponding value in parm2(). A value of 0 means left justify, 1 means center, and 2
means right justify. If this attribute is used for a type 4 dialog box, an exception will occur.

If parm1$ contains an undefined attribute, an exception will occur.

Exceptions: -11273 Not enough values for attribute list in SET/GET.
-11223 Attribute not used for specified object.

349TBD or TBDX Subroutine



350 True BASIC Language System



CHAPTER

22
Interface Library Routines

This chapter contains technical descriptions of the routines discussed in Chapters 12 “Files for Data and Output”
and 14 “Interface Elements.” The routines are contained in three library files: TRUECTRL.TRC,
TRUEDIAL.TRC, and EXECLIB.TRC. The routines in the TRUECTRL.TRC library all have names that begin
with “TC_”. The routines in the TRUEDIAL.TRC library all have names that begin with “TD_”. The routines in
the EXECLIB.TRC library all have names that begin with “EXEC_”. In addition, this chapter contains the
descriptions of the routines provided for communications support. These routines are contained in the library file
COMMLIB.TRC.  The routines in the COMMLIB.TRC library all have names that begin with “Com_”. (The
libraries COMLIB.TRU and COMLIB.TRC contains the same routines but with the traditional subroutine
names.)

TRUECTRL.TRC contains routines for creating and manipulating objects and controls, including windows,
menus, graphical objects, buttons and such, and text editors. These routines, known collectively as True Controls,
provide easy access to the built-in subroutines Object and Sys_Event.

TRUEDIAL.TRC contains routines for creating and using modal dialog boxes. (Modal dialog boxes require a
response before the program can continue.) Variations include dialog boxes for: issuing warnings, receiving input,
file opening and file saving, and displaying a selection list. These routines, known collectively as True Dials,
provide simple access to the built-in subroutine TBD. 

EXECLIB.TRC contains routines for manipulating directories. The routines provide simple access to the built-
in subroutine System.

COMMLIB.TRC contains routines supporting communication through the serial ports. The routines provide
simple access to the built-in subroutines ComOpen and ComLib.

The source code for all four libraries is included. This lets you examine the detailed use of the built-in subroutines
Object, Sys_Event, TBD, System, ComOpen, and ComLib, and it provides a starting point if you wish to write
your own subroutines.

The rest of this chapter is organized by library. With each library, the routines are grouped according to function,
and not alphabetically. (See the Index of True BASIC Constructs  for an alphabetical list of all True BASIC
statements, functions, subroutines, whether built-in or in a library.)

True Controls
The True Controls subroutines can be grouped into several categories including general routines that apply to all
objects and controls as well as other routines that apply only to specific objects or controls.

Almost all subroutines that create objects or controls have the same calling sequence:
CALL TC_XXX_Create (id, type$, xl, xr, yb, yt)

If the creation is successful, the newly assigned ID number is returned in id. The argument type$ varies
according to the object or control – it is either a string or a string array.

The four coordinates xl (x-left), xr (x-right), yb (y-bottom), and yt (y-top) specify (in almost all cases) the
rectangular region in which the object or control is defined. Either pixel coordinates or window coordinates can be

351



used. For pixel coordinates, the useful (client) area of the window will be placed with respect to the full screen.
Graphics objects and controls will be placed with respect to the containing physical window.

User coordinates for placing windows can be used only in conjunction with the True Controls routines
TC_Win_Create and TC_Win_ChildCreate. Here, the user coordinates behave like SCREEN coordinates in True
BASIC; that is, 0 refers to the left and bottom edges, and 1 to the right and top edges, of the full screen. In addition,
True Controls adjusts the client area so that all the embellishments (title bars, borders, etc.) are visible. User
coordinates for placing graphical objects or controls refer to the window coordinates for the current logical window.

Pixel coordinates always have the (0,0) location at the top-left corner. The x value increases to the right. The y
value increases down the window or screen. (This is the reverse of the usual True BASIC coordinate system in
which the y value increases as you move up.)

The SET WINDOW statement establishes the user coordinates as follows:
SET WINDOW xleft, xright, ybottom, ytop

(Note that you may establish a coordinate system in which increasing y-values move down.) In the absence of a
SET WINDOW statement, the default coordinates are (0, 1, 0, 1).

Location of windows, graphical objects, other controls is in user coordinates, by default. If you prefer to use pixel
coordinates, you can call the subroutine TC_SetUnitsToPixels.

Numerous errors can arise if windows, graphical objects, and other controls are improperly specified or located.
These errors are of two types. Errors identified by the system subroutine Object are outlined at the end of Chapter
19 “Object Subroutine” and are not repeated here; in general they deal with such conditions as specifying an ID
number that does not exist, or an invalid type or option. Other errors are detected and generated within the True
Controls subroutines; these are included in this chapter.

General Purpose Subroutines
TC_Init
This routine “initializes” the event handler, allowing TC_Event to operate properly. There are no arguments to this
subroutine.

CALL TC_Init

Exceptions: 800 Can’t call TC_Init during module startup.

TC_Cleanup
This routine must be called after completing all tasks that require TC_Event and before the program terminates.
Failure to do so may leave the operating system in an inconsistent state. There are no arguments to this
subroutine.

CALL TC_Cleanup

Exceptions: 800 Can’t call TC_Cleanup during module startup.

TC_Event
All activity generated through the use of windows and the various controls is reported to the program in the form
of events. This subroutine returns the next event from the event queue.

CALL TC_Event (timer, event$, window, x1, x2)

Timer specifies the amount of time, in seconds, to wait for an event to occur if there is none on the event queue.
If there is an event, or if timer = 0, the return from this subroutine will be immediate, except in the case of certain
scrolling events arising from a text edit control.

Event$ contains the name of the event, which can be the null string. A complete list of events is given in Chapter
20 “Sys_Event Subroutine.” This current chapter describes the events appropriate for each type of object or control
along with the convenience routines for that object or control.

352 True BASIC Language System



Window is a numeric variable that contains the ID number of the window in which the event occurred. The event
can be a window event, or it can be an event associated with a control located in that window.

X1 and x2 provide additional information. In general, x2 will be the ID number of the control causing the event.
In the case of a KEYPRESS event, x1 will be the ASCII code of the key.

In addition to merely returning the event produced by Sys_Event, TC_Event carries out certain routine tasks
associated with the controls that have been created and the menus. The events and actions are as follows. Note
that graphical objects, static text controls, and group box controls do not generate events.

MENU TC_Event returns the menu number in x1 and the item number in x2. In addition, if you
have created a text edit control and notified True Controls of the menu equivalents for
Cut, Copy, and Paste, TC_Event carries out these operations on the text edit control.

DOWN, UP, LEFT, RIGHT, PAGEDOWN, PAGEUP, PAGELEFT, PAGERIGHT, VSCROLL, HSCROLL,
END VSCROLL, END HSCROLL
TC_Event carries out the appropriate scroll bar operation. If the scroll bar is associated
with a text edit control, TC_Event moves the text accordingly.

CONTROL If an edit field has been deselected by means of a trap character (i.e., carriage
DESELECTED return,) TC_Event advances the focus to the next available edit field.

If a check box is being deselected, TC_Event changes the state of the check box.

If a radio button is being deselected, TC_Event change the state of the radio button. In
addition, TC_Event returns the id number of the radio button group, not the id number
of the button itself.

SIZE If a text edit control has been “attached” to the window, TC_Event also resizes the text
edit control so that it continues to fill the window, and adjusts the scroll bar parameters
accordingly.

TXE KEYPRESS If the character is an EOL, TC_Event updates the vertical scroll bar, if any.

TXE HSCROLL TC_Event initiates bookkeeping to keep track of text scrolling so it can properly
TXE VSCROLL update the scroll bars, if any, at the end of the text scrolling. While the text is being

scrolled, i.e., while TXE HSCROLL or TXE VSCROLL keeps occurring, TC_Event keeps
looping, so that these events are never actually returned by TC_Event.

TC_Set
This general purpose subroutine lets you specify or “set” the value(s) of any attribute(s) defined for the object or
control whose ID is given.

CALL TC_Set (id, attributes$, value$, values())

The second argument must be a string expression that contains the attribute names, separated by vertical bars
(|). The third and fourth arguments contain the string values and the numeric values required by the attributes,
in the same order as the attribute names themselves. Multiple string values are separated by vertical bars.
Multiple numeric values appear in consecutive entries in the list values(). The lowest subscript of the list must
be 1, and the list must be dimensioned large enough to contain all the numeric attribute values expected.

This calling sequence is similar to that described in Chapter 19 “Object Subroutine” for use with the OBJM_SET
method. If id does not refer to an existing object or control, or if an attribute name is invalid for that type of object
or control, or if it is not possible to set the value of an attribute, an error occurs. See Chapter 19 for details.

353Interface Library Routines



TC_Get
This general purpose subroutine lets you obtain or “get” the value(s) for any attribute(s) defined for the object or
control whose ID is given.

CALL TC_Get, (id, attributes$, value$, values())

The second argument must be a string expression that contains the attributes names, separated by vertical bars
(|). The third and fourth arguments contain the current values, string or numeric, of the attributes, in the same
order as the attribute names themselves. Multiple string values are separated by vertical bars. Multiple numeric
values appear as consecutive values in the numeric list. The lowest subscript of the list is 1, and the list values()
is redimensioned to the exact size needed.
This calling sequence is similar to that described in Chapter 19 “Object Subroutine” for use with the OBJM_GET
method. If id does not refer to an existing object or control, or if an attribute name is invalid for that type of object
or control, an error occurs. See Chapter 19 for details.

TC_GetSysInfo
This subroutine provides a simpler interface to the OBJM_SYSINFO method with the built-in Object subroutine.

CALL TC_GetSysInfo (attribute$, value$, values())

For any valid attribute, the attribute values, string or numeric, will be returned. For details on valid attribute
names, see Chapter 19 “Object Subroutine.”

TC_Erase
This routine hides (erases or makes invisible) any True Controls object or control. It should be called with the ID
number of the object or control to be erased. The statement:

CALL TC_Erase (id)

will erase the object or control whose ID is specified.
Remember that erasing (making invisible) a window also makes all graphics objects and controls contained within
it not visible. All contained objects and controls that were visible will again become visible when the window is
made visible again.

TC_Show
This routine reveals (shows or makes visible) any window, graphics object, or control. It should be called with the
ID number of the object or control to be shown, as follows:

CALL TC_Show (id)

Remember that the window must be visible for the graphics objects and controls contained within it to be visible.

TC_Show_Default
CALL TC_Show_Default (flag)

Calling this routine with flag = 0 specifies that subsequently created graphics objects and controls will not
automatically be shown upon creation. Calling this routine with flag = 1 specifies that they will be shown or
displayed. Remember that the visibility of a window overrides the visibility of any control. Therefore, showing a
control will not make it visible unless the containing window is also shown. Remember also that the value of the
show-default flag does not affect windows; windows must be specifically shown using:

CALL TC_Show (wid)

TC_Select
CALL TC_Select (id)

This subroutine allows selecting selectable controls: push buttons, radio buttons, check boxes, edit fields, list edit
buttons, and text edit controls. When applied to an edit field or a text edit control, that control becomes active and

354 True BASIC Language System



absorbs keystrokes. When applied to a push button, that button is selected and will be deselected when the Enter
or Return key is pressed. When applied to a radio button or a check box, the result will be as if the user clicked on
the button or box. A SELECT or CONTROL SELECT event will be generated as well. This operation may have no
effect if the containing window hasn't been shown for the first time. (This routine is an interface to the SELECT
method; see Chapter 19 “Object Subroutine.”)

This routine cannot be used for windows. Instead use TC_Win_Switch, TC_Win_Active, or TC_Win_Target.

TC_Sensitize
CALL TC_Sensitize (id, flag)

If flag = 0, the control will be desensitized; that is, it will not respond to mouse clicks, etc. If flag = 1, the control
will be made sensitive. If id does not refer to a control that can be made sensitive, no action will occur and no error
will result.

TC_Free
CALL TC_Free (id)

This subroutine is the opposite of a “create” subroutine; it deletes the object or control, and frees all internal
memory formerly associated with it. The ID number becomes invalid, although it may reappear in a subsequent
“create” operation.

Freeing a window will free all menus and controls associated with it.

This routine should not be used to free an entire menu structure; there is a special subroutine for that purpose
(see TC_Menu_Free, later.)

TC_SetUnitsToPixels
TC_SetUnitsToUsers
Calling one of these routines tells True Controls what units to use in placing windows on the screen, and controls and
graphics objects within windows. The units remain in effect until changed by a call to the other routine.

When True Controls creates a new physical window it also opens a logical window within it whose default user
coordinates are (0, 1, 0, 1).

TC_PixToUser
TC_UserToPix
Controls and graphics objects can be placed within windows in either the pixel coordinates of the physical window
or user coordinates specified by the programmer. All True BASIC graphical output (PLOT, BOX LINES, etc.) are
placed in user coordinates. These two routines transform one set of coordinates into the other.

CALL TC_PixToUser (px, py, wx, wy)

will convert the pixel point (px,py) into the user-coordinates point (wx,wy).
CALL TC_UserToPix (wx, wy, px, py)

will convert the user point (wx,wy) into the pixel-coordinates point (px,py).

Warning: when using either of these routines, it is imperative that control be in the correct logical windows. If the
logical window is the default logical window within a physical window, this can be assured by using

CALL TC_Win_Target (mywin)

If the logical window is one that you created using the OPEN SCREEN statement, this can be assured by using
WINDOW #n

355Interface Library Routines



TC_SetRect
Normally, objects and controls are placed on the screen or in the physical window upon creation. But the program
can move them around dynamically by re-specifying their location coordinates. If cid is the ID of a control, then

CALL TC_SetRect (cid, newxl, newxr, newyb, newyt)

will move that control to a new location in the window. If cid is the ID of a window, then calling this routine will
move the window to a new location on the screen.

Warning: this routine makes no assumptions about the UNITS being used to locate a window or control.  If the object
is a window, the four values will be taken to be pixel coordinates of the full screen. If the object is a control or graphics
object, the four values will be taken to be in whatever the current UNITS of the object or control. Furthermore, to use
user coordinates, you must make sure you are in the correct logical window; otherwise, True BASIC will take the
window coordinates of the current logical window to figure the new location of the object or control.

TC_GetRect
CALL TC_GetRect (cid, xl, xr, yb, yt)

This routine finds the current location, in pixels, of a window, graphics object, or control on the screen or within
the containing window. As an example, if you want to move a control 10 pixels up and to the right, and if the control
was placed originally using pixel coordinates, you might use:

CALL TC_GetRect (cid, xl, xr, yb, yt)
CALL TC_SetRect (cid, xl+10, xr+10, yb-10, yt-10)

Remember that in pixel coordinates smaller y values are closer to the top of the screen.

If the control or graphics object was placed originally using user coordinates, the procedure is more complicated.
Suppose you want to move a control 0.1 user units up and to the right. You first must make sure you are in the
correct logical window. This you must convert 0.1 into a certain number of pixels. Finally, you can now move the
control. The following code illustrates these steps:

CALL TC_Win_Target (mywin) ! Only one of this statement
WINDOW #n ! and this statement is needed.
CALL TC_UserToPix (0, 0, x1, y1)
CALL TC_UserToPix (.1, .1, x2, y2)
LET xdelta = x2 - x1
LET ydelta = y2 - y1
CALL TC_GetRect (cid, xl, xr, yb, yt)
CALL TC_SetRect (cid, xl+xdelta, xr+xdelta, yb+ydelta, yt+ydelta)

Note: since pixels coordinates increase from top to bottom, ydelta will probably be negative.

Two other routines, TC_SetRectUsers and TC_SetRectPixels, can be used to bypass the UNITS setting of the
object or control. (Windows have no such setting; their location internally is always in pixels.)

Warning: as suggested in the description of TC_SetRect, use of the TC_GetRect subroutine is for expert use only;
strange results can occur if misused.

TC_SetRectUsers
TC_SetRectPixels

CALL TC_SetRectUsers (cid, newxl, newxr, newyb, newyt)
CALL TC_SetRectPixels (cid, newxl, newxr, newyb, newyt)

These two routines are similar to TC_SetRect, except that they bypass the current value of the UNITS setting.
That is, if user units were in effect upon the creation of the graphical object or control, then True BASIC will
assume you mean user coordinates if you use TC_SetRect. If you need to use pixel coordinates for some special
purpose, you can use TC_SetRectPixels. This routine first sets the UNITS to pixels coordinates, changes the
location, and then sets the UNITS back to their original setting.

356 True BASIC Language System



TC_SetRectUsers behaves similarly.

If you use TC_SetRectUsers to locate a new position for a window, the routine will convert from screen coordinates
to pixel coordinates, and then relocate the window. However, no attempt will be made to make sure the window
embellishments are entirely visible.

Warning: use of these two routines is for special purposes only. Misuse can result in strange behavior.

TC_SetText
CALL TC_SetText (id, text$)

This subroutine can be used with any control that allows setting the text –  edit fields, static text fields, push
buttons, check boxes, individual radio buttons, and text edit controls. (Edit fields and text edit controls also have
similar routines that do the same thing. If you use this routine for a text edit control, the scroll bars will not be
adjusted.)

TC_GetText
CALL TC_GetText (id, text$)

This subroutine can be used with any control that allows retrieving the text –  edit fields, static text fields, push
buttons, check boxes, and text edit controls. (Edit fields and text edit controls also have similar routines that do
the same thing.)

TC_SetTextJustify
CALL TC_SetTextJustify (cid, justify$)

This subroutine alters the text justification for any control that permits it. The permissible values of justify$
are: “LEFT”, “CENTER”, and “RIGHT”. Case doesn’t matter. To have an effect, this routine must be called before
the control is shown the first time. Furthermore, setting the justification may work only for static text boxes;
certain operating systems might also allow justification for push buttons, check boxes, and rodir buttons.

Exception: 801 Invalid text justify option: ooooo

TC_SetList
CALL TC_SetList (cid, text$())

This routine can be used to set (or re-set) the list of a list button, a list edit button, or a list box. The subscript lower
bound of text$() must be 0 or 1. If used to set the text of a list edit button, the 0-th entry, if any, will be used to
set the contents of the list edit button itself.

TC_FontsAvailable
This subroutine returns the names of the fonts available on the current computer system.

CALL TC_FontsAvailable (fonts$())

will return the names, in the string list fonts$(), of the fonts currently available on the system.

TC_GetScreenSize
CALL TC_GetScreenSize (left, right, bottom, top)

This subroutines gives the size of the full screen in pixels. Specifically, left is the leftmost pixel, which is always
numbered 0. Right is the rightmost pixel, which is always positive. Bottom is the bottom-most pixel, which is
always positive. And top is the topmost pixel, which is always 0.

The number of horizontal pixels is right - left + 1, or simply right+1, since left = 0. The number of
vertical pixels is bottom - top + 1, or simply bottom+1, since top = 0.

357Interface Library Routines



TC_Env_Set
This subroutine can be used only on Unix machines! On Unix machines:

CALL TC_Env_Set (attribute$, value$)

will set the environmental attribute named to the value specified.
If used with non-Unix systems, an error will occur.

Window Subroutines
TC_Win_Create

CALL TC_Win_Create (wid, options$, xl, xr, yb, yt)

creates a physical window. The rectangular coordinates do not define the outer dimensions of the window, but
rather the interior portion of the window available to the user; this interior portion is known as the client area.. If
you are using pixel coordinates (see TC_SetUnitsToPixels,) the actual placement of the window may depend on
the operating system. Suppose you specify a rectangle that forces some portion of the window, either the client
area or the embellishments, to be off the screen. On Windows, the size of the client area may be diminished so that
the total size of the window, including embellishments, is no larger than the viewing screen, although the window
may be offset. On the Macintosh, the client area will not be diminished, and could be partly or entirely off the
screen.

If you are using True BASIC screen coordinates (see TC_SetUnitsToUsers,) True Controls will adjust the size and
position of the client area, if necessary, so that it and all the embellishments (title bars, borders, etc.) will be visible
on the screen. The screen coordinates are interpreted relative to the full screen.

Window number 0 is always created by the system and placed in a central location on the screen. It will be shown
(i.e., made visible) upon a call to TC_Show with argument 0, or upon the first True BASIC output statement
(PRINT or PLOT for example, but not CLEAR.)

The option$ string may be a string variable or a string expression. This string will contain a sequence of words
that will specify certain aspects of the window. The words may be in uppercase, lowercase, or mixed case, and they
may be separated by spaces or vertical bars (|). The options are as follows:

TITLE A title bar will be created.
SIZE A resize box will be created.
CLOSE A close box will be created.
SHOW The window will be shown upon its creation
HSCROLL A horizontal scroll bar will be attached.
VSCROLL A vertical scroll bar will be attached.
BORDER FULL The window will have a full border, and can have a title bar, close box, and

resize box (default).
BORDER SINGLE The window will have a single-line border, and cannot have a  title bar, etc. An

error may occur on some systems.
BORDER DOUBLE The window will have a double-line border, and cannot have a title bar, etc. An

error may occur on some systems.
IMMUNE The window will be an immune window (default).
NONIMMUNE The window will not be an immune window.
ICONIZABLE The window can be made into an icon on those platforms that allow it.

Also, “BORDER FULL” windows may automatically have a title bar on some systems.
Windows are not shown as they are created unless the “SHOW” option is included. You can always show a window
with:

CALL TC_Show (wid)

358 True BASIC Language System



Exceptions: 802 Can’t have BORDER NONE for a regular window.
802 Can’t specify two or more border types.
802 Can’t have features in non-document windows.
803 Can’t create a child window with this routine.

TC_Win_ChildCreate
CALL TC_Win_ChildCreate (wid, options$, pwid, xl, xr, yb, yt)

creates a physical window that is a child window to the parent window identified by pwid. The properties of child
windows may vary across systems. For example, on the Macintosh, a child window will always be in front of (i.e.,
active) relative to its parent.

The placement of child windows is always relative to the client area of the parent window. The child window will
be clipped at the edges of the parent window.

The rectangular coordinates do not define the outer dimensions of the window, but rather the interior portion of
the window available to the user; this interior portion is known as the client area.. If you are using pixel
coordinates (see TC_SetUnitsToPixels,) the actual placement of the window may depend on the operating system.
Suppose you specify a rectangle that forces some portion of the window, either the client area or the
embellishments, to be outside the parent window. On Windows, the size of the client area may be diminished so
that the total size of the window, including the border, is no larger than the viewing screen, although the window
may be offset. On the Macintosh, the client area will not be diminished, and could be partly or entirely off the
screen.

If you are using True BASIC screen coordinates (see TC_SetUnitsToUsers,) True Controls will adjust the size and
position of the client area, if necessary, so that it and its border, if any, will be visible in the parent window. The
screen coordinates will be interpreted relative to the client area of the parent window.

The option$ string may be a string variable or a string expression. This string will contain a sequence of words
that will specify certain aspects of the child window. The words may be in uppercase, lowercase, or mixed case,
and they may be separated by spaces or vertical bars (|). The options are as follows:

BORDER SINGLE The child window will have a single-line border.

BORDER NONE The child window will have no border.

SHOW The window will be shown upon its creation, provided the parent window is
visible.

IMMUNE The child window will be an immune window (default).

NONIMMUNE The child window will not be an immune window.

Windows are not shown as they are created unless the “SHOW” option is included. You can always show the
window with:

CALL TC_Show (wid)

Exceptions: 802 Can’t specify two or more border types.
804 Must specify type of border.
804 Child window must have BORDER SINGLE or BORDER NONE.
804 Can’t have embellishments on child windows.

TC_Win_Target
This subroutine directs output to a specific physical window. The statement:

CALL TC_Win_Target (wid)

will direct subsequent output to physical window whose ID is given. Calling this subroutine will not affect either
the window’s visibility or, if visible, its placement (front and back) on the screen.

359Interface Library Routines



To direct output to a specific logical window within the physical window, the call to TC_Win_Target should be
followed by a True BASIC WINDOW statement; otherwise, output will be directed to the default logical window
that fills the physical window. If the desired logical window was created using an OPEN SCREEN statement, then
it is necessary only to use a True BASIC WINDOW statement; the call to TC_Win_Target may be omitted.

Exception: 805 Can’t make this window the target: nnn

TC_Win_Active
CALL TC_Win_Active (wid)

This subroutine can be used to move a visible window to the front position on the screen. Calling it has no effect
on where the output is directed.

Exception: 806 Can’t make this window active: nnn
TC_Win_Switch

CALL TC_Win_Switch (wid)

This subroutine will both direct output to the physical window specified and, if the window is visible, move it to
the front of the screen; it combines the actions of TC_Win_Target and TC_Win_Active.

Exception: 807 Can’t switch to this window: nnn

TC_Win_SwitchCurrent
CALL TC_Win_SwitchCurrent

This subroutine switches to the logical window that fills the currently-targeted physical window. You cannot use
a WINDOW statement because this logical window’s number is hidden. If you know the window ID of the
currently-targeted window, you can also use:

CALL TC_Win_Switch (wid)

TC_Win_NoHide
CALL TC_Win_NoHide (wid, flag)

Normally, when the user clicks on the close box of a window and TC_Init has been called, True BASIC erases the
window but doesn’t stop running the program. Calling this routine with flag = 1 will prevent this automatic
erasing. Calling it with flag = 0 will restore the default situation.

TC_Win_MouseMove
CALL TC_Win_MouseMove (wid, flag)

This subroutine is used to activate or inhibit (default) the mouse move event in a particular window. If flag = 0,
mouse move events will be inhibited (i.e., not be returned by TC_Event); if flag = 1, mouse move events will be
generated (i.e., returned by TC_Event).
The mouse move event is “MOUSE MOVE”. It can be used to track the mouse within a given window.
Alternatively, the True BASIC statement GET MOUSE can also be used.

TC_Win_Valid
TC_Win_Valid (wid)

Calling this subroutine will be a “no operation” if the window ID wid refers to an existing window. If the window
ID is not valid, an error will occur.

Exception: 808 Illegal window number: nnn

360 True BASIC Language System



TC_Win_SetTitle
If the window has previously been created with a “BORDER FULL” and “TITLE” options, this subroutine should
be used to set the title.

CALL TC_Win_SetTitle (wid, “My New Window”)

The title of a visible window can be changed at any time, and takes effect immediately.

TC_Win_GetTitle
This subroutine finds the current title of a window as follows:

CALL TC_Win_GetTitle (wid, title$)

TC_Win_SetCursor
This subroutine sets the type of cursor to be used with the window.

CALL TC_Win_SetCursor (wid, cursor$)

The cursor type can be “ARROW”, “IBEAM”, “CROSS”, “PLUS”, “WAIT”, and “USER”. The system will then
show the I-beam when the mouse position is inside the edit field or text editor, but will show in another form when
the mouse is outside.  (Note:  Type “USER” is not yet implemented.)

Exception: 809 Invalid cursor shape:  ccccc

TC_Win_SetPen
CALL TC_Win_SetPen (wid, width, color, style$, pattern$)

This subroutine sets certain attributes of the pen for the window. These include: the pen width, the pen color, the
pen style, and the pen pattern. Attributes will not be changed if the arguments to this subroutine are < -2 (if
numeric) or the null string (if string).

The pen width is specified in pixels. The default is one pixel.

The pen color is specified by an index into the current color mix table (see Chapter 13 “Graphics”). The default
color is -1 (black.)

The pen style must be one of:
“SOLID” Solid line (default)
“DOT” Dotted line
“DASH” Dashed line

The pen pattern must be one of:
“SOLID” Solid (default)
“HOLLOW” The line traced by the pen is invisible
“RUBBER” Small dashed lines that move on some systems.

There are several restrictions on combinations of width, style, and pattern. If the width is one pixel, then styles
DOT and DASH override the pattern, making it SOLID. If the width is greater than one pixel, then style SOLID
and pattern SOLID override. In other words, DOT, DASH, and RUBBER can only happen with one-pixel pens. And
the style setting overrides the pattern setting.

For example:
CALL TC_Win_SetPen (0, 1, 4, “DOT”, “”)

will set the pen in the standard output window to width one pixel, color 4 (usually red), and style dotted.
Exception: 810 Invalid window pen setting.

361Interface Library Routines



TC_Win_SetBrush
CALL TC_Win_SetBrush (wid, backcolor, color, pattern$)

This subroutine controls the color and pattern for the brush, as well as the background color for both the pen and
the brush. 

The background color refers to the current color mix table. If backcolor is < -2, the current background color
will not be changed. The default background color is -2 (white.)
The brush color, like the pen color, refers to the color mix table. If color is < -2, the current brush color will not
be changed. The default color is -1 (black.)
The brush pattern must be one of:

“SOLID” (default)
“HOLLOW”
“HORIZ”
“VERT”
“FDIAG”
“BDIAG”
“CROSS”
“DIAGCROSS”

For example,
CALL TC_Win_SetBrush (0, 3, -1, “diagcross”)

will change the background color for the standard output window to color number 3, and will set the brush to a
diagonal crosshatch pattern. Note: the background color will not take effect immediately, but only after a CLEAR
or similar operation.

Exception: 811 Invalid window brush setting.

TC_Win_RealizePalette
CALL TC_Win_RealizePalette (wid)

Calling this subroutine causes True BASIC to add to the system color mix table those entries in the True BASIC
color mix table that are not already there. This may eliminate “dithering” on some systems. (Dithering occurs
when there isn’t an exact match in the system color mix table corresponding to the color desired. The system may
then attempt to construct  the desired color by mixing two or more of the existing colors in its color mix table. This
process is called dithering.)

TC_Win_SetDrawmode
CALL TC_Win_SetDrawmode (wid, mode$)

The string values allowed for mode$ are as follows; note that where there is a space in the string, there must be
exactly one space:

“COPY” ignore current contents, draw over anything that is there (default)
“OR” perform bitwise OR between bit plans of each currently displayed pixel and the new

pixel which is to overlay it
“XOR” perform bitwise XOR between bit plans of each currently displayed pixel and the new

pixel which is to overlay it
“CLEAR” clear the screen to the extent covered by the item being drawn
“NOT COPY” the bitwise negation of COPY
“NOT OR” the bitwise negation of OR
“NOT XOR” the bitwise negation of XOR
“NOT CLEAR” the bitwise negation of CLEAR

362 True BASIC Language System



The drawing mode determines how the window’s pen and brush interact with the background, including what has
already been drawn. As an example, assume there are four bit planes (i.e., there are sixteen entries in the color
map table), the background is color 6 (binary 0110), and the pen is color 10 (binary 1010). Then the above drawing
modes would give the following results for each pixel covered by the pen:

“COPY” Color 10 (binary 1010)
“OR” Color 14 (binary 1110)
“XOR” Color 12 (binary 1100)
“CLEAR” Color 0 (binary 0000)
“NOT COPY” Color 5 (binary 0101)
“NOT OR” Color 1 (binary 0001)
“NOT XOR” Color 3 (binary 0011)
“NOT CLEAR” Color 15 (binary 1111)

Exception: 812 Invalid window drawmode setting.
Something similar may operate for a larger number of bit planes, and will sometimes yield strange-looking
results. But the modes  “COPY” and “CLEAR” should work as expected. And “XOR” should have the property
that, if you draw the object twice, you will get back the original background.

TC_Win_SetFont
CALL TC_Win_SetFont (window, fontname$, fontsize, fontstyle$)

This subroutine sets certain attributes of the font used in PRINT statements. The fontname$ must be a legal
font name; the names “Helvetica”, “Fixed”, “Times”, and “System” will always be legal.
The fontsize is given in points, which are approximately 1/72 of an inch. (How big the font is on the screen will
depend on the characteristics of the monitor.)
The fontstyle$ may be one of “Plain”, “Bold”, “Italic”, or “Bold Italic”.
The font name and font style may be given in uppercase, lowercase, or mixed case.
If fontsize is a negative number, the font size will not be changed. If fontname$ or fontstyle$ is the null
string, then it will not be changed.
For example:

CALL TC_Win_SetFont (0, “Fixed”, 10, “Bold”)

will set the printing font for the standard output window to 10 point fixed (nonproportional) bold. The Fixed font
is usually something like Courier.

Exceptions: 813 Invalid window font name: nnnnn
814 Invalid window font size: sss
815 Invalid window font style:  sssss

If you have included attached scroll bars, the following twelve routines can be used to manipulate them. They
operate the same as the corresponding routines for scroll bars that are not attached to windows.

TC_WinHSBar_SetPosition
CALL TC_WinHSBar_SetPosition (wid, position)

This subroutine sets the position of the slider (the thumb) of an attached horizontal scroll bar. The position is
defined in terms of the scrollbar parameters srange, erange, and prop. If the position is <= srange, the
slider will be moved to the left of the scroll bar. If the position is >= erange - prop, the slider will be moved
to the right of the scroll bar. If the position is in between, the slider will be moved to the corresponding location.
The default value is 0.

363Interface Library Routines



TC_WinVSBar_SetPosition
CALL TC_WinVSBar_SetPosition (wid, position)

This subroutine sets the position of the slider (the thumb) of an attached vertical scroll bar. The position is defined
in terms of the scrollbar parameters srange, erange, and prop. If the position is <= srange, the slider will
be moved to the top of the scroll bar. If the position is >= erange - prop, the slider will be moved to the bottom
of the scroll bar. If the position is in between, the slider will be moved to the corresponding location. The default
value is 0.

TC_WinHSBar_GetPosition
CALL TC_WinHSBar_GetPosition (wid, position)

This subroutine finds out the current location of an attached horizontal scroll bar slider. The current position must
be interpreted in terms of the scrollbar parameters srange, erange, and prop.

TC_WinVSBar_GetPosition
CALL TC_WinVSBar_GetPosition (wid, position)

This subroutine finds out the current location of an attached vertical scroll bar slider. The current position must
be interpreted in terms of the scrollbar parameters srange, erange, and prop.

TC_WinHSBar_SetRange
CALL TC_WinHSBar_SetRange (wid, srange, erange, prop)

This subroutine is used to set the scrollbar parameters that specify the extreme positions of the slider for an
attached horizontal scroll bar, as well as the proportional size of the slider on those systems that provide for
varying-sized sliders.

These parameters are arbitrary. The relation to the position (and size of the slider on certain systems) is as follows:
When the slider is at the left, its position is equal to srange. When the slider is at the right, its position is equal
to erange - prop. On certain systems, the size of the slider relative to the size of the slider trough (the region
in which the slider moves) is given by prop/(erange - srange), but it is never greater than one. The default
values are 0, 100, and 1, respectively.

TC_WinVSBar_SetRange
CALL TC_WinVSBar_SetRange (wid, srange, erange, prop)

This subroutine is used to set the scrollbar parameters that specify the extreme positions of the slider for an
attached vertical scroll bar, as well as the proportional size of the slider on those systems that provide for varying
sized sliders.

These parameters are arbitrary. The relation to the position (and size of the slider on certain systems) is as follows:
When the slider is at the top its position is equal to srange. When the slider is at the bottom, its position is equal
to erange - prop. On certain systems, the size of the slider relative to the size of the slider trough (the region
in which the slider moves) is given by prop/(erange - srange), but never greater than one. The default
values are 0, 100, and 1, respectively.

TC_WinHSBar_GetRange
CALL TC_WinHSBar_GetRange (wid, srange, erange, prop)

This subroutine finds out the current values of the scrollbar parameters for an attached horizontal scroll bar.

TC_WinVSBar_GetRange
CALL TC_WinVSBar_GetRange (wid, srange, erange, prop)

This subroutine finds out the current values of the scrollbar parameters for an attached vertical scroll bar.

364 True BASIC Language System



TC_WinHSBar_SetIncrements
CALL TC_WinHSBar_SetIncrements (wid, single, page)

This subroutine is used to set the scrollbar increments for an attached horizontal scroll bar. The single
increment defines how far the slider (thumb) moves when the user clicks in the left-arrow or right-arrow boxes at
the ends of the scroll bar. The page increment defines how far the slider moves when the user clicks in the gray
area either left or right of the slider. The default values are 1 and 10, respectively.

The actual movement of the slider is in terms of the parameters (see TC_WinHSBar_SetRange for details.)

TC_WinVSBar_SetIncrements
CALL TC_WinVSBar_SetIncrements (wid, single, page)

This subroutine is used to set the scrollbar increments for an attached vertical scroll bar. The single increment
defines how far the slider (thumb) moves when the user clicks in the up-arrow or down-arrow boxes at the ends of
the scroll bar. The page increment defines how far the slider moves when the user clicks in the gray area either
above or below of the slider. The default values are 1 and 10, respectively.
The actual movement of the slider is in terms of the parameters (see TC_WinVSBar_SetRange for details.)

TC_WinHSBar_GetIncrements
CALL TC_WinHSBar_GetIncrements (wid, single, page)

This subroutine finds out the current values of the increments for an attached horizontal scroll bar.

TC_WinVSBar_GetIncrements
CALL TC_WinVSBar_GetIncrements (wid, single, page)

This subroutine finds out the current values of the increments for an attached vertical scroll bar.

TC_Win_PageSetup
CALL TC_Win_PageSetup (wid)

This subroutine causes a page setup dialog box to be displayed. The properties specified then apply to all printing that
takes place from that window, or printing to a file that occurs while that window is the target window.

TC_Win_Print
CALL TC_Win_Print (wid)

This subroutine prints the contents of the window, including graphics, to the current printer.
Note: printed text can be sent directly to the printer by first OPENing the printer, as in

OPEN #1: printer

and then using the PRINT statement, as in
PRINT #1: ...

The text will be printed in the font type, size, style, and color of the currently targeted physical window.

TC_Win_Update
CALL TC_Win_Update (wid, left, right, bottom, top)

This subroutine will update the contents of the window specified, or a sub-portion thereof. Generally, you will not
need to use this process if you are using immune windows.

365Interface Library Routines



Menu Subroutines
TC_Menu_Set

CALL TC_Menu_Set (wid, menu$(,))

This subroutine sets, or resets, the menus for the given window. The rows of the menu$ matrix correspond to the
menus. They must be numbered starting with 0 or 1. (At present, the 0-th row is ignored.) The columns of the
menu$ matrix correspond to the menu items. They must be numbered starting with 0.
The entries in the menu matrix are the words that are displayed in the menu header and in the individual menus.
The 0-th column gives the menu header names. The remaining columns give the menu item names.

When the event handler TC_Event returns an event of type MENU, the menu and item numbers are also
returned; they refer to the original menu$(,) matrix.

The number of columns in menu$(,) must be large enough to contain the longest menu. For shorter menus, the
remaining entries should consist of the null string.

The words that form the menu header and the menu items are displayed exactly as provided by the menu$(,)
matrix. (The words may be changed at any time by calling the subroutine TC_Menu_SetText.) They may contain
any letters or other characters, except the at-sign “@”, which has special meanings.

If a menu item consists of “@” alone, a dashed-line separator will appear in that position. If the final two characters
of a menu item consist of “@” followed by a letter, that letter will be used as a hot-key alternative for activating the
menu. (The conventions differ on different platforms. For Windows and OS/2, the letter following the “@” must be
contained within the menu item itself. When the menu is displayed, that letter will be underlined.)

Hierarchical menus can also be constructed. First, remember that all menus, hierarchical or not, occupy a single
row in the menu$(,) matrix. The hierarchical part is indicated as follows: The last two characters of the parent
menu item consist of the sequence “@@”. And the menu header (the entry in the 0-th column of menu$(,)) must
start with a single “@” but then contain the same word as the parent. For example, if “Color” is to be the start of a
hierarchical menu, it should appear as “Color@@”. Correspondingly, at a later row in the menu$(,)matrix, there
must be a menu header that appears as “@Color”.

Note that although the menus will appear on the screen as hierarchical menus, you will treat them simply as rows
and columns in the menu$(,) matrix.

You can specify platform-dependent menu items. The following example illustrates this use:
MAT READ menus$(2, 0 to 3)
DATA |MAC|File|OTHER|File@F|, Open@O, Save@S, |MAC|Quit@Q|OTHER|Exit@X|
DATA |MAC|Edit|OTHER|Edit@E|, |MAC|Cut@X|OTHER|Cut@T|, Copy@C, |MAC|Paste@V|OTHER|Paste@P|

Acceptable platform names are MAC, WIN32, OS/2, and UNIX. WIN32 refers to all Windows platforms: Windows
3.1 with Win32s, Windows 95, and Windows NT.

Exceptions: 820 Lower bound for menu$ rows must be 0 or 1.
821 Lower bound for menu$ columns must be zero.
822 Menu$ array must have elements.
823 Don’t recognize menu item: iiiii
824 Can’t find parent menu: ppppp

TC_Menu_AddItem
CALL TC_Menu_AddItem (wid, menu, text$)

This subroutine adds a menu item at the end of an existing menu. The new menu item may be a separator, or may
have a hot-key equivalent. But such an item cannot be the start of a new hierarchical menu.

Note that the added menu item does not appear in your original menu$(,) matrix. You must therefore be careful
when using this subroutine. Furthermore, if you wish to change a menu item in the middle of a menu, it will be

366 True BASIC Language System



much safer to delete the entire menu structure, make the changes in the menu$(,) matrix, and then call
TC_Menu_Set afresh.

Exceptions: 825 Menu or item number must not be negative.
826 To add a menu item, menu must already exist.
827 Added menu item cannot be hierarchical.

TC_Menu_DelItem
CALL TC_Menu_DelItem (wid, menu, item)

This subroutine deletes a specific menu item from a menu. However, TC_Event will report menu events in terms
of the row and column of the original menu$(,)matrix. So, you must be quite careful when using this subroutine.
It would be much safer to delete the entire menu structure, make the changes in the menu$(,)matrix, and then
call TC_Menu_Set afresh.

TC_Menu_AddMenu
CALL TC_Menu_AddMenu (wid, menu$())

This subroutine is used to add an entirely new menu onto the end of the current menu structure. The new menu
is given in the list menu$(), which must have a 0-th entry to contain the menu header. This subroutine will
normally be used to add a special menu, one that will later be deleted.

TC_Menu_DelMenu
CALL TC_Menu_DelMenu (wid)

This subroutine will delete the last menu of the menu structure. Used in conjunction with TC_Menu_AddMenu,
this subroutine will delete a special menu previously added.

TC_Menu_SetText
CALL TC_Menu_SetText (wid, menu, item, newtext$)

This subroutine changes the word or text that appears in the given menu position. The new word cannot contain a
“@”; in other words, separators, hot keys, and hierarchical menus cannot be specified with this subroutine.

Exception: 828 Invalid window, id, menu, item combination.

TC_Menu_GetText
CALL TC_Menu_GetText (wid, menu, item, text$)

This subroutine returns the word or text that appears in the given menu position. 
Exception: 828 Invalid window, id, menu, item combination.

TC_Menu_SetCheck
CALL TC_Menu_SetCheck (wid, menu, item, flag)

This subroutine sets, or unsets, the check mark that can appear just to the left of the menu item word. If flag =
1, the check mark will be added; if flag = 0, it will be removed.

It is not permitted to “check” a menu header or a separator. Moreover, the menu item must be “checkable” to
permit adding a check; that is, there must be a character space to the left of the menu item as it is displayed. (Menu
items are checkable by default. To make them non-checkable, perhaps to save space, use the Object subroutine
directly; see Chapter 19.)

Exception: 828 Invalid window, id, menu, item combination.

367Interface Library Routines



TC_Menu_GetCheck
CALL TC_Menu_GetCheck (wid, menu, item, flag)

This subroutine is used to determine the check mark status of a menu item. If the item is checked, the value of
flag will be 1; if not checked, the value of flag will be 0.

Exception: 828 Invalid window, id, menu, item combination.

TC_Menu_SetEnable
CALL TC_Menu_SetEnable (wid, menu, item, flag)

This subroutine is used to “gray” or “ungray” a menu item. If flag = 0, the menu item will be “grayed” or disabled;
that is, it will appear dimmed. Such an item cannot be selected. If flag = 1, the menu item will be enabled and
will appear normal. If you disable a menu header (item 0,) the entire menu will be disabled. Menu separators
cannot be disabled.

Exception: 828 Invalid window, id, menu, item combination.

TC_Menu_GetEnable
CALL TC_Menu_GetEnable (wid, menu, item, flag)

This subroutine is used to determine the state – “gray” or “ungray” – of a menu item. If flag = 0, the menu item
is now “grayed” or disabled; that is, it will appear dimmed. Such an item cannot be selected. If flag = 1, the menu
item is now enabled and appears normal.

Exception: 828 Invalid window, id, menu, item combination.

TC_Menu_Free
CALL TC_Menu_Free (wid)

This subroutine should be used to free the entire menu structure associated with the window. For example, you
may wish to replace the menu structure with an entirely different one.

It is not necessary to call this subroutine if you intend to “free” the window itself; freeing a window automatically
frees all entities associated with it.

368 True BASIC Language System



Check Box Subroutines
TC_Checkbox_Create

CALL TC_Checkbox_Create (cid, text$, xl, xr, yb, yt)

This subroutine creates a check box, which is a small square box that can either be empty or can contain an “X”.
The text provided will appear just to the right of the check box and will be left-justified.

If the units are pixels (TC_SetUnitsToPixels,) the four coordinates refer to the containing physical window. If
either yb or yt < 0, the default height of a checkbox will be used. If the units are users (TC_SetUnitsToUsers,)
the four coordinates refer to the window coordinates of the current logical window. If yb or yt = -99999, the
default height of a check box will be used.

The check box will not be shown if the show default is set to 0 or the physical window is not showing, but will be
shown if the show default is 1 and the containing window is visible.
If text$ ends with "|LEFT", "CENTER", or "|RIGHT", and the operating system permits, the checkbox text will
be justified accordingly.

TC_Checkbox_Set
CALL TC_Checkbox_Set (cid, state)

If state = 1, an “X” will appear in the check box. If state = 0, the check box will be cleared.

TC_Checkbox_Get
CALL TC_Checkbox_Get (cid, state)

This subroutine finds the state of a check box. If the check box is checked, state =1; if the check box is not
checked, state = 0.

You can change the text of a check box using
CALL TC_SetText (cid, newtext$)

369Interface Library Routines



Edit Field Subroutines
TC_Edit_Create

CALL TC_Edit_Create (cid, initialtext$, xl, xr, yb, yt)

This subroutine creates a one-line editable field that allows the usual editing operations — left and right cursor
controls, mouse clicks, keystrokes, delete and/or backspace — according to the conventions of the operating
system.
The initial text of the edit field can also be set at this time.
If the units are pixels (TC_SetUnitsToPixels,) the four coordinates refer to the containing physical window. If
either yb or yt < 0, the default height of an edit field will be used. If the units are users (TC_SetUnitsToUsers,)
the four coordinates refer to the window coordinates of the current logical window. If yb or yt = -99999, the
default height of an edit field will be used.
The edit field will not be shown if the show default is set to 0 or the physical window is not showing, but will be
shown if the show default is 1 and the containing window is visible.

TC_Edit_SetText
CALL TC_Edit_SetText (cid, newtext$)

This subroutine sets or changes the text that appears in the edit field. 
You can also change the text of an edit field with

CALL TC_SetText (cid, newtext$)

TC_Edit_GetText
CALL TC_Edit_GetText (cid, text$)

This subroutine finds out the text in an edit field. This can be done at any time. However, the user may still be
making modifications to the text. It is a good idea to require the user to select another control, or to select some
push button, to determine that the user has, in fact, completed his or her editing.

TC_Edit_SetFormat
CALL TC_Edit_SetFormat (cid, format$)

This subroutine sets a format for the edit field against which the text can be compared.
Allowable formats are:

null string No checking is done
ALPHA Only letters of the alphabet and spaces are allowed
ALPHANUM Only letters, digits, and spaces are allowed
NUMBER Only numbers are allowed (True BASIC numeric constants)
INTEGER Only digits are allowed
RANGE Only integers in the range specified are allowed (see later)
FRANGE Only numbers in the range specified are allowed (see later)
ZIP Only five-digit or nine-digit zip codes are allowed
PHONE Only phone numbers are allowed (several formats permitted)
SS Only Social Security numbers are allowed
DATE Only dates are allowed (several formats permitted)
LENGTH Only sequences of a certain length are allowed (see later)
FORMAT Only sequences that match, character by character, the format string provided are

allowed
LIST Only entries that match one of the items in a list are allowed

The NUMBER and INTEGER checks are made by attempting to use the True BASIC VAL function. In the case of
INTEGER, the entry is first checked to see if it contains anything but digits.

370 True BASIC Language System



To use the RANGE format, you must supply the smallest integer and the largest integer that will be allowed. These
integers follow the word RANGE with but one space between. For example:

“RANGE 20 35”

will allow the user to enter any integer number in the range 20 to 35, inclusive.

Similarly, with FRANGE you supply the smallest and largest general numbers that will be allowed, separated by
one space. For example,

“FRANGE -2.7 12.3”

will allow any general number between -2.7 and 12.3, inclusive.

The ZIP format will accept any sequence of five digits, or any sequence of five digits followed by a hyphen and
followed by another four digits.

The PHONE format will accept phone numbers in three formats: 999-9999, 999-999-9999, or 999/999-9999.

The SS format will accept only sequences in the format 999-99-9999.

The DATE format will accept strings in any of these format: YYYYMMDD, YYYY_MMM_DD, YYYY/MMM/DD,
DD MMM YYYY, and MMM DD, YYYY. (MM stands for the month number, while MMM stands for the three-
letter abbreviation of the month name.)

The LENGTH format may require the user to supply exactly the correct number of characters, or a number of
characters in some range. For example:

LENGTH 15
LENGTH 12 24

The first case requires the user to supply exactly 15 characters, while the second requires a number of characters
between 12 and 24, inclusive.

The FORMAT format allows you to specify the type of each character supplied by the user. The character types are:
A The character must be a letter or space
9 The character must be a digit
X The character must be a letter or a digit or a space
? The character can be anything
all others The character must match exactly

For example, if you wish the user to enter a dollar value of the form “$1,234.56”, you might specify as the format
“$9,999.99”.

Finally, for the LIST format, the user’s entry is required to match one of a sequence of words, without regard to
case. The words may be separated by spaces or commas. For example, if you require the user to enter M or F, you
might use

“LIST M F”

TC_Edit_CheckField
CALL TC_Edit_CheckField (cid, errormess$)

This routine checks the contents of the edit field specified by cid against the format (see TC_Edit_SetFormat). If
the contents are consistent with the format, errormess$ is the null string; otherwise, errormess$ contains
the reason for the inconsistency.

371Interface Library Routines



Graphical Subroutines
TC_Graph_Create

CALL TC_Graph_Create (gid, type$, xl, xr, yb, yt)

This subroutine creates a graphics object of the type specified. The types available are:
CIRCLE A circle or ellipse
RECTANGLE A rectangle
ROUNDRECT A rectangle with rounded corners
LINE A straight line segment
ALINE A line segment with arrow heads
ARC An arc of a circle or ellipse
PIE A pie section of a circle or ellipse
POLYLINE A set of joined line segments, but not necessarily closed
POLYGON A set of line segments forming a closed region
IMAGE An image (bmp, pict, etc.) from a file.

The graphical object will not be shown if the show default is set to 0 or the physical window is not showing, but
will be shown if the show default is 1 and the containing window is visible.

If the units are pixels (TC_SetUnitsToPixels,) the four coordinates refer to the containing physical window. If the
units are users (TC_SetUnitsToUsers,) the four coordinates refer to the window coordinates of the current logical
window.

For the CIRCLE, RECTANGLE, and ROUNDRECT, the coordinates define the bounding rectangle. The roundness
of the corners of the rounded rectangle is set separately. For the LINE and ALINE, the coordinates are interpreted
as follows: starting point (xl, yb), ending point (xr, yt). The presence or absence of arrowheads in the ALINE is
set separately.

For a LINE or ALINE, the four coordinates define the start and end of the line or arrowed line as follows:
xl = starting x
yb = starting y
xr = ending x
yt = ending y

Thus, to draw a line from (1,2) to (3,4), you would use:
CALL TC_Graph_Create (gid, “LINE”, 1, 3, 2, 4)

ARC and PIE start with the circle or ellipse defined by the coordinates. ARC consists of a portion of the
circumference of the circle or ellipse. PIE consists of an arc plus straight lines from the ends of the arc to the center
of the circle or ellipse. The extent of the ARC or PIE is specified separately.

POLYLINE consists of a set of (x,y) points joined with straight line segments. POLYGON is a polyline with the first
and last point joined. For these objects, the location coordinates are ignored, except for applying
TC_Graph_Scale.
IMAGE prepares the way for importing an image (such as a BMP or PICT) from a file. The filename from which
the image is to be imported, or the box keep string, is specified separately.

Graphics objects float above the True BASIC output canvas as do controls such as push buttons. But, if the window
is cleared with a CLEAR statement, visible graphics objects are made invisible. They must individually be
reshown using a call to TC_Show.

Exception: 840 Invalid graphics type: ttttt

372 True BASIC Language System



TC_Graph_SetPoly
CALL TC_Graph_SetPoly (gid, pts(,))

This subroutine provides the (x,y) points that define the polyline. The two-dimensional matrix is assumed to have
exactly two columns, and to have exactly the number of rows as there are point-pairs. (It is not necessary that the
lower bounds be 1, or anything else.)
The new polyline or polygon is shown as soon as the points, or the new points, are specified.

Exception: 841 POINTS must be in pairs for vertices.

TC_Graph_SetArc
TC_Graph_SetArc (gid, starta, stopa)

This subroutine defines the starting and ending points of an arc, or those points of the arc that is a part of a pie
segment. The ends of the ARC are defined as follows: the arc is a section of the circumference of the largest circle
or ellipse contained in the rectangular region specified in the call to TC_Graph_Create. The starting angle
starta defines a radius starting at the center of the circle or ellipse. The intersection of this radius with the
circumference defines the starting point of the arc. The ending angle stopa similarly defines a radius, the
intersection of which with the circumference defines the ending point of the arc. The angles are measured in
degrees starting with the positive x-axis, and increasing counterclockwise. The arc is drawn counterclockwise from
the starting point to the ending point, regardless of the coordinate system.
For the PIE type, the straight lines between the center of the circle or ellipse and the starting and ending points
are made visible .

TC_Graph_SetRoundRect
CALL TC_Graph_SetRoundRect (gid, owidth, oheight)

This subroutine sets the degree of roundness for the corners of a rounded rectangle. It works like this: Imagine an
ellipse with half-length equal to owidth, and half-height equal to oheight. Cut this ellipse into four quadrant
parts. These four parts become the four corners of the rounded rectangle. 

If the units for placing the object are in pixels, then these values should also be in pixels. If the units are in user
coordinates, then these values should also be given in user coordinates.

TC_Graph_SetAline
CALL TC_Graph_SetAline (gid, start, end)

This subroutine adds or removes arrowheads from either end of an ALINE. If start = 1, an arrowhead will be
placed at the beginning of the line; if start = 0, such an arrowhead will be removed. If end = 1, an arrowhead
will be placed at the end of the line; if end = 0, such an arrowhead will be removed.

TC_Graph_SetImage
CALL TC_Graph_SetImage (gid, filename$, adjustflag)

This subroutine causes an image to be imported from the file specified. The value of adjustflag specifies how the
image will be displayed in terms of the rectangle specified in the call to TC_Graph_Create.

This subroutine merely calls TC_Graph_SetImageFromFile with a null filetype, and is retained for compatibility
only. A description of adjustflag is given in the description of TC_Graph_SetImageFromFile.

TC_Graph_SetImageFromFile
CALL TC_Graph_SetImageFromFile (gid, filename$, filetype$, adjustflag)

This subroutine causes an image to be imported from the file specified. If you know the file type, you should supply
it. Allowable file types are: JPEG, PICT (Macintosh only), MS BMP, OS/2 BMP, and possibly PCX. Spaces are
important but case (upper or lower) is not.

373Interface Library Routines



Adjustflag Action
1 The image will be centered at the center of the rectangle specified at the creation of the

graphics object. The size of the image will not be changed. Other than its center, the actual
size of the rectangle will be ignored. Part or all of the image may be off the screen.

0 The image will be forced into the rectangle specified at the creation of the graphics object. The
image will be expanded or contracted as needed.

-1 The image will be centered in the window, and will retain its original size. The rectangle
specified at creation time will be ignored. If the image is larger than the window, portions of
the image may not show.

In cases +1 and -1, the defining rectangle for the graphics object will be changed.

TC_Graph_SetImageFromBox
CALL TC_Graph_SetImageFromBox (gid, boxstring$)

This subroutine causes an image to be constructed from a box keep string, which must be in the local format.

If you need to adjust the size of the image, you will have to save the box string into an image file using CALL
Write_Image, and then use CALL TC_Graph_SetImageFromFile to display the image, possibly with adjustment
of its size.

See also the subroutines Read_Image and Write_Image, described in Chapter 18. Read_Image reads a bit-mapped
image (i.e., BMP) from a file and converts it into a box keep string. Write_Image converts a box keep string into a
bit-mapped image and writes it to a file.

TC_Graph_GetImageToBox
CALL TC_Graph_GetImageToBox (gid, boxstring$)

This subroutine takes an image being displayed on the screen and converts it into a box keep string in the local
format.

See also the subroutines Read_Image and Write_Image, described in Chapter 18. Read_Image reads a bit-mapped
image (i.e., BMP) from a file and converts it into a box keep string. Write_Image converts a box keep string into a
bit-mapped image and writes it to a file.

TC_Graph_Shift
TC_Graph_Shift (gid, deltax, deltay)

This subroutine allows you to move or shift a graphics object by the amount deltax in the x-direction and
deltay in the y-direction. The actual movement on the screen depends on the orientation of the coordinate
system. For example, if you used pixel coordinates when creating the object and you specify a positive value for
deltay, the object will be moved downward.

TC_Graph_Scale
TC_Graph_Scale (gid, scalex, scaley)

This subroutine allows you to change the size of a graphics object. The object will be stretched in the x-direction
is scalex is greater than 1, or shrunk if scalex is less than 1; similarly for the y-direction. The stretching or
shrinking is done relative to the center of the graphics object, and not in relation to the origin of the coordinate
system (as with the SHIFT transformation with the DRAW statement.)

Certain graphics objects may be distorted if expanded beyond the edges of the window.

374 True BASIC Language System



TC_Graph_SetPen
CALL TC_Graph_SetPen (gid, width, color, style$, pattern$)

This subroutine can be used to set certain attributes of the pen that draws the particular graphics object. These
include: the pen width, the pen color, the pen style, and the pen pattern. The width will not be changed if it is
negative; the color will not be changed if it is < -2. The style or pattern will not be changed if the null string is
provided. Each graphics entity can have its own pen characteristics.

The pen width is specified in pixels. The default width is one pixel.
The pen color is specified by an index into the current color mix table. The default color is -1 (black.)
The pen style must be one of:

SOLID Solid line (default)
DOT Dotted line
DASH Dashed line

The pen pattern must be one of:
SOLID Solid (default)
HOLLOW The line drawn is invisible
RUBBER Small dashed lines that move on some systems.

There are several restrictions on combinations of width, style, and pattern. If the width is one pixel, then styles
DOT and DASH override the pattern, taking it to be SOLID.  If the width is greater than one pixel, then style SOLID
and pattern SOLID override. In other words, DOT, DASH, and RUBBER can only happen with one-pixel pens. And
the style setting overrides the pattern setting. If the width is more than one pixel, the approximate center of the
curve or line will follow the path specified.

For example
CALL TC_Graph_SetPen (gid, 10, 4, “”, “”)

will set the pen for graphics object gid to width ten pixels, color 4 (usually red), and with no change to the style or
pattern.
(The conventions are identical with those of TC_Win_SetPen.)

Exceptions: 842 Invalid pen style: sssss
844 Invalid pen pattern: ppppp

TC_Graph_SetBrush
CALL TC_Graph_SetBrush (gid, backcolor, color, pattern$)

This subroutine controls the color and pattern for the brush that is used to fill the interior of several of the graphics
objects, as well as the background color for both the pen and the brush.

The brush color, like the pen color, refers to the color mix table. If color is < -2, the current brush color will not
be changed. The default value is -1 (black.)

The brush pattern must be one of:
SOLID (default)
HOLLOW
HORIZ
VERT
FDIAG
BDIAG
CROSS
DIAGCROSS

The background color also refers to the current color mix table. If backcolor is < -2, the current background color
will not be changed. The default background color is -2 (white.)

375Interface Library Routines



For example,
CALL TC_Graph_SetBrush (gid, -1, 3, “cross”)

will not change the background color for the graphics object, will set the brush color to 3, and will set the brush to
a crosshatch pattern.
(These conventions are identical to those of TC_Win_SetBrush.)

Exception: 845 Invalid brush pattern: ppppp

TC_Graph_SetDrawmode
CALL TC_Graph_SetDrawmode (gid, mode$)

The string values allowed for mode$ are as follows; note that where there is a space in the string, there must be
exactly one space:

“COPY” ignore current contents, draw over anything that is there (default)
“OR” perform bitwise OR between bit plans of each currently displayed pixel and the new

pixel which is to overlay it
“XOR” perform bitwise XOR between bit plans of each currently displayed pixel and the new

pixel which is to overlay it
“CLEAR” clear the screen to the extent covered by the item being drawn
“NOT COPY” the bitwise negation of COPY
“NOT OR” the bitwise negation of OR
“NOT XOR” the bitwise negation of XOR
“NOT CLEAR” the bitwise negation of CLEAR

The drawing mode determines how the graphical object’s pen and brush interact with the background, including
what has already been drawn. As an example, assume there are four bit planes (i.e., there are sixteen entries in
the color map table), the background is color 6 (binary 0110), and the pen is color 10 (binary 1010). Then the above
drawing modes would give the following results for each pixel covered by the pen:

“COPY” Color 10 (binary 1010)
“OR” Color 14 (binary 1110)
“XOR” Color 12 (binary 1100)
“CLEAR” Color 0 (binary 0000)
“NOT COPY” Color 5 (binary 0101)
“NOT OR” Color 1 (binary 0001)
“NOT XOR” Color 3 (binary 0011)
“NOT CLEAR” Color 15 (binary 1111)

Exception: 843 Invalid draw mode: mmmmm
Something similar may operate for a larger number of bit planes, and will sometimes yield strange-looking
results. But the modes  “COPY” and “CLEAR” should work as expected. And “XOR” should have the property
that, if you draw the object twice, you will get back the original background.

376 True BASIC Language System



Group Box Subroutines
TC_Groupbox_Create

CALL TC_Groupbox_Create (gbid, title$, xl, xr, yb, yt)

This subroutine draws a rectangular box, with title.

The four coordinates refer to the inside of the currently targeted (for output) physical window or, if in user
coordinates, the current logical window.

The group box will not be shown if the show default is set to 0 or the physical window is not showing, but will be
shown if the show default is 1 and the containing window is visible.

The group box is opaque, and should be created or shown before generating the output or showing the controls
contained within it.

List Button Subroutines
TC_ListBtn_Create

CALL TC_ListBtn_Create (lbid, text$(), xl, xr, yb, yt)

This subroutine creates a list button. A list button appears as an ordinary push button but, when selected, reveals
a scrollable list of items that can be selected.

The list text$() must have a subscript lower bound <= 1. The text of the button is the same as item one in the
list.

If the units are pixels (TC_SetUnitsToPixels,) the four coordinates refer to the containing physical window. If
either yb or yt < 0, the default height of a list button will be used. If the units are users (TC_SetUnitsToUsers,)
the four coordinates refer to the window coordinates of the current logical window. If yb or yt = -99999, the
default height of a list button will be used.

The list button will not be shown if the show default is set to 0 or the physical window is not showing, but will be
shown if the show default is 1 and the containing window is visible.

You can change the contents of a list button using
CALL TC_SetList (lbid, text$())

TC_ListBtn_Get
CALL TC_ListBtn_Get (lbid, selection)

This subroutine returns the number, starting with one, of the item currently showing in the list button. Note that
the user may still be in the process of manipulating the list. It is a good idea to require the user to select another
control, or to select some push button, to determine that the user has, in fact, made a selection from the list button.
At this point, the list button could be erased.

TC_ListBtn_Set
CALL TC_ListBtn_Set (lbid, selection)

This subroutine sets the item, starting with one, initially highlighted in a list button.

377Interface Library Routines



List Edit Button Subroutines
TC_ListEdit_Create

CALL TC_ListEdit_Create (leid, text$(), xl, xr, yb, yt)

This subroutine creates a list edit button. A list edit button appears as an ordinary list button but with two
exceptions. First, it can be edited, like an edit field. Second, a scrollable list of choices appears when it is selected.
Selecting one of the choices moves that choice to the editable field.

The items are given in the text$() list. In addition, the initial text of the list edit button is taken from
text$(0). Thus, the smallest subscript of text$() must be <=0.

If the units are pixels (TC_SetUnitsToPixels,) the four coordinates refer to the containing physical window. If
either yb or yt < 0, the default height of a list edit button will be used. If the units are users
(TC_SetUnitsToUsers,) the four coordinates refer to the window coordinates of the current logical window. If yb
or yt = -99999, the default height of a list edit button will be used.

The list edit button will not be shown if the show default is set to 0 or the physical window is not showing, but will
be shown if the show default is 1 and the containing window is visible.

You can change the contents of a list edit button with

CALL TC_SetList (leid, text$())

If there is a 0-th element, it will be  used to set the text of the button itself.

Exception: 855 List Edit list subscript must start with 0.

TC_ListEdit_Get
CALL TC_ListEdit_Get (leid, text$)

This subroutine finds out the text left by the user in the list edit button. Note that the user may still be in the
process of editing the text. It is a good idea to require the user to select another control, or to select some push
button, to determine that the user has, in fact, made a selection from the list button. At this point, the list button
could be erased.

TC_ListEdit_Set
CALL TC_ListEdit_Set (leid, text$)

This subroutine sets the text shown in a list edit field. The text may be changed at any time with this subroutine.

378 True BASIC Language System



List Box Subroutines
TC_ListBox_Create

CALL TC_ListBox_Create (lbid, mode$, xl, xr, yb, yt)

This subroutine will present a selection list box. This list box is similar to others that appear in, for example, file
open dialog boxes, but consists only of the selection list part. The list itself is scrollable, and must be set by
TC_SetList.

The selection mode is given by mode$. Its possible values are:

SINGLE Only single selections permitted (default)
MULTIPLE Multiple selections permitted
READONLY No selections permitted

You can set or change the list of a selection list box using:

CALL TC_SetList (lbid, text$())

Note that the calling sequence TC_ListBox_Create differs from the calling sequences for TC_ListBtn_Create and
TC_ListEdit_Create. Here, a separate call to TC_SetList is required to set the list.

TC_ListBox_Set
CALL TC_ListBox_Set (lbid, selection)

This subroutine allows you to preselect a particular entry in the list. The value of selection must be in the range
from 1 to the number of entries in the list.

Note: this subroutine is not to be confused with TC_SetList, which is used to specify the entries in the list box.

TC_ListBox_Clear
CALL TC_ListBox_Clear (lbid, selection)

This subroutine allows you to “unselect” an entry in the list that might have been selected previously using
TC_ListBox_Set. The value of selection must be in the range of 1 to the number of entries in the list.

TC_ListBox_Get
CALL TC_ListBox_Get (lbid, selection())

This subroutine retrieves the selection(s) of the user. Since it is possible in certain systems to make multiple selections,
this subroutine returns a numeric vector selection() whose entries are those selections. The number of selections
is given by the upper bound of selection(). If only one selection is allowed, then selection(1) = the item selected.
If no selection has yet been made then the selection list will have no entries.

379Interface Library Routines



Push Button Subroutines
TC_PushBtn_Create

CALL TC_PushBtn_Create (pbid, text$, xl, xr, yb, yt)

This routine creates a push button with the specified text at the location and of the size specified.

If the units are pixels (TC_SetUnitsToPixels,) the four coordinates refer to the containing physical window. If
either yb or yt < 0, the default height of a push button will be used. If the units are users (TC_SetUnitsToUsers,)
the four coordinates refer to the window coordinates of the current logical window. If yb or yt = -99999, the
default height of a push button will be used.

The push button will not be shown if the show default is set to 0 or the physical window is not showing, but will
be shown if the show default is 1 and the containing window is visible.

If text$ ends with “|LEFT", “|CENTER”, or “|RIGHT”, and the operating system permits, the push button text
will be justified accordingly.

Push buttons created in this way cannot be outlined; that is, they cannot be activated by pressing the Return or
Enter key. Selecting a push button with the mouse and releasing it causes the subroutine TC_Event to produce
an event pair: CONTROL SELECT, CONTROL DESELECTED.

You can change the text of a push button at any time using
CALL TC_SetText (pbid, text$)

Radio Button Group Subroutines
TC_RadioGroup_Create

CALL TC_RadioGroup_Create (rgid, text$(), xl, xr, yb, yt)

This routine creates a group of radio buttons at the location specified. The number of buttons is determined from
the size of the string list text$(), which also supplies the text that appears just to the right of each button. The
smallest subscript of text$() must be one.

If the units are pixels (TC_SetUnitsToPixels,) the four coordinates refer to the containing physical window. If
either yb or yt < 0, the default height of a radio button will be used to determine the height of the group. If the
units are users (TC_SetUnitsToUsers,) the four coordinates refer to the window coordinates of the current logical
window. If yb or yt = -99999, the default height of a radio button will be used to determine the height of the group.

The radio group will not be shown if the show default is set to 0 or the physical window is not showing, but will be
shown if the show default is 1 and the containing window is visible.

If text$(1) ends with “|LEFT", “|CENTER”, or “|RIGHT”, and the operating system permits, the push button
text will be justified accordingly.

A radio group has the property that no more than one button may be “on” at a time. Selecting any button to be “on”
turns off any other button that happens to be on. Initially, no button is on.

Selecting a radio button with the mouse and releasing it causes the subroutine TC_Event to produce an event
pair: CONTROL SELECT, CONTROL DESELECTED. At this point you can call the subroutine
TC_RadioGroup_On to determine which button is now on.

Exceptions: 865 Radio button group list must start with 1.
866 Radio button group must have at least one button.

380 True BASIC Language System



TC_RadioGroup_SetText
You can change the text of a radio button at any time using

CALL TC_RadioGroup_SetText (rgid, button, newtext$)

TC_RadioGroup_On
CALL TC_RadioGroup_On (rgid, button)

This subroutine reports which radio button is on. The numbering refers to the original text$() list used to create
the group. Rgid is the ID of the group as a whole. If no button happens to be on, button will be 0.

TC_RadioGroup_Set
CALL TC_RadioGroup_Set (rgid, button)

This subroutine turns on the button specified. If any other one is on, it will be turned off.

Scroll Bar Subroutines
TC_SBar_Create

CALL TC_SBar_Create (sbid, type$, xl, xr, yb, yt)

This subroutine creates a scroll bar of the type specified and at the location specified. The type must be either
“HSCROLL” or “VSCROLL”, but the case doesn’t matter.

If the units are pixels (TC_SetUnitsToPixels,) the four coordinates refer to the containing physical window. If
either xl or xr < 0, or if either yb or yt < 0, the default width or height of a scroll will be used. If the units are users
(TC_SetUnitsToUsers,) the four coordinates refer to the window coordinates of the current logical window. If
either xl or xr = -99999, or if either yb or yt = -99999, the default width or height of a scroll bar will be used.

The scroll bar will not be shown if the show default is set to 0 or the physical window is not showing, but will be
shown if the show default is 1 and the containing window is visible.

The subroutine TC_Event processes all scroll bar actions, using the parameter and increment values specified by
TC_SBar_SetRange and TC_Sbar_SetIncrements. The possible scroll bar events that can be returned by
TC_Event are: UP, DOWN, PAGEUP, PAGEDOWN, END VSCROLL, END HSCROLL, LEFT, RIGHT,
PAGELEFT, and PAGERIGHT, but it must be remembered that TC_Event has already taken care of adjusting
the scroll bars. The manner in which these events interact with the visual scroll bar, and the values of the
parameters and increments, is discussed later.

Note that scroll bars may be created and associated with windows, or created with text edit controls. Like ordinary
scroll bars, they are handled automatically, and the events are reported as noted above. TC_Event also adjusts
the text of a text edit control to correspond to the movement of the associated scroll bars.

Exception: 870 Scroll bar type must be VSCROLL or HSCROLL.

TC_SBar_SetPosition
CALL TC_SBar_SetPosition (sbid, position)

This subroutine sets the position of the slider (the thumb). The position is defined in terms of the scrollbar
parameters srange, erange, and prop. If the position is <= srange, the slider will be moved to the top (left)
of the scroll bar. If the position is >= erange - prop, the slider will be moved to the bottom (right) of the scroll
bar. If the position is in between, the slider will be moved to the corresponding location. The default value is 0.

381Interface Library Routines



TC_SBar_GetPosition
CALL TC_SBar_GetPosition (sbid, position)

This subroutine finds out the current location of the scrollbar slider. The current position must be interpreted in
terms of the scrollbar parameters srange, erange, and prop.

TC_SBar_SetRange
CALL TC_SBar_SetRange (sbid, srange, erange, prop)

This subroutine is used to set the parameters that specify the extreme positions of the slider, as well as the
proportional size of the slider on those systems that provide for varying sized sliders.

These parameters are arbitrary. The relation to the position (and size of the slider on certain systems) is as follows:
When the slider is at the top (left), its position is equal to srange. When the slider is at the bottom (right), its
position is equal to erange - prop. On certain systems, the size of the slider relative to the size of the slider
trough (the region in which the slider moves) is given by prop/(erange - srange), but never greater than
one. The default values are 0, 100, and 1, respectively.
For scroll bars associated with text edit controls, the subroutine TC_Event takes care of setting the parameters
to match the length and width of the actual text.

TC_SBar_GetRange
CALL TC_SBar_GetRange (sbid, srange, erange, prop)

This subroutine finds out the current values of the scroll bar parameters.

TC_Sbar_SetIncrements
CALL TC_Sbar_SetIncrements (sbid, single, page)

This subroutine is used to set the scrollbar increments. The single increment defines how far the slider (thumb)
moves when the user clicks in the up-arrow or down-arrow boxes (or left-arrow or right-arrow boxes) at the ends
of the scroll bar. The page increment defines how far the slider moves when the user clicks in the gray area either
above or below (left or right) of the slider. The default values are 1 and 10, respectively.
The actual movement of the slider is in terms of the parameters (see TC_SBar_SetRange for details.)
For scroll bars defined in connection with text edit controls, the subroutine TC_Event takes care of setting the
increments.
It should be noted that the increments of a scroll bar are not used by the True BASIC subroutine Object. They
are simply convenient storage locations for the programmer. However, the subroutine TC_Event does use these
values to define scroll bar slider movements.

TC_SBar_GetIncrements
CALL TC_SBar_GetIncrements (sbid, single, page)

This subroutine finds out the current values of the increments.

382 True BASIC Language System



Static Text Subroutines
TC_SText_Create

CALL TC_SText_Create (stid, text$, xl, xr, yb, yt)

This subroutine creates a static text field with initial text as given by text$.
If the units are pixels (TC_SetUnitsToPixels,) the four coordinates refer to the containing physical window. If
either yb or yt < 0, the default height of a static text box will be used. If the units are users (TC_SetUnitsToUsers,)
the four coordinates refer to the window coordinates of the current logical window. If yb or yt = -99999, the
default height of a static text box will be used.
The font is the “System” font. Its type, style, and size may be changed but not by True Controls.
If the text is longer than can be contained in the field, it will be truncated on the right.
Static text fields cannot generate any events.

You can change the text of a static text field at any time using
CALL TC_SetText (stid, text$)

If text$ ends with “|LEFT", “|CENTER”, or “|RIGHT”, and the operating system permits, the push button text
will be justified accordingly.

Text Editor Subroutines
TC_Txed_Create

CALL TC_Txed_Create (txid, options$, xl, xr, yb, yt)

This subroutine creates a text-editor control with the specified options and location.

If the units are pixels (TC_SetUnitsToPixels,) the four coordinates refer to the containing physical window. If the
units are users (TC_SetUnitsToUsers,) the four coordinates refer to the window coordinates of the current logical
window.

The text-edit control will not be shown if the show default is set to 0 or the physical window is not showing, but
will be shown if the show default is 1 and the containing window is visible.

The options$ string contains the options to be used. The particular options may be separated by spaces or
vertical bars, and may be given in upper, lower, or mixed case. The options are:

ATTACHED The text edit control will fill the physical window, and will be resized if the window is
resized. Scroll bars, if any, must be associated with the window. See TC_Win_Create.

READONLY The text can be read but not modified.
WRAP The lines of the text are “wrapped” or “folded” at the margin of the text edit control.
MARGIN ddd The margin is set to ddd pixels. (There must be one space between the word

“MARGIN” and the digits.) This defines the width of the text, and the point at which
the lines of the text are wrapped or folded. If the text is not wrapped, the margin is
ignored. If ATTACHED, the margin is determined automatically.

BORDER There will be a border around the text edit control. If the text edit control is
ATTACHED to a physical window, an additional border will be superfluous.

KEY EVENTS Keystroke events will be processed by the text edit and returned as TXE KEYPRESS
events by TC_Event. If this option is not included, keystroke events will not be
turned by TC_Event, except those generated by trap characters. By default, a text
edit control created with this subroutine will return the event TXE KEYPRESS when
the return or enter key is pressed; the value of x1 returned by TC_Event will be the

383Interface Library Routines



ASCII code of the key. Additional so-called trap characters may be set with the
subroutine TC_Txed_SetTrapChar.

MOUSE EVENTS Mouse events that occur within the text edit control will be acted on the by control and
returned by TC_Event as TXE MOUSE events.

VSCROLL A vertical scroll bar will be attached to the text edit control. This attribute is ignored
if the attribute ATTACHED is present.

HSCROLL A horizontal scroll bar will be attached to the text edit control. This attribute is
ignored if the attribute ATTACHED is present.

The text portion of a text edit control must be supplied by a subsequent call to TC_Txed_ReadTextFromFile or
TC_Txed_ReadTextFromArray.

TC_Txed_ReadTextFromFile
TC_Txed_WriteTextToFile
TC_Txed_ReadTextFromArray
TC_Txed_WriteTextToArray
These first two routines can be used to read and write the text edit text from and to a file, which is assumed to be
in a  “flat file” format with the system end-of-line character at the end of each paragraph. The calling sequences
are”

CALL TC_Txed_ReadTextFromFile (txid, filename$)
CALL TC_Txed_WriteTextToFile (txid, filename$)

The latter routine will overwrite the previous contents of the file.

The last two routines can be used to read and write the text edit text from and to a string array. Their calling
sequences are:

CALL TC_Txed_ReadTextFromArray (txid, list$())
CALL TC_Txed_WriteTextToArray (txid, list$())

In the second routine, the string list will be dimensioned to the exact length needed.

TC_Txed_SetText
CALL TC_Txed_SetText (txid, text$)

This routine supplies the entire text of a text edit control. The text is a flat file in the same format as it might be
stored on disk.

You can append additional text lines to the text by using TC_Txed_Append.

TC_Txed_GetText
CALL TC_Txed_GetText (txid, text$)

This subroutine retrieves the text from a text edit control, including all user modifications up to that point. The
text is a flat file in the same format as it might be stored on disk.

TC_Txed_Append
CALL TC_Txed_Append (txid, text$, revealflag)

This subroutine will append the text supplied to the end of the text in the text edit control. The text must consist of
a single paragraph without an end-of-line. (With unwrapped text, a paragraph is the same as a line.)

If revealflag = 0, the text will not be scrolled; thus, the new line may be out of view. If revealflag = 1, the cursor
will be set to the end of the last paragraph, thus forcing the new line to be visible.

384 True BASIC Language System



TC_Txed_SetFont
CALL TC_Txed_SetFont (txid, fontname$, fontsize, fontstyle$)

This subroutine changes the characteristics of the font used in the text edit control. If the fontname$ or the
fontstyle$ is the null string, that characteristic will not be changed. If the fontsize is <= 0, the font size will
not be changed. Case doesn’t matter in the specification of the font name or font style.

The font name must be a legal font name. The available fonts will differ from system to system, but will always
include: “Helvetica”, “Fixed”, “Times”, and “System”. The Fixed font is a fixed width font that might be a Courier
or similar font. The System font varies depending on the operating system. The default font is Helvetica. You may
learn about other available fonts by calling TC_FontsAvailable.

The font size is given in points; one point is approximately 1/72 of an inch. The font size is not necessarily related
to the size of the font as displayed on the screen, or to any particular number of pixels. The default size is 10 points.
If the System font is being used, it may not be possible change its size.

The font style must be one of “Plain”, “Bold”, “Italic”, or “Bold Italic”. The default style is Plain. If the System font
is being used, not all styles may be available.

TC_Txed_SetColor
CALL TC_Txed_SetColor (txid, forecolor, backcolor, bordercolor)

This subroutine allows changing the colors associated with a text edit control. The color numbers refer to entries
in the color mix table. The default colors for forecolor and border color are black (-1), and the default color for
backcolor is white (-2.)

TC_Txed_SetTrapChar
TC_Txed_SetTrapChar (txid, char, action)

This subroutine sets additional so-called “trap” characters. Such characters are returned by TC_Event as TXE
KEYPRESS events even if KEY EVENTS had not been chosen as an option in TC_Txed_Create.
Char is the number of the key to be trapped, and action is what is to happen when that key is pressed by the
user. Possible actions are:

1 The key code is returned as a TXE KEYPRESS event.
The text edit control is suspended.
The key is not absorbed by the text edit control.

2 The key code is returned as a TXE KEYPRESS event.
The text edit control is not suspended.
The key is absorbed by the text edit control.

3 Exactly like stop code 1, but will be treated as an ordinary character unless there is selected text.
< 0 The particular key code is unregistered.

By default, the Return or Enter key is established as a type 2 trap character.

TC_Txed_Resume
CALL TC_Txed_Resume (txid)

This routine should be used to “resume” the activity of a text edit control that has been suspended. A text edit
control can be suspended if the user presses a “trap character” of type 1 or type 3.

TC_Txed_Suspend
CALL TC_Txed_Suspend (txid)

This routine can be used to “suspend” the activity of a text edit control. One use may be to reduce flicker caused
by appending more than one line to the text in the control. A suspended text edit control can be made active by
calling TC_Txed_Resume.

385Interface Library Routines



TC_Txed_Cut
CALL TC_Txed_Cut (txid)

This subroutine “cuts” or removes text that has been selected, and places the text onto the system clipboard,
erasing the prior contents of the clipboard. If no text has been selected, no action takes place, and the prior
contents of the system clipboard remain.

TC_Txed_Copy
CALL TC_Txed_Copy (txid)

This subroutine “copies” text that has been selected, placing it onto the system clipboard and erasing the prior
contents of the clipboard. If no text has been selected, no action takes place, and the prior contents of the system
clipboard remain.

TC_Txed_Paste
CALL TC_Txed_Paste (txid)

This subroutine “pastes” the current contents of the system clipboard into the text of the text edit control. If there
is selected text, the clipboard contents replace that text, and the selected text disappears. If no text has been
selected, the clipboard contents are inserted at the current cursor location of the text edit text. The contents of the
clipboard remain intact.

TC_Txed_SetCutCopyPaste
CALL TC_Txed_SetCutCopyPaste (txid, xmenu, xitem, cmenu, citem, pmenu, pitem)

If the text edit control is “attached” to the containing window, and the window is equipped with menus that include
the Cut, Copy, and Paste possibilities, calling this subroutine allows TC_Event to carry out those particular
functions directly. You specify the menu and item numbers of the three menu selections.

If you establish these menu associations, you should not also call TC_Txed_Cut, TC_Txed_Copy, or
TC_Txed_Paste as TC_Event will carry out these functions.

TC_Txed_Find
CALL TC_Txed_Find (txid, case, word, key$, p, l1, c1, l2, c2, found)

This subroutine “finds” certain text. The search string is provided in key$. If case = 1, the search will be case-
sensitive; that is, case (upper or lower) will be taken into account. If case = 0, case will be ignored in the search.
If word = 1, only whole word matches be accepted. If word = 0, finding the search string within another word will
be allowed. If the search is successful, the returned value of found will be 1; if not successful, it will be 0.

At the call, the values of p, l1, and c1 specify the paragraph, line, and character in the line for the
commencement of the search. At the return, if found = 1, these parameters give the paragraph, line, and
character with the line of the first character of the match; l2 and c2 give the line and character of the last
character of the match, which must be contained in a single paragraph. If found = 0, these parameters are not
changed.

Note: paragraph, line, and character numbering start with 0, not 1. Paragraphs are text strings that end with an EOL
when stored in a file. If the text is not wrapped, paragraphs and lines are the same, whereas if the text is wrapped, a
paragraph may contain several lines. Finally, the lines will depend on the current margin; thus, if a text edit control
that uses wrapped text is resized, then the lines will change, while the paragraphs will not.

TC_Txed_SetSelection
CALL TC_Txed_SetSelection (txid, p1, l1, c1, p2, l2, c2)

This subroutine “selects” text. The selected text will start at paragraph p1, line l1, character c1, and extend to
paragraph p2, line l2, character c2, inclusive. This can be done following a successful “find” operation to show

386 True BASIC Language System



the user the location of the found text.
Remember that paragraph, line, and character counting start at 0, not 1.

TC_Txed_GetSelection
CALL TC_Txed_GetSelection (txid, p1, l1, c1, p2, l2, c2)

This subroutine allows you to identify text that may have been selected by the user. The selected text starts as
paragraph p1, line l1, character c1, and ends at paragraph p2, line l2, character c2, inclusive. If no text has been
selected, then p2 = p1, l2 = l1, and c2 = c1, where p1, l1, c1 is the current location of the cursor (i.e., the cursor is
immediately in front of characters c1.)

Remember that paragraph, line, and character counting start at 0, not 1.

TC_Txed_SetCursor
TC_Txed_SetCursor (txid, p, l, c)

This subroutine allows you to set the cursor to any desired position. The cursor will be set to just in front of
character c, in line l of paragraph p. This routine merely calls TC_Txed_SetSelection with the starting and ending
paragraph, line, and character the same. That is, it “deselects” any text that may have been selected.

Remember that paragraph, line, and character counting start at 0, not 1.

TC_Txed_GetCursor
TC_Txed_GetCursor (txid, p, l, c)

This subroutine allows you to locate the current position of the cursor. The cursor will be just in front of character
c in line l, paragraph p. This routine merely calls TC_Txed_GetSelection and returns the starting position of any
selected text. The presence of selected text or the position of the cursor is not changed.

Remember that paragraph, line, and character counting start at 0, not 1.

TC_Txed_SetMargin
TC_Txed_SetMargin (txid, margin)

This subroutine can be used to set the margin for a text edit control. The margin must be specified in pixels. If
margin <0, the margin will be set to the actual width of the test edit control.

Setting the margin has effect only if the WRAP option is in effect. The margin is set automatically for text edit
controls ATTACHED to windows. 

387Interface Library Routines



True Dials
True Dials is a library of subroutines that give easy access to the True BASIC built-in subroutine TBD. (See
Chapter 21 “TBD Subroutine” for details on it.) These subroutines are contained in a library file TRUEDIAL.TRC.
These routines are all higher level calls to the built-in TBD subroutine. For a better understanding of how they
work, see the source code of this library: TRUEDIAL.TRU.
The dialog boxes displayed by TBD are modal dialog boxes. That is, no other activity (such as menu selection) is
permitted until the user has complete the use of the dialog box or it has timed out.
The subroutines have several features in common. Two of the subroutines (TC_Message and TC_InputM) allow
you to specify a title, except on the Macintosh platform where titles are not available. This will appear at the top
of the dialog box. Except for file dialog boxes, a message can be specified. If the message string message$ contains
vertical bars “|”, they will be taken as line breaks. Messages of up to ten lines can be displayed.
The text of the buttons to show in the lower portion of the dialog box are specified in a single string, separated by
vertical bars. For example, to display three buttons with text “Yes”, “No”, and “Cancel”, use the button string
“Yes|No|Cancel”. From one to four buttons are required.
The number of the button the user selected is returned in result. Which of the buttons is initially outlined can
be specified by the value of default.
Finally, a timeout limit can be set. If the user does not select one of the buttons, or does not press the Return key
to activate the outlined button, before the time specified elapses, the dialog box will close with result = 0 if none
of the buttons is outlined, or the number of the outlined button. The length of the timeout is expressed in seconds.
If the timeout is zero, no timeout will occur.

Several errors can arise if the following subroutines are improperly specified or located. They are described at the
end of Chapter 21 “TBD Subroutine” and are not repeated here. No additional errors are generated by misuse of
the following subroutines.

TD_SetLocation
CALL TD_SetLocation (xloc, yloc)

This Dialog boxes (except for TB_GetFile and TD_SaveFile) are ordinarily centered in the currently-targeted
physical window. By calling this routine, you can position the upper-left corner of a dialog box at the pixel screen
coordinates (xloc, yloc). To return to the default positioning, use -1 for xloc and yloc.

If you require control over the size of your dialog boxes, in addition to the location of the upper-left corner, use the
TBDX subroutine directly.

TD_Warn
CALL TD_Warn (message$, button$, default, result)

This subroutine displays a (warning) message. To query the user about whether to continue or cancel an operation,
you might use

CALL TD_Warn (“What is your pleasure?”, “Continue|Cancel”, 1, result)

When the dialog box is displayed initially, the “Continue” button, button number 1, will be outlined. The value of
result tells which button the user actually selected.

TD_Message
CALL TD_Message (title$, message$, button$, default, result)

This subroutine displays a dialog box similar to TD_Warn except that a title can be included. The operation is the
same as with TD_Warn. For example:

388 True BASIC Language System



LET title$ = “Report from the Boss”
LET message$ = “When are you going back to work?”
LET button$ = “Now|Later|Never”
CALL TD_Message (title$, message$, button$, 2, result)

The above code displays a titled dialog box with a one-line message, along with three buttons from which the user
can choose. The second button “Later” will be outlined initially. (The title is not available on the Macintosh.)

TD_YN
CALL TD_YN (message$, default, result)

This subroutine displays a message with two buttons: “Yes” and “No”. In all other respects it is like TD_Warn. In
fact, the calling sequence above displays a dialog box identical to that displayed by:

CALL TD_Warn (message$, “Yes|No”, default, result)

TD_YNC
CALL TD_YNC (message$, default, result)

This subroutine is a slight extension of TD_YN in that there are three buttons: “Yes”, “No”, and “Cancel”. The
calling sequence above displays a dialog box identical to that displayed by:

CALL TD_Warn (message$, “Yes|No|Cancel”, default, result)

TD_LineInput
CALL TD_LineInput (message$, text$)

This dialog box can be used to input a single line of text. The user can edit this text using the usual methods:
selecting the position of the cursor using the mouse, typing characters, and using the left and right cursor keys.
For example:

CALL TD_LineInput (“Enter your name”, intext)

displays a dialog box with a one-line message, and a boxed editable field. It will have a single button "Ok". Upon
return, what the user typed is returned in the string variable intext$.

TD_Input
CALL TD_Input (message$, buttons$, text$, default, result)

This dialog box can be used to input a single line of text. The user can edit this text using the usual methods:
selecting the position of the cursor using the mouse, typing characters, and using the left and right cursor keys.
For example:

CALL TD_Input (“Enter your name”, “Done|Cancel”, intext$, 1, result)

displays a dialog box with a one-line message, with a boxed editable field, and with two buttons. Upon return, what
the user typed is returned in the string variable intext$.

TD_InputM
CALL TC_InputM (title$, message$, buttons$, labels$(), text$(), highlight,

default, result)

This subroutine displays an input box with multiple editable lines. This dialog box can have a title bar and a title
much like a window. (The title is not available on the Macintosh.) In addition, the editable lines can have labels
to the left of each line. For example:

LET title$ = “Data Entry Box”
LET message$ = “Enter your name.”
LET button$ = “Ok|Cancel”
DIM labels$(3), text$(3)

389Interface Library Routines



MAT READ First name, Middle name, Last name
CALL TD_InputM (title$, message$, button$, labels$(), text$(), 1, 2, result)

displays a titled dialog box with the title bar displaying “Data Entry Box”, with an inside message “Enter your
name.”, and with three editable fields. These boxes will be labeled on the left. There will be two buttons, “Ok” and
“Cancel”. The first editable field will be highlighted, and the second (“Cancel”) will be outlined.

The number of editable text fields displayed is the larger of the sizes of the labels array and the initial text array,
except that no more than ten fields will be displayed. Upon return, the text array will have a size consistent with
the number of fields.

TD_GetFile
CALL TD_GetFile (extension$, filename$, changedir)

This subroutine displays a typical File Open dialog box. The user may change directories while looking for the file;
if changedir = 0, the current directory will not be changed, and the full path name of the file will be returned in
filename$. If changedir = 1, the current directory will be changed, and only the local name of the file will be
returned.

On Windows and similar platforms, if extension$ is a valid file extension(such as “tru”,) then only matching
files will be displayed; if extension$ is the null string, all files will be displayed. On the Macintosh,
extension$ can be a file type, such as TEXT or TEXTTRUE; there is no way to limit the file names based on a
possible extension to the file names.

Two buttons are displayed, “Ok” and “Cancel”. If “Ok” is clicked and no selection has been made, the dialog box
stays on the screen. If “Cancel” is clicked, a null string is returned in filename$ whether or not any name has
been selected.
This dialog box cannot be timed out.
Note: this subroutine does NOT actually open the file; that is up to the programmer.
For example, on Windows:

CALL TD_GetFile (“tru”, filename$, 1)

presents only file names having the extension “.tru”, but will allow the user to change the current directory.
Only the local name of the file will be returned in filename$.

TD_SaveFile
CALL TD_SaveFile (extension$, filename$)

This subroutine displays a typical Save File dialog box.
On Windows and similar platforms, if extension$ is a valid file extension(such as “tru”,) then only matching
files will be displayed; if extension$ is the null string, all files will be displayed. On the Macintosh,
extension$ can be a file type, such as TEXT or TEXTTRUE; there is no way to limit the file names based on a
possible extension to the file names.

The initial value of filename$ will appear as the suggested file name. Upon return, filename$ will contain
the full pathname of the file name selected by the user. The current directory is not changed.

Two buttons are displayed, “Ok” and “Cancel”. If “Ok” is clicked but the file name box is empty, the dialog box stays
on the screen. If “Cancel” is clicked, a null string is returned in filename$ whether or not any name appears in
the file name box.

This dialog box cannot be timed out.

Note: this subroutine does NOT actually save the file; that is up to the programmer.

For example, on Windows:
LET filename$ = “MyFile.tru”

390 True BASIC Language System



CALL TD_SaveFile (“tru”, filename$)

will present a Save File dialog box displaying only file names with the extension “.tru”, and with
“MyFile.tru” as the suggested name of the file to be saved. Upon return, filename$will contain the full path
name of the name actually selected by the user.

TD_List
CALL TD_List (message$, button$, list$(), choice, default, result)

This subroutine presents a selection list box. The message$ appears near the top of the box. The list of names is
provided in a string list list$(). The particular name to be highlighted initially is specified in choice. If choice
is < 1, then the first item is highlighted; if choice is > the number of items, then none of the items is highlighted.
There may be up to four buttons specified in button$ with text for each button separated by vertical bars (|).
Default specifies which one, if any, is to be highlighted initially. Upon return, choice contains the number of the
selected entry, while result contains the number of the selected button.

If a timeout occurs before the use has selected a button, the number of the highlighted button is returned; this may
or may not be the same as the default button. The highlighted item number will be returned in choice; if none
is highlighted, 0 is returned.

TD_SetTimeout
CALL TD_SetTimeout (timeout)

This routine sets the timeout, in seconds, for all subsequent uses of the True Dials subroutines except for
TD_GetFile and TD_SaveFile. If the argument is 0, no timeout will occur. For example:

CALL TD_SetTimeout (10)

sets the timeout to be 10 seconds, while:
CALL TD_SetTimeout (0)

will prevent any timeout from happening.

TD_GetTimeout
CALL TD_GetTimeout (timeout)

This subroutine finds out what the current timeout value is.

TD_SetDelimiter
CALL TD_SetDelimiter (demin$)

This subroutine changes the delimiter used internally to break up lines for TD_Warn, TD_Message, TD_Input,
TD_InputM, etc. (i.e., dialog boxes of type 1.) The default value of the delimiter is the vertical bar “|”. If your
messages must include the vertical bar, of if you expect the user response to TD_Input or TD_InputM to include
vertical bars, you can use this routine to change the delimiter to a neutral value.

TD_AskDelimiter
CALL TD_AskDelimiter (delim$)

This subroutine returns the current delimiter (default is the vertical bar “|”) used internally to break up lines
for TD_Warn, TD_Message, TD_Input, TD_InputM, etc.

391Interface Library Routines



ExecLib
ExecLib is a library of subroutines that provide access to directory information. The subroutines are in the library
file EXECLIB.TRC. The names of the subroutines in this library all begin with “EXEC_”.

These routines are all higher level calls to the built-in System subroutine. For a better understanding of how they
work, see the source code of this library in EXECLIB.TRU.

Several errors can arise if the following routines are improperly used. These errors are of two types. Errors
identified by the system subroutine System are outlined where that subroutine is described in Chapter 18.
Several other errors are detected by the ExecLib subroutines; these are included below.

Exec_AskDir
CALL Exec_AskDir (dirname$)

This subroutine returns the full path name of the current directory.

Exec_ChDir
CALL Exec_ChDir (newdir$)

This subroutine changes from the current directory to the new directory specified. You may specify the new
directory relatively in terms of the current directory, or absolutely by providing the full pathname of the new
directory. If the new directory is either invalid or does not exist, then an error will occur.

Exception: 895 Bad new directory in Exec_ChDir: nnnnn

Exec_DiskSpace
CALL Exec_DiskSpace (used,free)

This subroutine returns the amount of disk space in use, and the amount still free. Units are in bytes. 

Exec_MkDir
CALL Exec_MkDir (newdir$)

This subroutine creates a new directory. You may specify either the full path name of the new directory, or give it
relatively in terms of the current directory. If the directory you specify already exists, or the name is invalid, an
error will occur.

Exception: 896 Bad new directory in Exec_MkDir: nnnnn

Exec_RmDir
CALL Exec_RmDir (baddir$)

This subroutine removes (deletes) the directory named. On some operating systems, this cannot be done until the
directory is emptied of contents. If the directory does not exist, or is invalid, an error occurs.

Exception: 897 Can’t remove directory in Exec_RmDir: ddddd

Exec_ReadDir 
CALL Exec_ReadDir (template$, name$(), size(), dlm$(), tlm$(), type$(), vname$)

This subroutine returns a list of names of the files and directories in the current directory. The names in the string
list name$()will be the short names, not the full path names. The sizes of the files are given in bytes. The dates-
last-modified and times-last-modified are given in the format of the True BASIC DATE$ and TIME$ functions.
For example, the date might be “19950201” and the time might be “14:22:07” if it is 2:22 and 7 seconds PM on
February 1, 1995.

392 True BASIC Language System



The template is specified in a standard form across platforms. For example, “*.tru” will yield file names whose
extensions are “.tru”; note that the “*” is a “wild card” that matches anything.

The type consists of a four-character string of the form “drwx”. In each position, either the letter or a hyphen “-”
will appear. If the “d” is present, the file is actually a directory; if a hyphen appears in that position, it is a true
file. If the “r” is present, reading the file is allowed; if a hyphen appears in that position, the file cannot be read. If
the “w” is present, the file can be written to or appended to; if a hyphen appears in that position, the file cannot be
written. Finally, if an “x” appears, the file can be executed (i.e., run as a free-standing program.) If a hyphen
appears in the last position, the file cannot be directly executed. If the “x” appears but the file does not contain a
free-standing program, an error of some sort will occur.

Vname$ will simply contain the name of the current directory.

Exec_ClimbDir
CALL Exec_ClimbDir (dir$, template$, name$(), size(), dlm$(), tlm$(), type$())

This subroutine is similar to Exec_ReadDir with these exceptions:

First, a list of file and directory names contained in the directory specified in the first argument, and all
subdirectories, will be given.

Second, the full path names of all files and directories are given.

Exec_Rename
CALL Exec_Rename (oldname$, newname$)

This subroutine is the only one that deals with files rather than directories. It allows you to rename a file without
having to copy the file. If the old file does not exist or is in an invalid format, or if the new file already exists or is
in an invalid format, an error will occur.

Exception: 897 Bad old or new name in Exec_Rename: ooooo, nnnnn

Exec_SetDate
CALL Exec_SetDate (new_date$)

This subroutine can be used to set the computer’s current date. The format is "YYYYMMDD". An exception occurs
for an invalid format.

Exec_SetTime
CALL Exec_SetTime (new_time$)

This subroutine can be used to set the computer’s current time. The format is  "HH:MM:SS". An exception occurs
for an invalid format.

393Interface Library Routines



CommLib
CommLib is a library of subroutines that provide access to the serial ports. They allow you to interface True BASIC
to anything you can hook up to the serial port — printers, modems, lab instruments, or bulletin boards. The
subroutines are contained in the file COMMLIB.TRC. The source code for this library file is in COMMLIB.TRU.
(For past users of True BASIC, the files COMLIB.TRC and its source code companion COMLIB.TRU contain the
same suboutines but with the traditional names.)

Getting Started
This library supports asynchronous, RS-232 communications using the asynchronous communications adaptor or
equivalent. Both input and output are buffered and interrupt-driven, and the routines can support one or two
ports at speeds up to 38,400 baud, and sometimes higher. There is optional flow control for input and output, and
full control of the modem signals, parity, byte length, and stop bits.

Buffering
If the speed of the communications line is 1200 baud, the number of bytes you can get across it in a second is 1/10th
of that, or 120 characters. If the other side is sending at full speed, you’ll receive a character every 1/120th of a second,
ready or not. That’s probably enough time to save the character in a string, but not too much more — if your program
ever blinks, if it takes a half-second out to read the disk, you’ll just lose 60 characters.

That’s where buffering can help you. This library sets up a separate process (an “interrupt handler”) to watch the
communication line no matter what your program is doing. If a character comes in, it saves it (in a buffer) until
the next time the program’s ready to read it. It’ll save up to 20480 bytes, so at 1200 baud, your program could
“blink” for more than 10 seconds, instead of only 1/120th sec.

Even at 19,200 baud, there’s enough room for a full second’s worth of data. The output buffer is smaller — 10240
bytes on the Macintosh, system-dependent on Windows and OS/2 — but it’s still usually enough to keep the line
running at full speed.

A Short Example
Here’s a simple program that will make your PC act like a dumb terminal:

library “Commlib.trc”
call Com_Open (#1, 1, 14400, ““) ! Open comm line at 14400 baud
call Com_SendCR (“ATD 6436300”) ! Dial up the computer

do
call Com_Receive (s$) ! get any input from computer
call Output (s$) ! routine to print it on screen
if key input then ! get anything the user’s typed

get key k
select case k
case 323 ! F9 = end session

stop
case 315 ! F1 = break

call Com_SendBreak
case else ! else send to the computer

call Com_Send (Chr$(k))
end select

end if
loop

SUB Output (s$) ! Handle CR & LF characters

394 True BASIC Language System



do ! first strip all CRs
let i = Pos(s$,Chr$(13)) ! find first CR
if i = 0 then exit do ! none = all done
let s$[i:i] = ““ ! remove the first

loop

do ! now end line on line-feed
let i = Pos(s$,Chr$(10)) ! find next line-feed
if i = 0 then exit do
print s$[1:i-1] ! print each separate line
let s$ = s$[i+1:maxnum] ! remove that line

loop

print s$; ! print partial line

end sub

end

How the program works
The program uses routines to access the communications line. All of them are from the library COMMLIB.TRC
which is the compiled version of the communications library. Here’s what they do:

CALL Com_Open (#1, 1, 14400, “”)
Starts up the communication routines. You must call it first. #1 is a dummy file, that’ll be associated with the line.
Don’t try to do normal file I/O with it — things like READ or PRINT. The only thing you can do with it is close it,
which shuts down the buffering. The “1” is which communication port to use (in case you have two). “14400” is the
baud rate, and the last argument is a string of options.

CALL Com_SendCR (““ATD 6436300””)
This sends the string argument out over the communication line followed by a carriage-return. In this case, the
string is just a dial-up command for an auto-dial modem. Com_SendCR is a special case of Com_Send.

CALL Com_Receive (s$)
Com_Receive sets its argument to a string containing all characters that have come in from the other end since
the last time you called Com_Receive. If nothing new has come in, it will return the null string. That will usually
be the case, in this program.

When things are idle, the program will sit looping, alternately checking “key input” and calling Com_Receive. In the
meantime, the program will harmlessly print the null string (without new-line) repeatedly on the screen.

CALL Com_Send (Chr$(k))
This sends the key the user typed to the “other end” (the modem, or whatever the line is hooked up to). The string
argument can be as long as you want.

CALL Com_SendBreak
A break isn’t a character, and can’t be sent with the normal Com_Send routine. Com_SendBreak transmits the
same signal over the line as the break key on most terminals.

The rest of the program (the subroutine Output) is there to treat carriage-returns and line-feeds more like a
terminal does.

There’s a complete technical description of all the routines at the end of this section. The routines let you get at
almost every feature of the communications hardware, mostly through the option string for Com_open. There are
quite a lot of bells and whistles. If you really need to, for example, you can support the 75 baud 5-bit code that AP
and UPI wire services use.

395Interface Library Routines



Options and Controls
There are lots of controls and options available. If you’re very knowledgeable about communications, you may
want to skip to the technical descriptions of the library routines in the back of this manual. If you’re not already
an expert, it can be difficult to know what to pay attention to and what to ignore.

Here’s a rough road map: if you’re using the communication line to transfer binary files, you should know about
parity and number of data bits. If you’re doing file transfers from the PC, you should read about XOFF / XON flow
control. You probably won’t need to pay attention to modem control and status signals unless you already know
about them.

Parity, Data Bits, and Stop Bits
These can be set when you open the line, or changed in the middle of things with Com_control. Virtually all
communication uses 8 bit characters, with one start and one stop bit (10 bits total, which is why the baud rate is
10 times the number of characters per second). Having two stop bits will slow things down slightly, but otherwise
won’t make a difference. Only old 10 cps teletypes require 2 stop bits.

To get a total of 8 bits in each character, you should either have 8 data bits and no parity (“D8 P–” in the options),
or 7 data bits and a parity bit. In general, it’s better to use 7 bits and “even” or “space” parity unless you’re doing
binary file transfers, in which case you should use 8 bits and no parity. If you are receiving normal text, you should
avoid 8-bit no-parity mode. Otherwise, the parity bits may turn

innocent letters into strange hieroglyphics (the characters above 128 in the IBM character set). Note also that
Receive_line won’t recognize a carriage-return with the parity bit set if you’ve requested 8 data bits.

XOFF / XON Flow Control
Flow control is a way for one end to make the other stop sending temporarily if it’s getting behind. The side that’s
getting behind sends an XOFF character (control-S), and the other side stops sending. When it’s caught up again,
the one that sent the XOFF sends an XON (control-Q), and the other side resumes sending. This is a pretty
common convention, but not universal.

The SXOFF option will make the communication routines automatically send an XOFF if its input buffer is nearly
full (within 256 bytes). It’s on by default. The RXOFF option makes output stop whenever an XOFF is received. It’s
off by default. If you’re sending files from the PC, you probably want RXOFF on, so you won’t send

too much too fast. If you’re receiving binary files, you probably want RXOFF off, so that you can receive the XOFF
character just like any other. These options can be set when you call Com_open.

Modem Control and Status 
The control signals (RTS and DTR) can be set by Com_control or Com_open, and you can check the status lines
(CTS, DSR, RI and RLSD) with Com_status. If you want to, you can find out whether your modem is really hooked
up or whether it has detected a carrier signal. You almost never need to pay attention to these. Often the wires
aren’t even connected. CTS and RTS are for half-duplex lines, which aren’t often seen nowadays.

Hardware Requirements 
To use the communication library, you’ll need a “serial port.” You can use either serial port, or both at the same
time, with this library.

396 True BASIC Language System



Summary of COMMLIB
The following routines can all be found in the library COMMLIB.TRC on your communications disk. The routines
are described in more detail in the following pages. First, the subroutines:

Com_Open (#1, port, speed, opt$) Opens communication line.
Com_Switch (p) Switches to port p.
Com_Control (opt$) Resets options and modem signals.
Com_Send (s$) Sends s$ (starts sending).
Com_SendLine (line$) Sends line$ followed by CR/LF.
Com_SendCR (line$) Sends line$ followed by CR.
Com_SendBreak Sends a break.
Com_Receive (buf$) Gets all bytes received since last call.
Com_ReceiveLine (line$) Gets the next line, up to a CR.
Com_WaitLine (wtime, f, l$) Like Com_ReceiveLine, with timeout.
Com_WaitPrompt (p$, wtime, f, s$) Waits for specified prompt, with timeout.

There are also two numeric functions that give the current status of the communication line:
Com_Buf (type) Returns buffer space, in bytes, 

according to type:
0 — bytes waiting to be sent
1 — free space in output buffer
2 — bytes in input buffer
3 — free space in input buffer.

Com_Status (type$) Returns line status; type$ may be 
DSR, CTS, RLSD, RI, ERR, RXOFF,
SXOFF, or CR.

Com_Open
CALL  Com_Open (#1, port, speed, options$)

Before you use any other communication library routine, you have to use Com_open to tell the system what port
you’re using, what speed to run, and a host of other details, like whether to set Data Terminal Ready, that you
usually needn’t worry about.

The file number you pass isn’t used by the other routines. The only time you’ll need it again is when you close the
file. You simply use the CLOSE statement to close the communications port. Remember that local files (files used
inside external subroutines or functions that weren’t passed as parameters) are automatically closed when that
routine returns.

You can’t use any normal True BASIC file operations (READ, PRINT, etc.) on that file number, except for the
CLOSE statement.

Port is the number of the communications port, and can be from 1 to n, where n is the number of available ports.
Note that 1 can stand for what DOS calls COM1 and so on.

Speed is the number of bits per second to send across the line, also known as the baud rate. The machine on the other
side must also be using the same speed. Usually the speed should be 14400 or 28800 if you’re using a modem. If the
wire from the PC is plugged directly into another piece of equipment, you may be able to use an even higher rate.

If you pass a zero, the baud rate won’t be changed.

Options$ is a string containing additional parameters, separated by spaces. See Com_control for a full explanation
of the parameters. The default setting will work well in most cases. If you just use the null string, the line will be
set up for 7-bit characters, even parity, and one stop bit. Data Terminal Ready and Request To Send will both be
set, and the receiver will be programmed to send an XOFF character when its buffer is nearly full but not to
respond to one from the other end. This corresponds to an option string of “D7 PE S1 DTR RTS SXOFF RXOFF–.”

397Interface Library Routines



Exceptions: 9003 No such file.
7003 Channel is already open.
7001 Channel number must be 1 to 1000.
960 Unknown communication option.

CLOSE
CLOSE #1

Instead of calling a subroutine to close the communications port, simply use the True BASIC CLOSE statement.
The port will be closed automatically when your program stops, or when the subroutine owning the file returns.
The modem control signals (DTR & RTS) aren’t changed, so closing the port doesn’t force disconnection; you should
be careful to disconnect cleanly.

Com_Switch
CALL Com_Switch (port)

If you are using more than one port, Com_switch will switch between them. All the operations (other than open
and close) will apply to the last port number used with Com_switch or Com_open. The port number you use as the
argument should be 1, 2, etc. It is not the file number you passed to Com_open, but rather the port number —
Com_open’s second argument.
Some things to keep in mind when using both ports:
You can’t use the same file number for both ports. You don’t need the file number for any purpose other than closing
the port at the end, but the file must stay open while you’re using it. If you call Com_open from a subroutine, the port
will be closed when you leave the subroutine unless the channel number was a parameter.
There is a 20480 byte input buffer for each port, and Com_buf(3) gives back the same number for both. There are
also separate output buffers, however, each with a system-dependent size.

Example:
! Copy port 1 to port 2, changing speed

call Com_Open (#5,2,1200,”d8 rxoff sxoff”)
call Com_Open (#6,1,300,”d8 rxoff sxoff”)

do until key input
call Com_Receive (x$)
call Com_Switch (2)
call Com_Send (x$)
call Com_Switch (1)

loop

Exceptions: 7004 Channel isn’t open.

Com_Control
SUB Com_Control (options$)

Once a port has been opened, you can change the options by calling Com_control. These options have exactly the
same meaning as they do for Com_open. The string options$ can contain any number of these separated by spaces,
in either upper or lower case.

DTR Turn on Data Terminal Ready.
DTR– Turn off Data Terminal Ready.
RTS Turn on Request To Send.
RTS– Turn off Request To Send.
RXOFF Turn on input flow control.
RXOFF– Turn off input flow control.
SXOFF Turn on output flow control.

398 True BASIC Language System



SXOFF– Turn off output flow control.
Dn Use n data bits per character (5, 6, 7, or 8).
S1 Send one stop bit after each character.
S2 Send two stop bits after each character.
PE Use even parity.
PO Use odd parity.
PS Use space parity (parity bit always zero). (Macintosh only)
PM Use mark parity (parity bit always one). (PC only)
P– Don’t send any parity bit (used with D8).

Almost all data transmission uses 8 bits followed by a stop bit. Sometimes the eighth bit is used for parity, other
times as another data bit. The only reasonable combinations of parity and number of data bits are “D8 P–,” “D7
PE,” or “D7 PS” (except for odd applications like news wire services).

The parity bit is both generated and checked by the same method. If it’s wrong, an error will be recorded, so the
next time you look at Com_status (“ERR”), you’ll see that there was a parity error. In most cases, you should just
ignore parity errors, since whatever’s sending you characters may not be using the same algorithm (some use
even, some use space). Almost no-one checks parity.

Exceptions: 7004 Channel isn’t open.
960 Unknown communication option: XXX

Com_Send
CALL Com_Send (s$)

Com_Send simply sends the string s$ over the communications line. It actually just puts the string into an output
buffer and starts sending. The transmission goes on in background, while your program continues to run. The
output buffer is 10240 bytes long, typically, and Com_Send won’t return immediately if your program gets farther
ahead than that — it will have to wait for some of the data to actually be sent over the communication line.

If you need to know when the output is finished, see Com_buf.

Com_Send is the workhorse sending subroutine. Subroutines that send lines terminated with a CR-LF or just a
CR are Com_SendLine and Com_SendCR.
(Use CALL Send (s$) if you are using COMLIB.TRC.)

Com_SendLine
CALL Com_SendLine (line$)

Com_SendLine is just like Com_Send except that it sends a carriage-return and a line-feed after sending line$.
It’s useful for line printers. If you want the line to be terminated with a different character sequence, just change
the code in CommLib.tru and recompile. Or, just use the Com_Send subroutine and overtly send the line
termination character sequence you need.
(Use CALL Send_Line (line$) if you are using COMLIB.TRC.)

Com_SendCR
CALL Com_SendCR (line$)

Com_SendCR is just like Com_Send, except that it sends a carriage-return (but no line-feed) after sending line$.
It’s useful for impersonating a person at a terminal, sending command lines to a remote computer system for
example. If you want the line to be terminated with a different character sequence, just change the code in
CommLib.tru and recompile. Or, just use the Com_Send subroutine and overtly send the line termination
character sequence you need.
(Use CALL Send_CR (line$) if you are using COMLIB.TRC.)

399Interface Library Routines



Com_SendBreak
CALL Com_SendBreak

A break is not a character, and so can’t simply be put into a string and given to the Com_Send subroutine.
Com_SendBreak waits for all other output to stop, then sends a break (which means holding the line in the zero,
or spacing, state for 200 ms.), then returns. This allows you to simulate the effect of the break key on most
terminals.

If your program needs to recognize breaks received from the communications line, take a look at Com_status
(“ERR”). That will tell you if a break has been received.

Exceptions: 7004 Channel isn’t open.
(Use CALL Send_Break if you are using COMLIB.TRC.)

Com_Receive
CALL Com_Receive (buf$)

Com_Receive sets buf$ to whatever data has been received since the last time it was called. It never waits. If
nothing has yet come in, buf$ will be set to the null string.

Com_Receive is the workhorse receiving subroutine. A subroutines that look for CR in the received string is
Com_ReceiveLine.

(Use CALL Receive (buf$) if you are using COMLIB.TRC.)

Example:
call Com_SendLine (command$) ! request another block
let block$ = “”
do ! should get 2k bytes

call Com_Receive (x$)
let block$ = block$ & x$ ! accumulate bytes

loop while len(block$)#<2048 ! until we get all 2K

Com_ReceiveLine
CALL Com_ReceiveLine (line$)

Com_ReceiveLine gets the next line of input, up to a carriage-return character. The carriage-return is removed,
as is a line-feed (if present). It may have to wait, unlike Com_Receive, until the line is complete.
This subroutine is not recommended for very high data rates. Instead, you should try to use Com_Receive. It
should generally not be used with the “D8” option (see Com_control), since it looks for a carriage-return character
without a parity bit. If the carriage-return was sent with even parity, and received with the “D8” option, it won’t
be recognized.
To be exact, an initial line-feed character (if one is present) is removed from the line, but the routine won’t wait to
see if a line-feed follows the carriage-return. This will be important only if you mix calls to Com_Receive and
Com_ReceiveLine.
If there’s nothing coming in on the communication line, Com_ReceiveLine will just keep waiting forever. See
Com_WaitLine if your program needs to time out and take corrective action in such cases.

If you prefer to scan for a terminating character other than a CR, simply make the change in the source code in
CommLib.tru and recompile.

Exceptions: 7004 Channel isn’t open.
Parity errors and the like don’t cause exceptions. They will just be recorded, and can be checked for with
Com_status (“ERR”).

(Use CALL Receive_Line (line$) if you are using COMLIB.TRC.)

400 True BASIC Language System



Com_Buf
DEF COM_BUF (type)

Com_buf returns the amount of buffer space (in bytes) currently free or currently used, for either the send or
receive buffers, depending on the parameter type.

Type Result
0 Number of bytes waiting to be sent (when this number goes

to zero, the transmitter is idle)
1 Number of bytes free in output buffer (number of bytes you

can send without waiting)
2 Number of bytes waiting in input buffer (if you called

Receive, this is how long the string would be)

3 Number of bytes free in input buffer

Example:
declare def Com_Buf
do
loop until Com_Buf(0) = 0 ! wait til all data is out
call Com_Control (“DTR-”) ! then hang up the phone

Exceptions: 7004 Channel isn’t open.

Com_Status
DEF Com_Status (type$)

The function Com_Status provides for a grab-bag of rarely-used information. It can tell you are the modem status
lines, various kinds of transmission errors, and whether either input or output are currently pausing because of
an XOFF (control-s) character. You use type$ to say what you’re checking for. Usually the result is either 0 or 1
(“ERR” is the only exception). If the information is not available, or if type$ is misspelled, result will be -1.Type$
may be in upper or lower case.

Type Result
DSR 1 if Data Set Ready is on.
RLSD 1 if Receive Line Signal Detected (Carrier).
DCD Same as RLSD (“Data Carrier Detected”).
CTS 1 if Clear To Send.
RI 1 if the phone is Ringing.
RXOFF 1 if output stopped because we received an XOFF.
SXOFF 1 if we sent an XOFF because the input buffer was full.
CR 1 if there’s a Carriage-Return in the input buffer 

(so Receive_line won’t have to wait).
ERR Returns the highest-numbered error since the last call, or zero if none.

Error types returned by Com_status (“ERR”)
Type Result

0 No error since the last call.
1 Parity error (usually this should be ignored, most computers are pretty lax about parity).
2 Framing error (the stop bit was a zero, not a 1).
3 A break was received (a null character will mark the spot in the input stream).
4 Chip overrun (another character came in before the computer could respond to the last one).
5 Input buffer overrun (too many characters came in since the last time you called Receive).

401Interface Library Routines



Example:

print “Connecting...
call Com_open (#1,1,1200,””) ! Open up the modem
let start_time = Time ! Wait up to 60 sec for carrier
do

if Time > start_time + 60 then cause error 1, “Modem Timeout.”
loop until Com_status(“RLSD”) = 1
print “Connected.”

Exceptions: 7004 Channel isn’t open.
961 Unknown communication status type: YYY

Com_WaitLine
CALL Com_WaitLine (wtime, tflag, line$)

Com_WaitLine waits for the next line of input (up to a carriage-return), but will time-out after wtime seconds. If a
carriage-return is received within the specified time, Com_WaitLine will set line$ to the line received (without
carriage-return or line-feed), then set tflag to zero, and return. But if more than wtime seconds go by before a
carriage-return is received, Com_WaitLine will return with tflag set to 1 and line$ to the partial line received so far.

Com_WaitLine is useful if you want your program to retry when the thing you’re communicating with doesn’t
respond. It’s very much like Com_ReceiveLine, except that it won’t wait forever like Com_ReceiveLine will. In fact,
Call Com_ReceiveLine (l$) is equivalent to Call Com_WaitLine (maxnum, xxx, l$).

(Use CALL WaitLine (wtime, tflag, line$) if you are using COMLIB.TRC.)

Com_WaitPrompt
CALL Com_WaitPrompt (prompt$, wtime, tflag, buf$)

Com_WaitPrompt waits for the specified string, prompt$, to be received. It will return as soon as that string is
received, or when wtime seconds have gone by. The time-out flag tflag will be set to zero if the prompt string was
received, otherwise it will be one. In either case, buf$ will contain everything Com_WaitPrompt receives from the
port up to the time it returns.

If you want Com_WaitPrompt to wait indefinitely, without time-out, pass MAXNUM for wtime.

(Use CALL Wait_Prompt (prompt$, wtime, tflag, buf$) if you are using COMLIB.TRC.)

Example:
! Subroutine to sign on to time-sharing system

sub Signon (#1)
call Open_com (#1,1,9600,””) ! open the port
call Com_WaitPrompt (“login:”,10,t,s$)  ! wait for prompt
if t = 0 then

call Com_SendCR (“vicki”) ! send username
call Com_WaitLine (1,t,s$) ! first line is echo
call Com_WaitLine (5,t,s$) ! next is message of the day

end if
if t = 0 then

print s$ ! print message of the day
else

print “System isn’t responding.
end if

end sub

Exceptions: 7004 Channel isn’t open.

402 True BASIC Language System



A Note About Speed
The communication library is capable of supporting speeds up to 38400 baud fairly easily. But it’s quite easy to
write programs that can’t keep up. Obviously the more processing you do for each character (or each line) of input,
the lower the line speed you’ll be able to handle. That may not matter for output — there’s usually no penalty,
except time, for sending fewer bytes per second than the line could support. It may not matter for input either, if
you use input flow control (the SXOFF option). But even so, you’ll probably want to get the best performance you
can from the communication line.

Here are a few hints for high-speed communication. The most important one is avoid character-by-character
processing. The subroutines in the communication library work most efficiently with large blocks, rather than
individual characters. When you receive input from the communication line, it comes in a string, containing
whatever was received since the last time you checked. The higher your loop overhead, the more data you’ll get
each time you call Com_Receive. But if you avoid looking at every byte of the string, your loop will be more efficient
for longer strings. A natural equilibrium will be reached that depends on how fast the bytes are coming in.

More hints for high data rates:

• Don’t process either input or output one byte at a time.

• Don’t use Com_ReceiveLine — use Com_Receive instead. Com_ReceiveLine doesn’t allow the kind of
equilibrium mentioned above. It’s also less efficient.

• If you must look at every byte of a string, use Unpackb, rather than taking single-character substrings.
It’s convenient to use a loop with a step size of 8 when using Unpackb.

• Use flow control (the SXOFF and RXOFF options) if possible. This at least means speed mismatches
won’t result in lost data. Sometimes it’s just not possible to process input at the full line speed.

• If you’re using files, use byte files. Use a fairly large record size for reading or writing them. Byte files are
faster than text or record files, but their chief advantage is to allow you to process the data in large
batches.

Low Level Subroutines
All the subroutines and functions previously described depend on two low-level builtin subroutines. The are:
ComOpen and ComLib.

ComOpen Subroutine
CALL ComOpen (method, #1, port, speed, options$)

The ComOpen subroutine provides for opening a communications port. The methods are:
Method 0 Open the communications port. P1 is the port number. P2 is the intended data  speed. Options$

are the same as desribed for Com_Open The port number must  be from 1 to whatever the
number of ports available on your platform. P2 must  be as described for Com_Open.

Method 8 Close the communications port. This may also be done with the CLOSE #1 statement.

ComLib Subroutine
CALL ComLib (method, p1, p2, ps$)

The ComLib subroutine provides access to the communications ports. The methods are numbered from 0 to 8. The
description of each method is as follows:

Method 0: Open
This method opens a communications port. The ports are numbered from 1 to n, where n is the number of
communications ports available. On Windows and similar machines port 1 is the same as COM1, port 2 is the same
as COM2, and so on. P2 is the desired speed. Most implementations can handle any speed up to a system-

403



dependent maximum. Ps$ provides the options, which are the same as for Com_Open.

Opening a communications port in this way is not recommended. Using ComOpen or Com_Open is preferred as
True BASIC automatically closes all channels on program termination.

Method 1: Switch
This method allow you to switch to another port, which, of course, must have been previously opened. P1 specifies
the new port. P2 and ps$ are ignored.

Method 2: Control
This method allows you to send control options to a communications port. Typical options are:

DTR Turn on Data Terminal Ready.
DTR– Turn off Data Terminal Ready.
RTS Turn on Request To Send.
RTS– Turn off Request To Send.
RXOFF Turn on input flow control.
RXOFF– Turn off input flow control.
SXOFF Turn on output flow control.
SXOFF– Turn off output flow control.
Dn Use n data bits per character (5, 6, 7, or 8).
S1 Send one stop bit after each character.
S2 Send two stop bits after each character.
PE Use even parity.
PO Use odd parity.
PS Use space parity (parity bit always zero).
PM Use mark parity (parity bit always one).
P– Don’t send any parity bit (used with D8).

Method 3: Send
This method is the workhorse method for sending a character string to a communications port. Ps$ contains the
string of characters to be sent. P1 contains the number of bytes sent. P2 is ignored.

Method 4: Receive
This method is the workhorse method for receiving characters from a communications port. If p1 = 0, then all bytes
present are returned in ps$. Otherwise, p1 gives the number of bytes returned; more may still be out there. P2 is
ignored.

Method 5: Status
This method allows you to determine the status of any of several conditions. Use ps$ to specify the condition you
wish to check. Its status is returned in p1. If the status is unavailable, or if it is spelled wrong, p1 will be -1. P2 is
ignored. Typical conditions are:

DSR 1 if Data Set Ready is on.
RLSD 1 if Receive Line Signal Detected (Carrier).
DCD Same as RLSD (“Data Carrier Detected”).
CTS 1 if Clear To Send.
RI 1 if the phone is Ringing.
RXOFF 1 if output stopped because we received an XOFF.
SXOFF 1 if we sent an XOFF because the input buffer was full.
CR 1 if there’s a Carriage-Return in the input buffer 

(so Com_ReceiveLine won’t have to wait).

404 True BASIC Language System



ERR Returns the highest-numbered error since the last call, 
or zero if none. The error numbers are:

0 No error since the last call.
1 Parity error (usually this should be ignored, most computers are

pretty lax about parity).
2 Framing error (the stop bit was a zero, not a 1).
3 A break was received (a null character will mark the spot in the

input stream).
4 Chip overrun (another character came in before the computer

could respond to the last one).
5 Input buffer overrun (too many characters came in since the last

time you called Com_Receive).

Method 6: Scan
This method allows you to scan the characters that have been received so far for the presence of a certain character
or character string. Place the search key in ps$. P1 contains the first location in the characters received so far that
matches the search key; p1 is 0-based, that is, p1 = 0 refers to the first character. If no match was found, p1 = -1.

Method 7: Break
This method sends a break. The other arguments are ignored.

Method 8: Close
This method can be used to close a communications port. P1 is the port to be closed. P2 and ps$ are ignored. If you
use ComOpen or Com_Open to open a communications port (recommended,) then you can close the port using a
CLOSE #1 or similar statement.

405Additional Library Routines



406 True BASIC Language System



CHAPTER

23
Additional Library Procedures

In addition to the functions and subroutines built in to True BASIC, there are several small libraries that extend
the functions subroutines available. These are all stored in the subdirectory TBLIB that is installed in the main
True BASIC directory. 
To use any of these libraries of procedures, you must include a LIBRARY statement in your program of the
form:

LIBRARY “c:\TBV5\TBLIBS\SORTLIB.TRC”

using the appropriate path name and file names for each library containing functions or subroutines you wish to
use. Although source code may also be provided for some libraries, your programs will run much faster if you
use the compiled version of any libraries. 
As with all functions stored in external procedures, you must also name any library functions in DECLARE
DEF statements before you can use them.
This chapter describes library procedures, listed alphabetically within four categories — math, strings, sorting,
and graphics:

Mathematical Tools
MATHLIB.TRC hyperbolic and arc functions
HEXLIB.TRC bit, octal, and hexadecimal manipulation routines

String Tools
STRLIB.TRC string creation, conversion, formatting, editing 

Sorting and Searching Tools
SORTLIB.TRC sorting, searching, and reversing items on arrays

Graphics Tools
BGLIB.TRC for pie charts, bar charts, and histograms
SGLIB.TRC for plotting data and function values
SGFUNC.TRC for plotting values of functions that you define

407



Math Libraries
The built-in trigonometric and hyperbolic functions include: SIN, COS, TAN, CSC, SEC, COT, ATN, ASIN,
ACOS, SINH, COSH, and TANH. The math libraries contain the following additional functions:

Math Libraries
——————————————————————————————————————

Library Functions
MATHLIB.TRC Additional hyperbolic and arc functions (radian measure): 

ACOT, ACSC, ASEC, COTH, CSCH, SECH, ACOSH, ACOTH, ACSCH,
ASECH, ASINH and ATANH. 

HEXLIB.TRC Several bit, octal, and hexadecimal manipulation routines:
AND (bit-by-bit), BIN$, CONVERT, HEX$, HEXW$, 
OR (bit-by-bit), and XOR (bit-by-bit)

——————————————————————————————————————
In addition, TBLIBS contains short files that you can copy and paste or “ include” near the beginning of your
program. These files contain a LIBRARY statement and a DECLARE DEF statement to specify the names of
the functions in the library, and are named MATHDECL.TRU and HEXDECL.TRU.
Each of the math library functions are described below; the functions are listed alphabetically.

ACOSH Function
Library: MATHLIB.TRC
Syntax: ACOSH (numex)
Usage: LET a = ACOSH (n)

Summary: Returns the  value of the hyperbolic arccosine of its argument n.
Details: The ACOSH function returns the value of the hyperbolic arccosine of its argument. Since

neither the argument to nor the result of a hyperbolic function is an angle (and since the
function definition is stored in a library), the results of the ACOSH function are unaffected
by the current setting of the OPTION ANGLE statement.
The absolute value of n must be greater than or equal to 1.

Example: The following program:
LIBRARY “MATHLIB.TRC”
DECLARE DEF Acosh
PRINT Acosh(1)
END

produces the following output:
0 

Exceptions: 1003 Overflow in numeric function.
-3000 Argument not in range.

See also: COSH, SINH, TANH, COTH, SECH, CSCH, ASINH, ATANH, ACOTH, ASECH, and
ACSCH. The first three are built-in.

Note: The ACOSH function may be defined in terms of other True BASIC constructs as:
DEF Acosh(x)

IF Abs(x) < 1 then
CAUSE ERROR -3000, “Argument not in range.”

ELSE
LET Acosh = Log(x + Sqr(x*x-1))

END IF
END DEF

408 True BASIC Language System



ACOT Function
Library: MATHLIB.TRC
Syntax: ACOT(numex)
Usage: LET y = ACOT(n)

Summary: Returns the value of the arccotangent of its argument n.
Details: The ACOT functions returns the values of the arccotangent in radians of its argument. 
Example: The following program:

LIBRARY “MATHLIB.TRC”
DECLARE DEF Acot
PRINT Acot(1)
END

produces the output
.78539816

Exceptions: 1003 Overflow in numeric function.
See also: ATN, ASIN, ACOS, ASEC, and ACSC. The first three are built-in.
Note: The ACOT function may be defined in terms of other True BASIC constructs as:

DEF Acot(x) = PI/2 - Atn(x)

ACOTH Function
Library: MATHLIB.TRC
Syntax: ACOTH (numex)
Usage: LET a = ACOTH (n)

Summary: Returns the  value of the hyperbolic arccotangent of its argument n.
Details: The ACOTH function returns the value of the hyperbolic arccotangent of its argument. 

The absolute value of n must be greater than or equal to 1.
Example: The following program:

LIBRARY “MATHLIB.TRC”
DECLARE DEF Acoth
PRINT Acoth(1)
END

produces the following output:
0 

Exceptions: 1003 Overflow in numeric function.
-3000 Argument not in range.

See also: COSH, SINH, TANH, COTH, SECH, CSCH, ASINH, ATANH, ACOSH, ASECH, and
ACSCH. The first three are built-in.

Note: The ACOTH function may be defined in terms of other True BASIC constructs as:
DEF Acoth(x)

IF Abs(x) <= 1 then
CAUSE ERROR -3000, “Argument not in range.”

ELSE
LET Acoth = Log( (x+1)/(x-1) ) / 2

END IF
END DEF

409Math Libraries



ACSC Function
Library: MATHLIB.TRC
Syntax: ACSC(numex)
Usage: LET y = ACSC(n)

Summary: Returns the value of the arccosecant of its argument n.
Details: The ACSC functions returns the values of the arccosecant in radians of its argument. 
Example: The following program:

LIBRARY “MATHLIB.TRC”
DECLARE DEF Acsc
PRINT Acsc(1)
GET KEY key
END

produces the output
1.57079632

Exceptions: 1003 Overflow in numeric function.
-3000 Argument not in range.

See also: ATN, ASIN, ACOS, ASEC, and ACOT. The first three are built-in.
Note: The ACOT function may be defined in terms of other True BASIC constructs as: 

DEF Acsc(x)
IF Abs(x) < 1 then CAUSE ERROR -3000
LET Acsc = Asin(1/x)

END DEF

ACSCH Function
Library: MATHLIB.TRC
Syntax: ACSCH (numex)
Usage: LET a = ACSCH (n)

Summary: Returns the  value of the hyperbolic arccosecant of its argument n.
Details: The ACSCH function returns the value of the hyperbolic arccosecant of its argument. 

The absolute value of n must not be 0, or an exception occurs.
Example: The following program:

LIBRARY “MATHLIB.TRC”
DECLARE DEF Acsch
PRINT Acsch(1)
END

produces the following output:
.88137359 

Exceptions: 1003 Overflow in numeric function.
–3000 Argument not in range.

See also: COSH, SINH, TANH, COTH, SECH, CSCH, ACOSH, ASINH, ATANH, ACOTH, and
ASECH. The first three are built-in. 

Note: The ACSCH function may be defined in terms of other True BASIC constructs as:
DEF Asech(x)

IF x = 0 then
CAUSE ERROR -3000, “Argument not in range.”

ELSE
LET Acsch = Log((1+sgn(x)*Sqr(x*x+1)) / x)

END IF
END DEF

410 True BASIC Language System



AND Function
Library: HEXLIB.TRC
Syntax: AND (numex, numex)
Usage: LET n = AND (a, b)

Summary: Returns the result of a bit-by-bit logical AND of the values of a and b.
Details: The AND function returns the result of a bit-by-bit logical AND of the values of a and b.

That is, it compares each bit in the value of a with the corresponding bit in the value of b
and sets the corresponding bit in the resulting value to 1 if both bits being compared are set
to 1. Otherwise, that bit in the resulting value is set to 0.
Note that if the values of a and b are not integers, the AND function uses the greatest
integer values which are less than their actual values.

Example: The following program:
LIBRARY “HEXLIB.TRC”
DECLARE DEF And

PRINT And(0, 0)
PRINT And(1, 0)
PRINT And(1, 1)
PRINT And(5, 6)
PRINT And(-5, 6)
PRINT And(5.8, 6.9)
PRINT And(255, 127)

END
produces the following output:
0 
0 
1 
4 
2 
4 
127 

Exceptions: None
See also: OR, XOR

ASEC Function
Library: MATHLIB.TRC
Syntax: ASEC(numex)
Usage: LET y = ASEC(n)

Summary: Returns the value of the arcsecant of its argument n.
Details: The ASEC functions returns the values of the arcsecant in radians of its argument. 
Example: The following program:

LIBRARY “MATHLIB.TRC”
DECLARE DEF Asec
PRINT Asec(1)
END

produces the output
0

Exceptions: 1003 Overflow in numeric function.
-3000 Argument not in range.

See also: ATN, ASIN, ACOS, ACSC, and ACOT. The first three are built-in.

411Math Libraries



Note: The ASEC function may be defined in terms of other True BASIC constructs as:
DEF Asec(x)

IF Abs(x) < 1 then CAUSE ERROR -3000
LET Asec = Acos(1/x)

END DEF

ASECH Function
Library: MATHLIB.TRC
Syntax: ASECH (numex)
Usage: LET a = ASECH (n)

Summary: Returns the  value of the hyperbolic arcsecant of its argument n.
Details: The ASECH function returns the value of the hyperbolic arcsecant of its argument. 

The absolute value of n must be less than or equal to 1, or an exception occurs.
Example: The following program:

LIBRARY “MATHLIB.TRC”
DECLARE DEF Asech
PRINT Asech(1)
END

produces the following output:
0 

Exceptions: 1003 Overflow in numeric function.
–3000 Argument not in range.

See also: COSH, SINH, TANH, COTH, SECH, CSCH, ACOSH, ASINH, ATANH, ACOTH, and
ACSCH. The first three are built-in.

Note: The ASECH function may be defined in terms of other True BASIC constructs as:
DEF Asech(x)

IF Abs(x) > 1 then
CAUSE ERROR -3000, “Argument not in range.”

ELSE
LET Asech = Log((1+Sqr(1-x*x)) / x)

END IF
END DEF

ASINH Function
Library: MATHLIB.TRC
Syntax: ASINH (numex)
Usage: LET a = ASINH (n)

Summary: Returns the  value of the hyperbolic arcsine of its argument n.
Details: The ASINH function returns the value of the hyperbolic arcsine of its argument. 
Example: The following program:

LIBRARY “MATHLIB.TRC”
DECLARE DEF Asinh
PRINT Asinh(1)
END

produces the following output:
.88137359 

Exceptions: 1003 Overflow in numeric function.
See also: COSH, SINH, TANH, COTH, SECH, CSCH, ACOSH, ATANH, ACOTH, ASECH, and

ACSCH. The first three are built-in.

412 True BASIC Language System



Note: The ASINH function may be defined in terms of other True BASIC constructs as:
DEF Asinh(x) = Log(x + Sqr(x*x+1))

ATANH Function
Library: MATHLIB.TRC
Syntax: ATANH (numex)
Usage: LET a = ATANH (n)

Summary: Returns the  value of the hyperbolic arctangent of its argument n.
Details: The ATANH function returns the value of the hyperbolic arctangent of its argument. 

The absolute value of n must be less than 1, or an exception occurs.
Example: The following program:

LIBRARY “FMATHLIB.TRC”
DECLARE DEF Atanh
PRINT Atanh(.5)
END

produces the following output:
.54930614 

Exceptions: 1003 Overflow in numeric function.
–3000 Argument not in range.

See also: COSH, SINH, TANH, COTH, SECH, CSCH, ACOSH, ASINH, ACOTH, ASECH, and
ACSCH. The first three are built-in.

Note: The ATANH function may be defined in terms of other True BASIC constructs as:
DEF Atanh(x)

IF Abs(x) >= 1 then
CAUSE ERROR -3000, “Argument not in range.”

ELSE
LET Atanh = Log((1+x)/(1-x)) / 2

END IF
END DEF

BIN$ Function
Library: HEXLIB.TRC
Syntax: BIN$ (numex)
Usage: LET binary$ = BIN$ (n)

Summary: Returns a string containing the signed binary representation of the value of its argument n.
Details: The BIN$ function returns a string containing a binary representation of the value of n. The

resulting string contains only the number of digits necessary to represent the value of n;
leading zeroes are not added.
Note that the resulting binary value inherits the sign of the value of n. That is, the results of
the BIN$ function will be the unsigned binary representation of the absolute value of n,
with the sign of n appearing as the first character if n is negative.

Example: The following program:
LIBRARY “HEXLIB.TRC”
DECLARE DEF Bin$

PRINT Bin$(0)
PRINT Bin$(1)
PRINT Bin$(-1)
PRINT Bin$(255)
PRINT Bin$(1037)

END

413Math Libraries



produces the following output:
0
1
-1
11111111
10000001101

Exceptions: None
See also: HEX$, HEXW$, OCT$, CONVERT

CONVERT Function
Library: HEXLIB.TRC
Syntax: CONVERT (strex)
Usage: LET decimal = CONVERT (number$)

Summary: Converts the hexadecimal, octal, binary, or decimal value represented by number$ into its
decimal numeric equivalent.

Details: The CONVERT function converts a hexadecimal, octal, binary, or decimal value
represented as a string into the equivalent decimal numeric value.
The value of number$ may be specified in a number of common formats. 
If the value of number$ begins or ends with the character H, h, X, x, or $, it is interpreted as
representing a hexadecimal value. 
If the value of number$ begins or ends with the character O, o, Q, or q, it is interpreted as
representing an octal value.
If the value of number$ begins or ends with the character B or b, it is interpreted as
representing a binary value.
If the value of number$ begins with an ampersand (&), the second character is considered.
If the second character is an H or an h, the value of number$ is interpreted as representing
a hexadecimal value. However, if the second character is a digit, the value of number$ is
interpreted a representing an octal value.
If the value of number$ begins with a zero, the second character is considered. If the second
character is a digit, the value of number$ is interpreted a representing an octal value,
unless the value ends with one of the characters mentioned above. If the second character is
an X or an x, the value of number$ is interpreted as representing a hexadecimal value.
If none of the codes mentioned above is present in the value of number$, it will be
interpreted as representing a decimal value, and the CONVERT function will behave in a
manner identical to the VAL function.
If the value is signed, the sign (+ or –) must be the first character. (The sign is stripped prior
to the application of the above rules.)
If the value of number$ does not obey these rules or represents a non-numeric value, an
exception will occur.

Example: The following program:
LIBRARY “HEXLIB.TRC”
DECLARE DEF Convert

PRINT Convert(“2CH”), Convert(“2ch”)
PRINT Convert(“17Q”)
PRINT Convert(“00110011B”)
PRINT Convert(“$3B”)
PRINT Convert(“&73”)
END

414 True BASIC Language System



produces the following output:
44              44 
15 
51 
59 
59 

Exceptions: 4001 Val string isn’t a proper number.
See also: VAL, BIN$, HEX$, HEXW$, OCT$

COTH Function
Library: MATHLIB.TRC
Syntax: COTH (numex)
Usage: LET a = COTH (n)

Summary: Returns the  value of the hyperbolic cotangent of its argument n.
Details: The COTH function returns the value of the hyperbolic cotangent of its argument. 
Example: The following program:

LIBRARY “MATHLIB.TRC”
DECLARE DEF Coth
PRINT Coth(1)
END

produces the following output:
1.3130353 

Exceptions: 1003 Overflow in numeric function.
See also: COSH, SINH, TANH, SECH, CSCH, ACOSH, ASINH, ATANH, ACOTH, ASECH, and

ACSCH. The first three are built-in.
Note: The COTH function may be defined in terms of other True BASIC constructs as:

DEF Coth(x) = 1 / ((Exp(x) - Exp(-x))/(Exp(x) + Exp(-x)))

CSCH Function
Library: MATHLIB.TRC
Syntax: CSCH (numex)
Usage: LET a = CSCH (n)

Summary: Returns the  value of the hyperbolic cosecant of its argument n.
Details: The CSCH function returns the value of the hyperbolic cosecant of its argument. 
Example: The following program:

LIBRARY “MATHLIB.TRC”
DECLARE DEF Csch
PRINT Csch(1)
END

produces the following output:
.85091813 

Exceptions: 1003 Overflow in numeric function.
Division by zero.

See also: COSH, SINH, TANH, COTH, SECH, ACOSH, ASINH, ATANH, ACOTH, ASECH, and
ACSCH. The first three are built-in.

Note: The CSCH function may be defined in terms of other True BASIC constructs as:
DEF Sech(x) = 1 / (Exp(x) - Exp(-x))

415Math Libraries



HEX$ Function
Library: HEXLIB.TRC
Syntax: HEX$ (numex)
Usage: LET hexadecimal$ = HEX$ (n)

Summary: Returns a string containing the signed hexadecimal representation of the value of its
argument n.

Details: The HEX$ function returns a string containing a hexadecimal representation of the value of
n. The resulting string contains only the number of digits necessary to represent the value of
n; leading zeroes are not added.
Note that the resulting hexadecimal value inherits the sign of the value of n. That is, the
results of the HEX$ function will be the unsigned hexadecimal representation of the
absolute value of n, with the sign of n appearing as the first character if n is negative.

Example: The following program:
LIBRARY “HEXLIB.TRC”
DECLARE DEF Hex$

PRINT Hex$(0)
PRINT Hex$(1)
PRINT Hex$(-1)
PRINT Hex$(255)
PRINT Hex$(1037)

END

produces the following output:
0
1
-1
FF
40D

Exceptions: None
See also: HEXW$, BIN$, OCT$, CONVERT

HEXW$ Function
Library: HEXLIB.TRC
Syntax: HEXW$ (numex)
Usage: LET hexadecimal$ = HEXW$ (n)

Summary: Returns a four-character string containing the unsigned hexadecimal representation of the
value of its argument n.

Details: The HEXW$ function returns a string containing the unsigned hexadecimal representation
of the value of n. The resulting string will always contain exactly four characters; leading
zeroes will be added if necessary.
Negative values of n are treated as two’s complement. Thus, the resulting value will be an
unsigned value.

Example: The following program:
LIBRARY “HEXLIB.TRC”
DECLARE DEF Hexw$

PRINT Hexw$(0)
PRINT Hexw$(1)
PRINT Hexw$(-1)
PRINT Hexw$(255)
PRINT Hexw$(1037)

END

416 True BASIC Language System



produces the following output:
0000
0001
FFFF
00FF
040D

Exceptions: None
See also: HEX$, BIN$, OCT$, CONVERT

OCT$ Function
Library: HEXLIB.TRC
Syntax: OCT$ (numex)
Usage: LET octal$ = OCT$ (n)

Summary: Returns a string containing the signed octal representation of the value of its argument n.
Details: The OCT$ function returns a string containing a signed octal representation of the value of

n. The resulting string contains only the number of digits necessary to represent the value of
n; leading zeroes are not added.
Note that the resulting octal value inherits the sign of the value of n. That is, the results of
the OCT$ function will be the unsigned octal representation of the absolute value of n, with
the sign of n appearing as the first character if n is negative.

Example: The following program:
LIBRARY “HEXLIB.TRC”
DECLARE DEF Oct$

PRINT Oct$(0)
PRINT Oct$(1)
PRINT Oct$(-1)
PRINT Oct$(255)
PRINT Oct$(1037)

END

produces the following output:
0
1
-1
377
2015

Exceptions: None
See also: HEX$, HEXW$, BIN$, CONVERT

OR Function
Library: HEXLIB.TRC
Syntax: OR (numex, numex)
Usage: LET n = OR (a, b)

Summary: Returns the result of a bit-by-bit logical OR of the values of a and b.
Details: The OR function returns the result of a bit-by-bit logical OR of the values of a and b. That

is, it compares each bit in the value of a with the corresponding bit in the value of b and sets
the corresponding bit in the resulting value to 0 if both bits being compared are set to 0.
Otherwise, that bit in the resulting value is set to 1.

417Math Libraries



Example: The following program:
LIBRARY “HEXLIB.TRC”
DECLARE DEF Or

PRINT Or(0, 0)
PRINT Or(1, 0)
PRINT Or(1, 1)
PRINT Or(5, 6)
PRINT Or(-5, 6)
PRINT Or(5.8, 6.9)
PRINT Or(255, 127)

END

produces the following output:
0 
1 
1 
7 
-1 
8.7 
255 

Exceptions: None
See also: AND, XOR

SECH Function
Library: MATHLIB.TRC
Syntax: SECH (numex)
Usage: LET a = SECH (n)

Summary: Returns the  value of the hyperbolic secant of its argument n.
Details: The SECH function returns the value of the hyperbolic secant of its argument.
Example: The following program:

LIBRARY “MATHLIB.TRC”
DECLARE DEF Sech
PRINT Sech(1)
END

produces the following output:
.64805427 

Exceptions: 1003 Overflow in numeric function.
See also: COSH, SINH, TANH, COTH, CSCH, ACOSH, ASINH, ATANH, ACOTH, ASECH, and

ACSCH. The first three are built-in.
Note: The SECH function may be defined in terms of other True BASIC constructs as:

DEF Sech(x) = 1 / (Exp(x) + Exp(-x))

XOR Function
Library: HEXLIB.TRC
Syntax: XOR (numex, numex)
Usage: LET n = XOR (a, b)

Summary: Returns the result of a bit-by-bit logical XOR of the values of a and b.
Details: The XOR function returns the result of a bit-by-bit logical XOR (“exclusive OR”) of the

values of a and b. That is, it compares each bit in the value of a with the corresponding bit

418 True BASIC Language System



in the value of b and sets the corresponding bit in the resulting value to 0 if both bits being
compared are equal. Otherwise, that bit in the resulting value is set to 1.

Example: The following program:
LIBRARY “HEXLIB.TRC”
DECLARE DEF Xor

PRINT Xor(0, 0)
PRINT Xor(1, 0)
PRINT Xor(1, 1)
PRINT Xor(5, 6)
PRINT Xor(-5, 6)
PRINT Xor(5.8, 6.9)
PRINT Xor(255, 127)

END

produces the following output:
0 
1 
0 
3 
-3 
4.7 
128 

Exceptions: None
See also: AND, OR

419Math Libraries



String Handling Libraries
In addition to the strings functions included in True BASIC, additional tools are provided in the library
STRLIB.TRC. All of the string functions and subroutines are described below in alphabetical order.
The operations provided by these functions and subroutines include:

Return sets of  string constants
ALPHANUM$, CONTROL$, DIGITS$, LETTERS$, LOWER$, PUNCT$,
RNDSTR$, UPPER$

Return simple parts of strings
LEFT$, MID$, RIGHT$

Return date and time strings: 
NICEDATE$, NICETIME$, NOW$, SHORTDATE$, TODAY, WEEKDAY,
WEEKDAY$

Convert between numeric and other representations of numbers:  
DOLLARS$, DOLLARVAL, ENGLISHNUM$, EVAL, LVAL, ROMAN$,
SUPERVAL

Parse a string BREAKUP, EXPLODE, EXPLODEN, NEXTWORD
Trim extra spaces INTRIM$, LTRIM$, RTRIM$, TRIM$, JUSTIFY$, NOSPACE$
Format text CENTER$, FILLARRAY, FILLFROM, HEADER$, JUSTIFY$, JUSTIFYARRAY,

JUSTIFYFROM, LJUST$, RJUST$
Reverse a string REVERSE$
Find shared or non-shared characters in two strings

CHARDIFF$, CHARINT$, CHARS$, CHARUNION$, UNIQ$
Remove or replace characters from strings

DELCHAR$, DELMIX$, DELSTR$, KEEPCHAR$, MAPCHAR$, NPLUGCHAR$,
NREPCHAR$, PLUGCHAR$, PLUGMIX$, PLUGSTR$, REPCHAR$, REPMIX$,
REPSTR$

ALPHANUM$ Function
Library: STRLIB.TRC
Syntax: ALPHANUM$
Usage: LET set$ = ALPHANUM$

Summary: Returns the set of alphabetic and digit characters.
Details: The ALPHANUM$ function returns a string containing the set of characters representing

the letters of the alphabet, both uppercase and lowercase, as well as the digits, arranged in
ascending order according to their ASCII codes. (For a table of the ASCII codes and their
corresponding characters, see Appendix A.)
That is, it returns the equivalent of the string constant:
“0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz”

Example: None.
Exceptions: None
See also: DIGITS$, LETTERS$, UPPER$, LOWER$, PUNCT$, CONTROL$

BREAKUP Subroutine
Library: STRLIB.TRC
Syntax: CALL BREAKUP (strex, strex, strex)
Usage: CALL BREAKUP (phrase$, word$, delims$)

Summary: Returns the next word, as delineated by a delimiter character, from the specified phrase.

420 True BASIC Language System



Details: The BREAKUP subroutine returns the next “word” from the specified “phrase.”
A phrase is defined as any series of characters, and a word is defined as any series of
characters except those defined as delimiters.
When invoking the BREAKUP subroutine, you pass the phrase as phrase$ and the
characters to be defined as delimiters as delims$. The subroutine then examines the
phrase, looking for the first delimiter character, and returns the characters up to but not
including this delimiter as the value of word$. It also updates the value of phrase$ to
eliminate the returned word and the delimiter.
Note that the BREAKUP subroutine strips any leading and trailing spaces off of the return
values of word$ and phrase$.
For example, assume you have passed delim$ with a value of “*#;” and phrase$ with a
value of “***abc***def**” to the BREAKUP subroutine. The subroutine would return
word$ with a value of the null string and phrase$ with a new value of “**abc***def**”
since there is no non-delimiter value between the beginning of the phrase and the first
delimiter. The process of breaking a phrase into words is often referred to as parsing a
phrase.
If the value of phrase$ does not contain any delimiters, the BREAKUP subroutine will
return the value of phrase$ in word$ and return phrase$ equal to the null string.
Note that the BREAKUP subroutine is closely related to, but subtly different from, the
NEXTWORD subroutine. The BREAKUP subroutine treats each individual delimiter
character as a delimiter in its own right, while the NEXTWORD subroutine treats a series
of contiguous delimiter characters as a single delimiter. For some applications you will want
to use the BREAKUP subroutine, for others you will want to use the NEXTWORD
subroutine.

Example: The following program:
LIBRARY "StrLib.trc"

LET s$ = "Now is the time for all good men"

DO

CALL BreakUp (s$, word$, " ")

IF word$ = "" then EXIT DO

PRINT word$,

LOOP

END

produces the following output:
all          good         men             

Now          is           the          time         for

Exceptions: None
See also: NEXTWORD, EXPLODE, EXPLODEN

CENTER$ Function
Library: STRLIB.TRC
Syntax: CENTER$ (strex, numex, strex)
Usage: LET a$ = CENTER$ (text$, width, back$)

Summary: Returns a string of the specified length containing the value of text$ center-justified.
Details: The CENTER$ function takes the value of text$ and adds characters alternately to the

beginning and end of it as necessary to create a string containing width characters with the
value of text$ centered within it. The characters added will be determined by repeating
the sequence of characters specified by the value of back$.
Note that if the value of text$ cannot be perfectly centered within the result, the extra

421String Handling Libraries



space will appear to the left of the value of text$ within the resulting string.
If the length of text$ is greater than the value specified by width, the CENTER$
function returns the value of text$ truncated to width characters. If the value of width is
less than or equal to 0, the CENTER$ function returns the null string.
The background pattern added to the beginning and end of the value of text$ will be
formed in such a way that all strings formed with the same value of back$ will have
identical background patterns, regardless of the value of text$. If the value of back$ is
the null string or a space, the background pattern will consist solely of blanks, or spaces.

Example: The following program:
LIBRARY "StrLib.trc"

DECLARE DEF Center$
LET s$ = "Hello, out there"
FOR w = 20 to 25

LET t$ = Center$ (s$, w, "*")
PRINT t$
NEXT w
END

produces the following output:
**Hello, out there**

**Hello, out there***

***Hello, out there***

***Hello, out there****

****Hello, out there****

****Hello, out there*****

Exceptions: None
See also: LJUST$, RJUST$, JUSTIFY$, HEADER$. FILLARRAY, FILLFROM,

JUSTIFYARRAY, JUSTIFYFROM

CHARDIFF$ Function
Library: STRLIB.TRC
Syntax: CHARDIFF$ (strex, strex)
Usage: LET difference$ = CHARDIFF$ (a$, b$)

Summary: Returns the set of characters contained within the value of a$ and not within the value of
b$.

Details: The CHARDIFF$ function returns a string containing the difference of the sets of
characters represented by the values of its arguments a$ and b$.
That is, the CHARDIFF$ function returns a string which contains one of each character
which appears in the value of its argument a$ but not within the value of its argument b$.
The characters will be organized within the resulting string in ascending order by their
ASCII codes. Thus, uppercase letters will be listed before all lowercase letters.

Example: The following program:
LIBRARY "StrLib.trc"
DECLARE DEF CharDiff$
LET a$ = "Hello, out there"
LET b$ = "aeiouy"
PRINT "*"; CharDiff$ (a$, b$); "*"
END

produces the following output:
* ,Hhlrt*

Exceptions: None
See also: CHARUNION$, CHARINT$, CHARS$, UNIQ$

422 True BASIC Language System



CHARINT$ Function
Library: STRLIB.TRC
Syntax: CHARINT$ (strex, strex)
Usage: LET intersection$ = CHARINT$ (a$, b$)

Summary: Returns the set of characters contained within the values of both a$ and b$.
Details: The CHARINT$ function returns a string containing the intersection of the sets of

characters represented by the values of its arguments a$ and b$.
That is, the CHARINT$ function returns a string which contains one of each character
which appears in the values of both its arguments. The characters will be organized within
the resulting string in ascending order by their ASCII codes. Thus, uppercase letters will be
listed before all lowercase letters.

Example: The following program:
LIBRARY "StrLib.trc"
DECLARE DEF CharInt$
LET a$ = "Hello, out there"
LET b$ = "aeiouy"
PRINT "*"; CharInt$ (a$, b$); "*"
END

produces the following output:
*eou*

Exceptions: None
See also: CHARUNION$, CHARDIFF$, CHARS$, UNIQ$

CHARS$ Function
Library: STRLIB.TRC
Syntax: CHARS$ (numex, numex)
Usage: LET set$ = CHARS$ (start, end)

Summary: Returns the set of characters whose ASCII codes range from the value of start to the value
of end.

Details: The CHARS$ function returns a string containing the set of characters whose ASCII codes
range in value from start to end.
If the value of start is less than or equal to the value of end, then the characters within
the resulting string will be arranged in ascending order by ASCII codes. If the value of
start is greater than the value of end, the resulting string will be arranged in descending
order.
If either start or end has a value less than 0, a value of 0 will be used instead. Likewise, if
either has a value greater than 255, a value of 255 will be used instead.

Example: The following program:
LIBRARY "StrLib.trc"
DECLARE DEF Chars$
PRINT Chars$ (33, 47)
END

produces the following output:
!"#$%&'()*+,-./

Exceptions: None
See also: CHARINT$, CHARDIFF$, CHARUNION$, UNIQ$

423String Handling Libraries



CHARUNION$ Function
Library: STRLIB.TRC
Syntax: CHARUNION$ (strex, strex)
Usage: LET union$ = CHARUNION$ (a$, b$)

Summary: Returns the set of characters contained within the values of either a$ or b$.
Details: The CHARUNION$ function returns a string containing the union of the sets of characters

represented by the values of its arguments a$ and b$.
That is, the CHARUNION$ function returns a string which contains one of each character
which appears in the value of either of its arguments. The characters will be organized
within the resulting string in ascending order by their ASCII codes. Thus, uppercase letters
will be listed before all lowercase letters.

Example: The following program:
LIBRARY "StrLib.trc"
DECLARE DEF CharUnion$
LET a$ = "Now is the time"
LET b$ = "for all good men"
PRINT CharUnion$ (a$, b$)
END

produces the following output:
Nadefghilmnorstw

(Note: there is a space before the 'N'.)
Exceptions: None
See also: CHARINT$, CHARDIFF$, CHARS$, UNIQ$

CONTROL$ Function
Library: STRLIB.TRC
Syntax: CONTROL$
Usage: LET set$ = CONTROL$

Summary: Returns the set of control characters.
Details: The CONTROL$ function returns a string containing the set of control characters,

arranged in ascending order according to their ASCII codes. (For a table of the ASCII codes
and their corresponding characters, see Appendix A.)
That is, it returns a string composed of those characters with ASCII codes between 0 and 31,
inclusive.

Example: None.
Exceptions: None
See also: DIGITS$, LETTERS$, ALPHANUM$, UPPER$, LOWER$, PUNCT$

DELCHAR$ Function
Library: STRLIB.TRC
Syntax: DELCHAR$ (strex, strex)
Usage: LET a$ = DELCHAR$ (text$, oldchars$)

Summary: Returns the value of text$ with all characters appearing in oldchars$ removed.
Details: The DELCHAR$ function removes from text$ all characters which are members of the

character set represented by the value of oldchars$. That is, it returns the value of
text$ after having deleted any occurrences of characters appearing in the value of
oldchars$.

424 True BASIC Language System



Example: The following program:
LIBRARY “STRLIB.TRC”
DECLARE DEF CharDiff$, Control$, DelChar$

OPEN #1: NAME “InFile”, ORG BYTE
OPEN #2: NAME “OutFile”, ORG BYTE, CREATE NEW
ERASE #2

LET crlf$ = Chr$(13) & Chr$(10)
LET bad$ = CharDiff$(Control$, crlf$)

DO WHILE MORE #1
READ #1, BYTES 10000: block$
WRITE #2: DelChar$(block$, bad$)

LOOP

END

removes all control characters except carriage return and line feed from the file named
INFILE, and stores the results in a file named OUTFILE.

Exceptions: None
See also: KEEPCHAR$, REPCHAR$, NREPCHAR$, MAPCHAR$, PLUGCHAR$,

NPLUGCHAR$

DELMIX$ Function
Library: STRLIB.TRC
Syntax: DELMIX$ (strex, strex)
Usage: LET a$ = DELMIX$ (text$, old$)

Summary: Returns the value of text$ with all occurrences of the value of old$, in any mix of upper-
and lowercase, removed.

Details: The DELMIX$ function removes from text$ all occurrences of the value of old$, without
regard to case. That is, it returns the value of text$ after having deleted any occurrences of
the value of old$ in any mix of uppercase and lowercase letters.

Example: The following program:
LIBRARY "StrLib.trc"
DECLARE DEF DelMix$
LET a$ = "Now is the time for all good men"
LET b$ = "e"
PRINT DelMix$ (a$, b$)
END

produces the following output:
Now is th tim for all good mn

Exceptions: None
See also: DELSTR$, DELCHAR$, REPMIX$, PLUGMIX$

DELSTR$ Function
Library: STRLIB.TRC
Syntax: DELSTR$ (strex, strex)
Usage: LET a$ = DELSTR$ (text$, old$)

Summary: Returns the value of text$ with all occurrences of the value of old$ removed.
Details: The DELSTR$ function removes from text$ all occurrences of the value of old$. That is,

it returns the value of text$ after having deleted any occurrences of the value of old$.

425String Handling Libraries



Example: The following program:
LIBRARY “STRLIB.TRC”
DECLARE DEF DelStr$

DO
LINE INPUT PROMPT “Enter a line (Return to quit): “: line$
IF line$ = “” then EXIT DO
PRINT DelStr$(line$, “,”)

LOOP

END

deletes all commas from lines input by the user.
Exceptions: None
See also: DELMIX$, DELCHAR$, REPSTR$, PLUGSTR$

DIGITS$ Function
Library: STRLIB.TRC
Syntax: DIGITS$
Usage: LET set$ = DIGITS$

Summary: Returns the set of digit characters.
Details: The DIGITS$ function returns a string containing the set of characters representing the

digits arranged in ascending order according to their ASCII codes. (For a table of the ASCII
codes and their corresponding characters, see Appendix A.)
That is, it returns the equivalent of the string constant:
“0123456789”

Example: None.
Exceptions: None
See also: LETTERS$, UPPER$, LOWER$, ALPHANUM$, PUNCT$, CONTROL$

DOLLARS$ Function
Library: STRLIB.TRC
Syntax: DOLLARS$ (numex)
Usage: LET formatted$ = DOLLARS$ (number)

Summary: Returns the string representation of its numeric argument as a dollar amount.
Details: The DOLLARS$ function returns the string representation of number as a nicely

formatted dollar amount. 
The resulting string will begin with a dollar sign, have a comma between each set of three
digits to the left of the decimal point, and end with two digits to the right of the decimal
point. The resulting string will not contain any extraneous spaces or zeros (except those
zeros which may be necessary to provide two digits to the right of the decimal point).
The DOLLARS$ function is a convenient method for creating a very specific formatting of
numeric values. The USING$ function, however, provides much greater flexibility in how
numeric values are formatted.

Example: The following program:
LIBRARY "StrLib.trc"
DECLARE DEF Dollars$
PRINT Dollars$ (1234.5678)
END

426 True BASIC Language System



produces output similar to the following:
$1,234.57

Exceptions: None
See also: USING$ (built-in function)

DOLLARVAL Function
Library: STRLIB.TRC
Syntax: DOLLARVAL (strex)
Usage: LET number = DOLLARVAL (string$)

Summary: Returns the numeric value represented by the contents of its string argument, allowing dollar
signs, commas, asterisks, and embedded spaces.

Details: The DOLLARVAL function is a more flexible form of the VAL function. Like the VAL function
it returns the numeric value of contents of its string argument string$, but it ignores any
dollar signs, commas, asterisks, and spaces that may be embedded within the string.
Once the embedded dollar signs, commas, asterisks, and spaces have been removed, the string
value of string$ must represent a valid numeric constant in a form suitable for use with an
INPUT or READ statement. Note that this value may represent a valid numeric constant
expressed in exponential (or scientific) notation.
If the value of string$ does not represent a valid numeric constant once the embedded dollar
signs, commas, asterisks, and spaces have been removed, the DOLLARVAL function will
generate an error.

Example: The following program:
LIBRARY "StrLib.trc"
DECLARE DEF DollarVal
PRINT DollarVal ("$1,234.57")
END

produces the following output:
1234.57

Exceptions: 1004 Overflow in VAL.
4001 VAL string isn’t a proper number.

See also: VAL, LVAL, EVAL, SUPERVAL

ENGLISHNUM$ Function
Library: STRLIB.TRC
Syntax: ENGLISHNUM$ (numex)
Usage: LET english$ = ENGLISHNUM$ (number)

Summary: Returns the string representation of its numeric argument in English.
Details: The ENGLISHNUM$ function returns the string representation of the proper English

name of number. For example, if passed a value of 117, the ENGLISHNUM$ function
would return the string value:
One Hundred and Seventeen

As you can see, the English name of the numeric value will be represented in mixed upper-
and lowercase letters.
The English representation of a negative number will begin with the word “negative,” and
all numbers are rounded to five digits after the decimal point. Thus, if passed a value of
–3.1415926, the ENGLISHNUM$ function will return the string value:
negative Three point One Four One Five Nine

The ENGLISHNUM$ function uses the American, rather than British, names for large
numbers. Thus, passing a value of 1000000 results in a return value of:

427String Handling Libraries



One Million

and passing a value of 1000000000 results in a return value of:
One Billion
Note that the results of the ENGLISHNUM$ function can be wrong for very large numbers
(usually those greater than 9,000,000,000) because of the inaccuracy introduced by floating
point round off errors.

Example: The following program:
LIBRARY “STRLIB.TRC”
DECLARE DEF EnglishNum$

FOR i = 1 to 10
FOR j = 1 to 10

PRINT EnglishNum$(i); “ times “; EnglishNum$(j);
PRINT “ is “; EnglishNum$(i*j)

NEXT j
NEXT i

GET KEY k
END

produces a multiplication table in English (that is, without using digits).
Exceptions: None
See also: ROMAN$

EVAL Function
Library: STRLIB.TRC
Syntax: EVAL (strex)
Usage: LET result = EVAL (expression$)

Summary: Returns the value of the constant-based expression represented by the contents of its string
argument.

Details: The EVAL function evaluates the numeric expression represented by the value of
expression$ and returns the resulting value.
The value of expression$ must represent a numeric expression which is valid under the
rules of True BASIC. This expression may contain numeric constants, but not variables.
(For the evaluation of expressions containing variables, see the SUPERVAL subroutine.)
The value of expression$ may incorporate any of the following operators:

Operators Available to EVAL
+ - * / ^ ( )

In addition, the value of expression$ may incorporate any of the following numeric
functions:

Functions Available to EVAL
SIN COS TAN ATN SQR
SINH COSH TANH ASIN ACOS
SEC CSC COT MAXNUM EPS
PI SGN ABS RAD DEG
LOG LOG2 LOG10 EXP RND
INT ROUND IP FP CEIL

DATE TIME

Note that numeric functions requiring two arguments, including the two-argument form of
the ROUND function, are not available for use in the value of expression$.
Also note that the EVAL function is not as fast as the VAL function, but it is a great deal
more flexible.

428 True BASIC Language System



Example: The following program:
LIBRARY “STRLIB.TRC”
DECLARE DEF Eval

PRINT Eval(“1.23e-3 + 2*(Sin(Pi/2)+Rnd)”)

INPUT PROMPT “Enter an expression: “: expr$
PRINT Eval(expr$)

GET KEY k
END
produces output similar to the following:
3.0982454 
Enter an expression: 25 + 12 / 16 * Sin(Pi/3)
25.649519 

Exceptions: 1 Eval string isn’t a proper expression.
2 Unknown function or variable in Eval.
3002 Negative number to non-integral power.
3003 Zero to negative power.
3004 LOG of number <= 0.
3005 SQR of negative number.
4001 VAL string isn’t a proper number.

See also: SUPERVAL, VAL, LVAL, DOLLARVAL

EXPLODE Subroutine
Library: STRLIB.TRC
Syntax: CALL EXPLODE (strex, strarrarg, strex)
strarrarg:: strarr

strarr bowlegs
Usage: CALL EXPLODE (phrase$, words$(), delims$)

Summary: Parses the contents of the specified phrase into an array of words, as delineated by the
specified delimiters.

Details: The EXPLODE subroutine breaks the specified “phrase” into the “words” which comprise it
and returns the resulting words in the form of a string array.
A phrase is defined as any series of characters, and a word is defined as any series of
characters except those defined as delimiters.
When invoking the EXPLODE subroutine, you pass the phrase as phrase$ and the
characters to be defined as delimiters as delims$. The subroutine then examines the phrase,
looking for the first set of one or more non-delimiter characters which are set off from the
rest of the phrase by delimiters, and assigns this set of non-delimiter characters, less any
leading or trailing delimiters, to the next available element of the words$ array. It then
repeats the process, beginning the search after the last assigned word and its surrounding
delimiters, until all of the words in the phrase have been assigned to the words$ array.
The process of breaking a phrase into its component words is called parsing the phrase.
The EXPLODE subroutine does not alter the value of phrase$. It will, however, adjust the
upper bound of the words$ array to ensure that the returned array has exactly one element
for each word in the phrase.
To parse a phrase composed of numeric constants into a numeric array, use the
EXPLODEN subroutine instead.

Example: The following program:
LIBRARY “STRLIB.TRC”, “SortLib”
DIM words$(1)

429String Handling Libraries



LET punct$ = “ !””#$%&’()*+,-./:;<=>?@[\]^)_`{|}˜”

INPUT PROMPT “Enter name of file: “: fname$
OPEN #1: NAME fname$, ORG BYTE
ASK #1: FILESIZE fsize
READ #1, BYTES fsize: file$

LET delims$ = punct$ & Chr$(13) & Chr$(10)

CALL Explode(file$, words$(), delims$)
CALL SortS(words$())
MAT PRINT words$

GET KEY k
END

prints a list of the words in a specified file arranged alphabetically.
Exceptions: None
See also: EXPLODEN, NEXTWORD, BREAKUP

EXPLODEN Subroutine
Library: STRLIB.TRC
Syntax: CALL EXPLODEN (strex, numarrarg, strex)
numarrarg:: numarr

numarr bowlegs
Usage: CALL EXPLODEN (phrase$, numbers(), delims$)

Summary: Parses the contents of the specified phrase into an array of numbers, as delineated by the
specified delimiters.

Details: The EXPLODEN subroutine breaks the specified “phrase” into the numeric “words” which
comprise it and returns the resulting words in the form of a numeric array.
A phrase is defined as any series of characters, and a word is defined as any series of
characters except those defined as delimiters. However, if a word does not define a valid
numeric constant, the EXPLODEN subroutine will generate an error.
When invoking the EXPLODEN subroutine, you pass the phrase as phrase$ and the
characters to be defined as delimiters as delims$. The subroutine then examines the phrase,
looking for the first set of one or more non-delimiter characters which are set off from the
rest of the phrase by delimiters, and assigns the numeric value of this set of non-delimiter
characters to the next available element of the numbers array. It then repeats the process,
beginning the search after the last assigned numeric value, until all of the numeric values in
the phrase have been assigned to the numbers array.
The process of breaking a phrase into its component parts is called parsing the phrase.
The EXPLODEN subroutine does not alter the value of phrase$. It will, however, adjust
the upper bound of the numbers array to ensure that the returned array has exactly one
element for each numeric value in the phrase.
To parse a phrase composed of non-numeric or mixed numeric values, use the EXPLODE
subroutine instead.

Example: The following program:
LIBRARY "StrLib.trc"
DIM numbers(0)
LET phrase$ = "123,456,789.777"
CALL Exploden (phrase$, numbers(), ",.")
MAT PRINT numbers;
END

430 True BASIC Language System



produces the following output:
123  456  789  777

Exceptions: 4001 VAL string isn’t a proper number.
See also: EXPLODE, NEXTWORD, BREAKUP

FILLARRAY Subroutine
Library: STRLIB.TRC
Syntax: CALL FILLARRAY (strarr, strarrarg, numex)
strarrarg:: strarr

strarr bowlegs
Usage: CALL FILLARRAY (from$(), to$(), width)

Summary: “Fills” the contents of the to$ array to the specified width with the contents of the from$
array.

Details: The FILLARRAY subroutine processes the contents of the from$ array to create the “filled”
array to$. The width to which the resulting to$ array will be filled is determined by the value
of width.
A common operation in text processing, filling is the process of organizing blocks of text so
that each line contains as many words as will fit within a specified margin. A blank line or a
line which begins with one or more spaces acts a “break,” which means that the following line
will not be absorbed into the previous line.
If a single word is encountered which has a length greater than width, it will be placed on a
line by itself; no error will be generated.
It is possible to pass the same array as both from$ and to$, eliminating the need for a
temporary array.
The FILLARRAY subroutine is useful for wrapping text to fit within a window with a known
margin.

Example: The following program:
LIBRARY "StrLib.trc"
DIM from$(16), to$(0)
MAT READ from$
DATA Now, is, the, time, for, all, good, men
DATA to, come, to, the, aid, of, their, party

CALL FillArray (from$(), to$(), 20)
FOR i = 1 to ubound(to$)

PRINT to$(i)
NEXT i
END

produces the following output:
Now is the time for
all good men to come
to the aid of their
party

Exceptions: None
See also: FILLFROM, JUSTIFYARRAY, JUSTIFYFROM, LJUST$, RJUST$, CENTER$,

JUSTIFY$. HEADER$

431String Handling Libraries



FILLFROM Subroutine
Library: STRLIB.TRC
Syntax: CALL FILLFROM (#rnumex, numex, strvar, strvar)
Usage: CALL FILLFROM (#1, width, result$, work$)

Summary: Returns a single “filled” line from the specified file.
Details: The FILLFROM subroutine retrieves a “filled” line from the text file associated with the

specified channel number and returns it as result$. The width to which the resulting to$
array will be filled is determined by the value of width.
A common operation in text processing, filling is the process of organizing blocks of text so
that each line contains as many words as will fit within a specified margin. A blank line or a
line which begins with one or more spaces acts a “break,” which means that the following line
will not be absorbed into the previous line.
The FILLFROM subroutine treats the entire contents of the text file associated with the
specified channel number as the pool of text which needs to be filled. To process an entire file,
continue invoking the FILLFROM subroutine until the end of the file is reached.
The value of work$ is used internally by the FILLFROM subroutine. The first time you
invoke the FILLFROM subroutine for a given file, pass a work$ argument with a null string
value. Then continue passing the same work$ argument, without changing its contents, to
each invocation of the FILLFROM subroutine which you intend to read from the same file.
Failure to do so could result in the loss of data.
If a single word is encountered which has a length greater than width, it will be returned as
a line by itself; no error will be generated.

Example: The following program:
LIBRARY “STRLIB.TRC”

OPEN #1: NAME “TextFile”
OPEN #2: PRINTER

DO WHILE MORE #1
CALL FillFrom(#1, 65, line$, work$)
PRINT #2: line$

LOOP

END

would produce a printed listing of the filled contents of the file TEXTFILE.
Exceptions: None
See also: FILLARRAY, JUSTIFYARRAY, JUSTIFYFROM, LJUST$, RJUST$, CENTER$,

JUSTIFY$. HEADER$

HEADER$ Function
Library: STRLIB.TRC
Syntax: HEADER$ (strex, strex, strex, numex, strex)
Usage: LET a$ = HEADER$ (left$, center$, right$, width, back$)

Summary: Creates a “header” of the specified width which contains the specified text items.
Details: The HEADER$ function takes the values of left$, center$, and right$ and returns a

string of width characters which contains the values of these strings. The value of left$will
be left-justified within the resulting string, the value of center$ will be centered within the
resulting string, and the value of right$ will be right-justified within the resulting string.
The extra characters between them will be comprised of the background pattern specified by
the value of back$.

432 True BASIC Language System



The string resulting from an invocation of the HEADER$ function is commonly used as a
header or footer for formatted text.
Any or all of the values of left$, center$, and right$ may be the null string to eliminate
text in the appropriate position within the header.
If the value of back$ is the null string or a space, the extra characters between the items in
the header will be spaces.

Example: The following program:
LIBRARY "StrLib.trc"
DECLARE DEF Header$
LET left$ = "Contents"
LET center$ = "Page 1"
LET right$ = date$
PRINT Header$(left$, center$, right$, 50, " ")
END

produces the following output:
Contents              Page 1              19980403

Exceptions: None
See also: LJUST$, RJUST$, CENTER$, JUSTIFY$. FILLARRAY, FILLFROM,

JUSTIFYARRAY, JUSTIFYFROM

INTRIM$ Function
Library: STRLIB.TRC
Syntax: INTRIM$ (strex)
Usage: LET a$ = INTRIM$ (string$)

Summary: Returns the value of its argument string$ with all series of spaces within it reduced to a
single space.

Details: The INTRIM$ function returns the value of its argument with all series of spaces within it
mapped to a single space. That is, it processes the value of string$ looking for any
occurrence of two or more contiguous spaces. Upon finding such an occurrence, the INTRIM$
function replaces the series of spaces with a single space.
The INTRIM$ function is useful for cleaning up the results of the USING$ function, which
can create strings with several extra spaces. The INTRIM$ function may also be used to undo
the results of the JUSTIFY$ function.
To completely remove all of the spaces from a string, use the NOSPACE$ function.

Example: The following program:
LIBRARY “STRLIB.TRC”
DECLARE DEF InTrim$

INPUT PROMPT “Enter two numbers: “: a, b
PRINT InTrim$(Using$(“#,### plus #,### equals ##,###”, a, b, a+b))

END

produces output similar to the following:
Enter two numbers: 13, 1200
13 plus 1,200 equals 1,213

Exceptions: None
See also: LTRIM$, RTRIM$, TRIM$, JUSTIFY$, NOSPACE$

433String Handling Libraries



JUSTIFY$ Function
Library: STRLIB.TRC
Syntax: JUSTIFY$ (strex, numex)
Usage: LET a$ = JUSTIFY$ (text$, width)

Summary: Returns a string of the specified length containing the value of text$ justified.
Details: The JUSTIFY$ function takes the value of text$ and adds spaces as necessary to create a

string containing width characters with the “words” in the value of text$ evenly spaced
within it. The extra spaces will be added to the value of text$ where spaces already exist in
order to “fill out” the value of text$ to the specified number of characters.
By filling out a series of lines, you can produce text with even left and right margins.
The JUSTIFY$ function never adds spaces to the beginning of the value of text$, even if it
begins with one or more spaces. This allows the JUSTIFY$ function to operate properly
when used with lines of indented text.
If the value of width is less than the length of text$, the JUSTIFY$ function generates
an error. Likewise, if the value of text$ contains no spaces, it cannot be filled, and the
JUSTIFY$ function generates an error. If the value of text$ is the null string, then the
JUSTIFY$ function returns the null string.
The JUSTIFY$ function does not work for lines containing more than 100 words. If you
pass a value of text$ which contains more than 100 words, the JUSTIFY$ function will
generate an error.

Example: The following program:
LIBRARY "StrLib.trc"
DECLARE DEF Justify$
LET text$ = "Now is the time for all good men"
FOR w = 32 to 40 step 2

PRINT Justify$(text$, w)
NEXT w
END

produces the following output:
Now is the time for all good men
Now is the time  for all good  men
Now  is  the time for  all  good men
Now  is  the  time  for  all good  men
Now  is  the  time   for  all  good  men

Exceptions: 1 More than 100 words in line.
2 Can’t justify line.

See also: LJUST$, RJUST$, CENTER$, HEADER$. FILLARRAY, FILLFROM,
JUSTIFYARRAY, JUSTIFYFROM

JUSTIFYARRAY Subroutine
Library: STRLIB.TRC
Syntax: CALL JUSTIFYARRAY (strarr, strarrarg, numex)
strarrarg:: strarr

strarr bowlegs
Usage: CALL JUSTIFYARRAY (from$(), to$(), width)

Summary: “Fills” and justifies the contents of the to$ array to the specified width with the contents of
the from$ array.

Details: The JUSTIFYARRAY subroutine processes the contents of the from$ array to create the
“filled” and justified array to$. The width to which the resulting to$ array will be filled and
justified is determined by the value of width.

434 True BASIC Language System



A common operation in text processing, filling is the process of organizing blocks of text so that
each line contains as many words as will fit within a specified margin. A blank line or a line
which begins with one or more spaces acts a “break,” which means that the following line will not
be absorbed into the previous line, and the previous line will not be justified.
Another common operation in text processing, justification is the process of adding spaces
within a line so that the last character on the line falls evenly at the right margin. Spaces are
always added where spaces already exist within the line.
The JUSTIFYARRAY subroutine never adds spaces to the beginning of a line, even if it
begins with one or more spaces. This allows the JUSTIFYARRAY subroutine to operate
properly when it encounters indented lines.
If it encounters a line which contains no spaces, the JUSTIFYARRAY subroutine generates
an error, since such a line cannot be justified.
The JUSTIFYARRAY subroutine also cannot justify lines containing more than 100 words.
If it encounters a line which contains more than 100 words, the JUSTIFYARRAY subroutine
will generate an error.
It is possible to pass the same array as both from$ and to$, eliminating the need for a
temporary array.

Example: The following program:
LIBRARY "StrLib.trc"
DIM from$(4), to$(4)
MAT READ from$
DATA Now is the time
DATA for all good men
DATA to come to the aid
DATA of their party.

CALL JustifyArray (from$(), to$(), 25)
FOR i = 1 to ubound(to$)

PRINT to$(i)
NEXT i
END

produces the following output:
Now is  the time  for all
good men to  come to  the
aid of their party.

Exceptions: 1 More than 100 words in line.
2 Can’t justify line.

See also: JUSTIFYFROM, FILLARRAY, FILLFROM, LJUST$, RJUST$, CENTER$,
JUSTIFY$. HEADER$

JUSTIFYFROM Subroutine
Library: STRLIB.TRC
Syntax: CALL JUSTIFYFROM (#rnumex, numex, strvar, strvar)
Usage: CALL JUSTIFYFROM (#1, width, result$, work$)

Summary: Returns a single “filled” and justified line from the specified file.
Details: The JUSTIFYFROM subroutine retrieves a “filled” and justified line from the text file

associated with the specified channel number and returns it as result$. The contents
result$ will be filled and justified according to the value of width.
A common operation in text processing, filling is the process of organizing blocks of text so
that each line contains as many words as will fit within a specified margin. A blank line or a
line which begins with one or more spaces acts a “break,” which means that the following line
will not be absorbed into the previous line.

435String Handling Libraries



Another common operation in text processing, justification is the process of adding spaces
within a line so that the last character on the line falls evenly at the right margin. Spaces are
always added where spaces already exist within the line.
The JUSTIFYFROM subroutine never adds spaces to the beginning of a line, even if it begins
with one or more spaces. This allows the JUSTIFYFROM subroutine to operate properly
when it encounters indented lines.
If it encounters a line which contains no spaces, the JUSTIFYFROM subroutine generates
an error, since such a line cannot be justified.
The JUSTIFYFROM subroutine also cannot justify lines containing more than 100 words. If
it encounters a line which contains more than 100 words, the JUSTIFYFROM subroutine
will generate an error.
The JUSTIFYFROM subroutine treats the entire contents of the text file associated with the
specified channel number as the pool of text which needs to be filled and justified. To process
an entire file, continue invoking the JUSTIFYFROM subroutine until the end of the file is
reached.
The value of work$ is used internally by the JUSTIFYFROM subroutine. The first time you
invoke the JUSTIFYFROM subroutine for a given file, pass a work$ argument with a null
string value. Then continue passing the same work$ argument, without changing its
contents, to each invocation of the JUSTIFYFROM subroutine which you intend to read from
the same file. Failure to do so could result in the loss of data.

Example: The following program:
LIBRARY "StrLib.trc"
OPEN #1: name "TextFile"
OPEN #2: Printer
DO while more #1

CALL JustifyFrom (#1, 65, line$, work$)
PRINT #2

LOOP
END

would produce a printed list of the justified contents of the text file TEXTFILE.
Exceptions: 1 More than 100 words in line.

2 Can’t justify line.
See also: JUSTIFYARRAY, FILLARRAY, FILLFROM, LJUST$, RJUST$, CENTER$,

JUSTIFY$. HEADER$

KEEPCHAR$ Function
Library: STRLIB.TRC
Syntax: KEEPCHAR$ (strex, strex)
Usage: LET a$ = KEEPCHAR$ (text$, oldchars$)

Summary: Returns the value of text$ with all characters which do not appear in oldchars$
removed.

Details: The KEEPCHAR$ function removes from text$ all characters which are not members of
the character set represented by the value of oldchars$. That is, it returns the value of
text$ after having deleted any occurrences of characters which do not appear in the value
of oldchars$.

Example: The following program:
LIBRARY “STRLIB.TRC”
DECLARE DEF KeepChar$, Punct$

OPEN #1: NAME “InFile”, ORG BYTE

LET pun$ = Punct$

436 True BASIC Language System



DO WHILE MORE #1
READ #1, BYTES 10000: block$
LET sum = sum + Len(KeepChar$(block$, pun$))

LOOP
PRINT sum

END

counts the punctuation in the file named INFILE.
Exceptions: None
See also: DELCHAR$, REPCHAR$, NREPCHAR$, MAPCHAR$, PLUGCHAR$,

NPLUGCHAR$

LEFT$ Function
Library: STRLIB.TRC
Syntax: LEFT$ (strex, numex)
Usage: LET a$ = LEFT$ (string$, chars)

Summary: Returns the leftmost chars characters of string$.
Details: The LEFT$ function returns a specific number of characters from the beginning of

string$. The number of characters to be returned is given by the value of chars.
If the value of chars is less than or equal to 0, the LEFT$ function returns the null string.
If the value of chars is greater than the number of characters in string$, the LEFT$
function returns the value of string$.
Note that the LEFT$ function can be useful when converting programs written in other
forms of BASIC. However, you will likely find that the substring expressions discussed in
Chapter 17 provide greater speed and flexibility.

Example: The following program:
LIBRARY "StrLib.trc"
DECLARE DEF Left$
LET a$ = "Now is the time"
FOR chars = 5 to 8

PRINT Left$(a$, chars)
NEXT chars
END
produces the following output:
Now i
Now is
Now is 
Now is t

Exceptions: None
See also: RIGHT$, MID$

LETTERS$ Function
Library: STRLIB.TRC
Syntax: LETTERS$
Usage: LET set$ = LETTERS$

Summary: Returns the set of alphabetic characters.
Details: The LETTERS$ function returns a string containing the set of characters representing the

letters of the alphabet, both uppercase and lowercase, arranged in ascending order
according to their ASCII codes. (For a table of the ASCII codes and their corresponding
characters, see Appendix A.)

437String Handling Libraries



That is, it returns the equivalent of the string constant:
“ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz”

Example: None.
Exceptions: None
See also: DIGITS$, UPPER$, LOWER$, ALPHANUM$, PUNCT$, CONTROL$

LJUST$ Function
Library: STRLIB.TRC
Syntax: LJUST$ (strex, numex, strex)
Usage: LET a$ = LJUST$ (text$, width, back$)

Summary: Returns a string of the specified length containing the value of text$ left-justified.
Details: The LJUST$ function takes the value of text$ and adds characters to the end of it as

necessary to create a string containing width characters with the value of text$ left-
justified within it. The characters added will be determined by repeating the sequence of
characters specified by the value of back$.
If the length of text$ is greater than the value specified by width, the LJUST$ function
returns the value of text$ truncated to width characters. If the value of width is less than
or equal to 0, the LJUST$ function returns the null string.
The background pattern added to the end of the value of text$ will be formed in such a way
that all strings formed with the same value of back$will have identical background patterns,
regardless of the value of text$. If the value of back$ is the null string or a space, the
background pattern will consist solely of blanks, or spaces.

Example: The following program:
LIBRARY "StrLib.trc"
DECLARE DEF LJust$
LET a$ = "...Hello"
FOR chars = 10 to 12

PRINT LJust$(a$, chars, "*")
NEXT chars
END

produces the following output:
...Hello**
...Hello***
...Hello****

Exceptions: None
See also: RJUST$, CENTER$, JUSTIFY$, HEADER$. FILLARRAY, FILLFROM,

JUSTIFYARRAY, JUSTIFYFROM

LOWER$ Function
Library: STRLIB.TRC
Syntax: LOWER$
Usage: LET set$ = LOWER$

Summary: Returns the set of lowercase alphabetic characters.
Details: The LOWER$ function returns a string containing the set of characters representing the

letters of the alphabet, in lowercase only, arranged in ascending order according to their
ASCII codes. (For a table of the ASCII codes and their corresponding characters, see Appendix
A.)
That is, it returns the equivalent of the string constant:
“abcdefghijklmnopqrstuvwxyz”

438 True BASIC Language System



Example: None.
Exceptions: None
See also: UPPER$, LETTERS$, DIGITS$, ALPHANUM$, PUNCT$, CONTROL$

LVAL Function
Library: STRLIB.TRC
Syntax: LVAL (strex)
Usage: LET number = LVAL (string$)

Summary: Returns the numeric value represented by the contents of its string argument, ignoring any
extraneous characters on the end of the string.

Details: The LVAL function is a “leftmost” form of the VAL function. Like the VAL function it returns
the numeric value of contents of its string argument string$, but it ignores any extraneous
characters at the end of the string.
The string value of string$ must begin with a valid numeric constant in a form suitable for
use with an INPUT or READ statement; however, it may contain any number of invalid
characters following this value. The numeric portion of the value may not contain embedded
spaces. Nor may this value contain commas, a dollar sign, or more than one decimal point.
Note, however, that this value may represent a valid numeric constant expressed in
exponential (or scientific) notation.
If the value of string$ does not begin with a valid numeric constant, the LVAL function
returns a value of 0.
The LVAL function is useful when converting programs written in other forms of BASIC,
which may interpret their VAL functions in this manner.

Example: The following program:
LIBRARY "StrLib.trc"
DECLARE DEF LVal
PRINT LVal(" 123.45 dollars")
END

produces the following output:
123.45 

Exceptions: None
See also: VAL, DOLLARVAL, SUPERVAL, EVAL

MAPCHAR$ Function
Library: STRLIB.TRC
Syntax: MAPCHAR$ (strex, strex, strex)
Usage: LET a$ = MAPCHAR$ (text$, oldchars$, newchars$)

Summary: Returns the value of text$ with all characters in oldchars$ mapped to the associated
characters in newchars$.

Details: The MAPCHAR$ function maps one set of characters onto another. It returns the value of
text$ after having replaced any occurrences of characters appearing in the value of
oldchars$ with their corresponding characters appearing in the value of newchars$.
The correspondence of the two character sets represented by oldchars$ and newchars$ is
based solely upon position within the set. That is, any occurrence of the first character in
oldchars$ will be replaced by the first character in newchars$, and so on.
For this reason, the values of oldchars$ and newchars$ must contain the same number
of characters; otherwise, the MAPCHAR$ function generates an error.

439String Handling Libraries



Example: The following program:
LIBRARY “STRLIB.TRC”
DECLARE DEF Punct$, MapChar$

OPEN #1: NAME “InFile”

LET pun$ = Punct$
LET sp$ = Repeat$(“ “, Len(pun$))

DO WHILE MORE #1
LINE INPUT #1: line$
PRINT MapChar$(line$, pun$, sp$)

LOOP

END

lists the contents of a text file named INFILE, mapping all occurrences of punctuation to spaces.
Exceptions: 1 MapChar$ sets have different lengths.
See also: REPCHAR$, NREPCHAR$, DELCHAR$, KEEPCHAR$, PLUGCHAR$,

NPLUGCHAR$

MID$ Function
Library: STRLIB.TRC
Syntax: MID$ (strex, numex, numex)
Usage: LET a$ = MID$ (string$, start, chars)

Summary: Returns chars characters of string$ beginning at character position start.
Details: The MID$ function returns a specific number of characters from a specified position within

string$. The number of characters to be returned is given by the value of chars. And the
character position at which this series of characters should begin is given by the value of
start.
If the value of start is less than 1, 1 will be used instead. If the value of start is greater
than the number of characters in string$ or the value of chars is less than or equal to 0,
the MID$ function returns the null string. If their are fewer than chars characters following
the position indicated by start, only the existing characters will be returned.
Note that the MID$ function can be useful when converting programs written in other forms
of BASIC. However, you will likely find that the substring expressions discussed in Chapter
17 provide greater speed and flexibility.

Example: The following program:
LIBRARY "StrLib.trc"
DECLARE DEF Mid$
LET a$ = "abcdefghijklmno"
FOR start = 5 to 8

PRINT Mid$(a$, start, start)
NEXT start
END

produces the following output:
efghi
fghijk
ghijklm
hijklmno

Exceptions: None
See also: RIGHT$, LEFT$

440 True BASIC Language System



NEXTWORD Subroutine
Library: STRLIB.TRC
Syntax: CALL NEXTWORD (strex, strex, strex)
Usage: CALL NEXTWORD (phrase$, word$, delims$)

Summary: Returns the next word, as delineated by any series of delimiter characters, from the specified
phrase.

Details: The NEXTWORD subroutine returns the next “word” from the specified “phrase.”
A phrase is defined as any series of characters, and a word is defined as any series of
characters except those defined as delimiters.
When invoking the NEXTWORD subroutine, you pass the phrase as phrase$ and the
characters to be defined as delimiters as delims$. The subroutine then examines the phrase,
looking for the first set of one or more non-delimiter characters which are set off from the rest
of the phrase by delimiters, and returns this set of non-delimiter characters after having
stripped off any leading or trailing delimiters. It also updates the value of phrase$ to
eliminate the returned word and its adjacent delimiters. 
For example, assume you have passed delim$ with a value of “*#;” and phrase$ with a
value of “***abc***def**” to the NEXTWORD subroutine. The subroutine would return
word$ with a value of “abc” and phrase$ with a new value of “def**”. This process is often
referred to as parsing a phrase.
If the value of phrase$ is the null string or contains nothing but delimiters, the
NEXTWORD subroutine will return both word$ and phrase$with values of the null string.
Note that the NEXTWORD subroutine is closely related to, but subtly different from, the
BREAKUP subroutine. The NEXTWORD subroutine treats a series of contiguous delimiter
characters as a single delimiter, while the BREAKUP subroutine treats each individual
delimiter character as a delimiter in its own right. For some applications you will want to use
the NEXTWORD subroutine, for others you will want to use the BREAKUP subroutine.

Example: The following program:
LIBRARY "StrLib.trc"
LET s$ = "Now  is  the  time for all good men"
DO

CALL NextWord (s$, word$, " ")
IF word$ = "" then EXIT DO
PRINT word$,

LOOP
END

produces the following output:
Now           is            the           time          for
all           good          men             

Exceptions: None
See also: BREAKUP, EXPLODE, EXPLODEN

NICEDATE$ Function
Library: STRLIB.TRC
Syntax: NICEDATE$ (strex)
Usage: LET a$ = NICEDATE$ (adate$)

Summary: Returns the date represented by the value of adate$ in string form consisting of the month
name, the day of the month, and the year.

Details: The NICEDATE$ function takes as its argument a date in the format produced by the
DATE$ function and returns that date in expanded form. This expanded form consists of the
full name of the month, the day of the month, and the full year.

441String Handling Libraries



The value of adate$ must represent a date in the same format produced by the DATE$
function. That is, the value of adate$ must be a string in the form “YYYYMMDD”, where
YYYY represents the year, MM the month, and DD the day. If adate$ does not represent
such a value, then the NICEDATE$ function generates an error.
To return the current date in the same format, use the TODAY$ function. To return a date in
an abbreviated format, use the SHORTDATE$ function.

Example: The following program:
LIBRARY "StrLib.trc"
DECLARE DEF NiceDate$
PRINT NiceDate$("19971015")
END

produces the following output:
October 15, 1997

Exceptions: 1 Bad date given to NiceDate$: 00000000
See also: DATE$, DATE, SHORTDATE$, WEEKDAY$, WEEKDAY, TODAY$, TIME, TIME$,

NICETIME$, NOW$

NICETIME$ Function
Library: STRLIB.TRC
Syntax: NICETIME$ (strex)
Usage: LET a$ = NICETIME$ (atime$)

Summary: Returns the time represented by the value of atime$ in string form consisting of the hour and
minute and an indication of a.m. or p.m.

Details: The NICETIME$ function takes as its argument a time measured by the 24-hour clock and
returns that time as measured by the 12-hour clock in string form. The returned time will be
in the form “HH:MM”, where HH is the hour and MM is the minute, and the string “ a.m.” or
“ p.m.” will be appended as appropriate.
The value of atime$must represent a time measured by the 24-hour clock in the same format
produced by the TIME$ function. That is, the value of atime$ must be a string in the form
“HH:MM:SS”, where HH represents the hour, MM the minute, and SS the second. If atime$
does not represent such a value, then the NICETIME$ function generates an error.
To return the current time in the same format, use the NOW$ function.

Example: The following program:
LIBRARY "StrLib.trc"
DECLARE DEF NiceTime$
PRINT NiceTime$("16:50:58")
END

produces output similar to the following:
4:50 p.m.

Exceptions: 1 Bad time given to NiceTime$: 99:99:99
See also: TIME$, TIME, NOW$, DATE, DATE$, NICEDATE$, SHORTDATE$, WEEKDAY$,

WEEKDAY, TODAY$

NOSPACE$ Function
Library: STRLIB.TRC
Syntax: NOSPACE$ (strex)
Usage: LET a$ = NOSPACE$ (string$)

Summary: Returns the value of its argument string$ with all spaces removed.
Details: The NOSPACE$ function returns the value of its argument with all spaces removed.

442 True BASIC Language System



Example: The following program:
LIBRARY "StrLib.trc"
DECLARE DEF NoSpace$
LET s$ = "Now is the time"
PRINT s$
PRINT NoSpace$(s$)
END

produces output similar to the following:
Now is the time
Nowisthetime

Exceptions: None
See also: LTRIM$, RTRIM$, TRIM$, JUSTIFY$, INTRIM$

NOW$ Function
Library: STRLIB.TRC
Syntax: NOW$
Usage: LET a$ = NOW$

Summary: Returns the current time in string form consisting of the hour and minute and an indication
of a.m. or p.m.

Details: The NOW$ function returns the current time as measured by the 12-hour clock in string form.
The time will be in the form “HH:MM”, where HH is the hour and MM is the minute, and the
string “ a.m.” or “ p.m.” will be appended as appropriate.
If the current computer hardware is not able to report the time, then the NOW$ function
generates an error.
The NOW$ function obtains its results from your operating system, which in turn obtains its
results from your computer’s internal clock. If you find that the NOW$ function is returning
erroneous results, you most likely have to reset your computer’s internal clock.
To return an arbitrary time in the same format, use the NICETIME$ function.

Example: The following program:
LIBRARY "StrLib.trc"
DECLARE DEF Now$
PRINT Now$
END

produces output similar to the following:
1:06 p.m.

Exceptions: 1 Bad time given to NiceTime$: 99:99:99
See also: TIME$, TIME, NICETIME$, DATE, DATE$, NICEDATE$, SHORTDATE$,

WEEKDAY$, WEEKDAY, TODAY$

NPLUGCHAR$ Function
Library: STRLIB.TRC
Syntax: NPLUGCHAR$ (strex, strex, strex)
Usage: LET a$ = NPLUGCHAR$ (text$, chars$, template$)

Summary: Returns the value of text$ with all characters which do not appear in chars$ replaced by
the specified template.

Details: The NPLUGCHAR$ function replaces all characters in text$ which are not also members
of the character set represented by the value of chars$. Each occurrence within text$ of a
character that is not part of chars$ is replaced by the value of template$.

443String Handling Libraries



The NPLUGCHAR$ function differs from the NREPCHAR$ function in that the value of
template$ is treated as a template. This means that each occurrence of the character
combination “#1” within the value of template will be replaced with the value of the character
which will be replaced by the template.

Example: The following program:
LIBRARY "StrLib.trc"
DECLARE DEF AlphaNum$, NPlugChar$
LET text$ = "Now is the time"
PRINT NPlugChar$(text$, AlphaNum$, "|")
END

produces the following output:
Now|is|the|time

Exceptions: None
See also: PLUGCHAR$, DELCHAR$, KEEPCHAR$, REPCHAR$, NREPCHAR$, MAPCHAR$

NREPCHAR$ Function
Library: STRLIB.TRC
Syntax: NREPCHAR$ (strex, strex, strex)
Usage: LET a$ = NREPCHAR$ (text$, oldchars$, new$)

Summary: Returns the value of text$with all characters not appearing in oldchars$ replaced by the
value of new$.

Details: The NREPCHAR$ function maps all characters which are not members of a character set to
a single string. It returns the value of text$ after having replaced any occurrences of
characters not appearing in the value of oldchars$ with the value of new$.

Example: The following program:
LIBRARY “STRLIB.TRC”
DECLARE DEF Digits$, NRepChar$

OPEN #1: NAME “InFile”

LET chars$ = Digits$

DO WHILE MORE #1
LINE INPUT #1: line$
PRINT NRepChar$(line$, chars$, “ “)

LOOP

GET KEY k
END

lists the contents of a text file named INFILE, replacing all characters which are not digits
with spaces.

Exceptions: None
See also: REPCHAR$, MAPCHAR$, DELCHAR$, KEEPCHAR$, PLUGCHAR$,

NPLUGCHAR$

PLUGCHAR$ Function
Library: STRLIB.TRC
Syntax: PLUGCHAR$ (strex, strex, strex)
Usage: LET a$ = PLUGCHAR$ (text$, chars$, template$)

Summary: Returns the value of text$ with all characters which do appear in chars$ replaced by the
specified template.

444 True BASIC Language System



Details: The PLUGCHAR$ function replaces all characters in text$ which are members of the
character set represented by the value of chars$. Each occurrence of a character from
chars$ within text$ is replaced by the value of template$.
The PLUGCHAR$ function differs from the REPCHAR$ function in that the value of
template$ is treated as a template. This means that each occurrence of the character
combination “#1” within the value of template$ will be replaced with the value of the
character which will be replaced by the template.

Example: The following program:
LIBRARY “STRLIB.TRC”
DECLARE DEF Control$, PlugChar$

OPEN #1: NAME “InFile”
OPEN #2: NAME “OutFile”, CREATE NEW

LET ctl$ = Control$

DO WHILE MORE #1
LINE INPUT #1: line$
PRINT #2: PlugChar$(line$, ctl$, “/#1”

LOOP

END

places a slash (\) before each control character in the file named INFILE and stores the results
in the file named OLDFILE.

Exceptions: None
See also: NPLUGCHAR$, DELCHAR$, KEEPCHAR$, REPCHAR$, NREPCHAR$,

MAPCHAR$

PLUGMIX$ Function
Library: STRLIB.TRC
Syntax: PLUGMIX$ (strex, strex, strex)
Usage: LET a$ = PLUGMIX$ (text$, old$, template$)

Summary: Returns the value of text$ with occurrences of the value of old$, in any mix of upper- and
lowercase, replaced by the specified template.

Details: The PLUGMIX$ function replaces all occurrences of the value of old$, in any mix of
uppercase and lowercase, within text$. Each occurrence of the value of old$within text$
is replaced by the value of template$.
The PLUGMIX$ function differs from the REPMIX$ function in that the value of
template$ is treated as a template. This means that each occurrence of the character
combination “#1” within the value of template$ will be replaced with the value of old$ as
it was found in text$.

Example: The following program:
LIBRARY "StrLib.trc"
DECLARE DEF PlugMix$
LET text$ = "Now is tHe time"
PRINT PlugMix$(text$, "the", "THE")
END

produces the following output:
Now is THE time

Exceptions: None
See also: PLUGSTR$, PLUGCHAR$, REPMIX$, DELMIX$

445String Handling Libraries



PLUGSTR$ Function
Library: STRLIB.TRC
Syntax: PLUGSTR$ (strex, strex, strex)
Usage: LET a$ = PLUGSTR$ (text$, old$, template$)

Summary: Returns the value of text$ with occurrences of the value of old$ replaced by the specified
template.

Details: The PLUGSTR$ function replaces all occurrences of the value of old$ within text$. Each
occurrence of the value of old$ within text$ is replaced by the value of template$.
The PLUGSTR$ function differs from the REPSTR$ function in that the value of template$
is treated as a template. This means that each occurrence of the character combination “#1”
within the value of template$ will be replaced with the value of old$.

Example: The following program:
LIBRARY "StrLib.trc"
DECLARE DEF PlugMix$
PRINT PlugMix$("x/x", "x", "(#1+#1)")
END
produces the following output:
(x+x)/(x+x)

Exceptions: None
See also: PLUGMIX$, PLUGCHAR$, REPSTR$, DELSTR$

PUNCT$ Function
Library: STRLIB.TRC
Syntax: PUNCT$
Usage: LET set$ = PUNCT$

Summary: Returns the set of punctuation characters.
Details: The PUNCT$ function returns a string containing the set of characters representing

punctuation, arranged in ascending order according to their ASCII codes. (For a table of the
ASCII codes and their corresponding characters, see Appendix A.)
That is, it returns the equivalent of the string constant:
“ !””#$%&’()*+,-./:;<=>?@[\]^_`{|}˜”

where the pair of consecutive quotation marks results in the inclusion of a single quotation
mark.
Note that this function returns only those punctuation characters represented in the standard
ASCII character set. Depending upon the current operating environment there may be
additional punctuation characters available which are not represented within the results of
the PUNCT$ function.

Example: None.
Exceptions: None
See also: UPPER$, LOWER$, LETTERS$, DIGITS$, ALPHANUM$, CONTROL$

REPCHAR$ Function
Library: STRLIB.TRC
Syntax: REPCHAR$ (strex, strex, strex)
Usage: LET a$ = REPCHAR$ (text$, oldchars$, new$)

Summary: Returns the value of text$ with all characters in oldchars$ replaced by the value of
new$.

Details: The REPCHAR$ function maps the members of a character set to a single string. It returns
the value of text$ after having replaced any occurrences of characters appearing in the

446 True BASIC Language System



value of oldchars$ with the value of new$.
Example: The following program:

LIBRARY “STRLIB.TRC”
DECLARE DEF Punct$, RepChar$

OPEN #1: NAME “InFile”

LET chars$ = Punct$

DO WHILE MORE #1
LINE INPUT #1: line$
PRINT RepChar$(line$, chars$, “<PUNCT>”)

LOOP

GET KEY k
END

lists the contents of a text file named INFILE, replacing all occurrences of punctuation with
the phrase “<PUNCT>”.

Exceptions: None
See also: MAPCHAR$, NREPCHAR$, DELCHAR$, KEEPCHAR$, PLUGCHAR$,

NPLUGCHAR$, REPSTR$, REPMIX$

REPMIX$ Function
Library: STRLIB.TRC
Syntax: REPMIX$ (strex, strex, strex)
Usage: LET a$ = REPMIX$ (text$, old$, new$)

Summary: Returns the value of text$ with all occurrences of the value of old$, in any mix of upper-
and lowercase letters, replaced by the value of new$.

Details: The REPMIX$ function replaces occurrences of one substring with another, ignoring case.
It returns the value of text$ after having replaced any occurrences of the value of old$, in
any mix of upper- and lowercase letters, with the value of new$.
If the value of old$ does not appear within the value of text$, the REPMIX$ function
returns the value of text$ untouched.

Example: The following program:
LIBRARY “STRLIB.TRC”
DECLARE DEF RepMix$

OPEN #1: NAME “InFile”
OPEN #2: NAME “OutFile”, CREATE NEW
SET #2: MARGIN MAXNUM

DO WHILE MORE #1
LINE INPUT #1: line$
PRINT #2: RepMix$(line$, “print”, “PRINT”)

LOOP

END

copies the contents of the file named INFILE to the newly created file named OUTFILE,
changing all occurrences of the word “print,” regardless of case, into uppercase.

Exceptions: None
See also: REPSTR$, REPCHAR$, DELSTR$, PLUGSTR$

447String Handling Libraries



REPSTR$ Function
Library: STRLIB.TRC
Syntax: REPSTR$ (strex, strex, strex)
Usage: LET a$ = REPSTR$ (text$, old$, new$)

Summary: Returns the value of text$ with all occurrences of the value of old$ replaced by the value
of new$.

Details: The REPSTR$ function replaces occurrences of one substring with another. It returns the
value of text$ after having replaced any occurrences of the value of old$ with the value of
new$.
If the value of old$ does not appear within the value of text$, the REPSTR$ function
returns the value of text$ untouched.

Example: The following program:
LIBRARY “STRLIB.TRC”
DECLARE DEF RepStr$

OPEN #1: NAME “InFile”, ORG BYTE
OPEN #2: NAME “OutFile”, CREATE NEW, ORG BYTE

LET cr$ = Chr$(13)
LET crlf$ = cr$ & Chr$(10)

DO WHILE MORE #1
READ #1, BYTES 10000: block$
WRITE #2: RepStr$(line$, cr$, crlf$)

LOOP

END

copies the contents of the file named INFILE to the newly created file named OUTFILE,
changing all occurrences of a carriage return to a carriage return followed by a line feed.

Exceptions: None
See also: REPMIX$, REPCHAR$, DELSTR$, PLUGSTR$

REVERSE$ Function
Library: STRLIB.TRC
Syntax: REVERSE$ (strex)
Usage: LET a$ = REVERSE$ (string$)

Summary: Returns the value of its argument string$ with all of its characters in reverse order.
Details: The REVERSE$ function accepts a string argument, reverses the order of the characters

which it contains, and returns the result.
If the value of its argument is the null string, the REVERSE$ function will return the null
string.

Example: The following program:
LIBRARY "StrLib.trc"
DECLARE DEF Reverse$
DIM text$(3)
MAT READ text$
DATA madam, im, adam
FOR i = 1 to 3

IF text$(i) = Reverse$(text$(i)) then
PRINT text$(i); " is a palindrome"

ELSE

448 True BASIC Language System



PRINT text$(i); " is not a palindrome"
END IF

NEXT i
END

produces the following output:
madam is a palindrome
im is not a palindrome
adam is not a palindrome

Exceptions: None

RIGHT$ Function
Library: STRLIB.TRC
Syntax: RIGHT$ (strex, numex)
Usage: LET a$ = RIGHT$ (string$, chars)

Summary: Returns the rightmost chars characters of string$.
Details: The RIGHT$ function returns a specific number of characters from the end of string$.

The number of characters to be returned is given by the value of chars.
If the value of chars is less than or equal to 0, the RIGHT$ function returns the null
string. If the value of chars is greater than the number of characters in string$, the
RIGHT$ function returns the value of string$.
Note that the RIGHT$ function can be useful when converting programs written in other
forms of BASIC. However, you will likely find that the substring expressions discussed in
Chapter 17 provide greater speed and flexibility.

Example: The following program:
LIBRARY "StrLib.trc"
DECLARE DEF Right$
LET a$ = "Now is the time"
FOR chars = 5 to 8

PRINT Right$(a$, chars)
NEXT chars
END

produces output similar to the following:
time
e time
he time
the time

Exceptions: None
See also: LEFT$, MID$

RJUST$ Function
Library: STRLIB.TRC
Syntax: RJUST$ (strex, numex, strex)
Usage: LET a$ = RJUST$ (text$, width, back$)

Summary: Returns a string of the specified length containing the value of text$ right-justified.
Details: The RJUST$ function takes the value of text$ and adds characters to the beginning of it as

necessary to create a string containing width characters with the value of text$ right-
justified within it. The characters added will be determined by repeating the sequence of
characters specified by the value of back$.
If the length of text$ is greater than the value specified by width, the RJUST$ function
returns the value of text$ truncated to width characters. If the value of width is less than
or equal to 0, the RJUST$ function returns the null string.

449String Handling Libraries



The background pattern added to the beginning of the value of text$ will be formed in such
a way that all strings formed with the same value of back$ will have identical background
patterns, regardless of the value of text$. If the value of back$ is the null string or a space,
the background pattern will consist solely of blanks, or spaces.

Example: The following program:
LIBRARY "StrLib.trc"
DECLARE DEF RJust$
LET a$ = "...Hello"
FOR chars = 10 to 12

PRINT RJust$(a$, chars, "*")
NEXT chars
END

produces the following output:
**...Hello
***...Hello
****...Hello

Exceptions: None
See also: LJUST$, CENTER$, JUSTIFY$, HEADER$. FILLARRAY, FILLFROM,

JUSTIFYARRAY, JUSTIFYFROM

RNDSTR$ Function
Library: STRLIB.TRC
Syntax: RNDSTR$ (strex, numex)
Usage: LET a$ = RNDSTR$ (chars$, length)

Summary: Returns a string of the specified length composed of characters randomly chosen from the
characters comprising the value of chars$.

Details: The RNDSTR$ function returns a randomly generated string. The length of the string will be
determined by the value of length, and the characters in the string will be drawn randomly
from the characters comprising the value of chars$.
If a single character appears more than once in the value of chars$, the probability of that
character appearing in the resulting string will be increased appropriately.
The RNDSTR$ function is useful for creating names for temporary files. It is also useful for
creating strings to test string handling algorithms.

Example: The following program:
LIBRARY “STRLIB.TRC”
DECLARE DEF RndStr$

LET first$ = “ABCDEFGHIJKLMNOPQRSTUVWXYZ”
LET rest$ = first$ & “0123456789”

DO
LET fname$ = RndStr$(first$,1) & RndStr$(rest$,7)
WHEN ERROR IN

OPEN #1: NAME fname$, CREATE NEW
EXIT DO

USE
! Do nothing

END WHEN
LOOP
PRINT “File created: “; fname$

GET KEY k
END

450 True BASIC Language System



uses the RNDSTR$ function to create a temporary file name and then uses that name to
create the file. Note that the name begins with a letter and then contains seven characters
which may be letters or digits.

Exceptions: None

ROMAN$ Function
Library: STRLIB.TRC
Syntax: ROMAN$ (numex)
Usage: LET romannum$ = ROMAN$ (number)

Summary: Returns the string representation of its numeric argument in Roman numerals.
Details: The ROMAN$ function returns the string representation of the value of number as Roman

numerals. For example, if passed a value of 117, the ROMAN$ function would return the
string value:
CXVII

As you can see, the Roman numerals will be represented entirely in uppercase letters.
The Roman representation of a negative number will begin with a minus sign.
Since Roman numerals may only represent whole numbers, the ROMAN$ function will
generate an error if you pass it a non-integer value.

Example: The following program:
LIBRARY “STRLIB.TRC”
DECLARE DEF Roman$

LET year$ = Roman$(1900+Int(Date/1000))

PRINT “Copyright (c) “; year$; “ by True BASIC, Inc.”

END

produces the following output:
Copyright (c) MCMXCIV by True BASIC, Inc.”

Exceptions: None
See also: ENGLISHNUM$

SHORTDATE$ Function
Library: STRLIB.TRC
Syntax: SHORTDATE$ (strex)
Usage: LET a$ = SHORTDATE$ (adate$)

Summary: Returns the date represented by the value of adate$ in string form consisting of the day of
the month, the month name, and the year in abbreviated format.

Details: The SHORTDATE$ function takes as its argument a date in the format produced by the
DATE$ function and returns that date in abbreviated, but legible, form. This abbreviated
form consists of the day of the month, the three-character abbreviation of the month name,
and the last two digits of the year.
The value of adate$ must represent a date in the same format produced by the DATE$
function. That is, the value of adate$ must be a string in the form “YYYYMMDD”, where
YYYY represents the year, MM the month, and DD the day. If adate$ does not represent
such a value, then the SHORTDATE$ function generates an error.
To return a date in an expanded format, use the NICEDATE$ function.

451String Handling Libraries



Example: The following program:
LIBRARY "StrLib.trc"
DECLARE DEF ShortDate$
PRINT ShortDate$("19971015")
END

produces the following output:
15 Oct 97

Exceptions: 1 Bad date given to ShortDate$: 00000000
See also: DATE$, DATE, SHORTDATE$, WEEKDAY$, WEEKDAY, TODAY$, TIME, TIME$,

NICETIME$, NOW$

SUPERVAL Subroutine
Library: STRLIB.TRC
Syntax: CALL SUPERVAL (strarrarg, strex, numvar)
strarrarg:: strarr

strarr bowlegs
Usage: CALL SUPERVAL (table$(), expression$, result)

Summary: Evaluates the expression represented by the contents of expression$ and returns the
resulting value in result.

Details: The SUPERVAL subroutine evaluates the numeric expression represented by the value of
expression$ and returns the resulting value in result.
The value of expression$ must represent a numeric expression which is valid under the
rules of True BASIC. This expression may contain both numeric constants and variables.
You can use expressions like “a = 2” or “length, width, height = 1” to create variables and set
their values.
Like the numeric constants, the variables used in expression$ must follow True BASIC’s
rules for the formation of variable names. These variables are not connected with the variables
used in your program code; they form their own variable pool which is created and used
exclusively by the SUPERVAL subroutine.
The SUPERVAL subroutine uses the table$ array to manage this pool of variables. You
don’t need to worry about maintaining the table$ array; just pass any one-dimensional
array as table$, and the SUPERVAL subroutine will do the rest. However, since the
table$ array is used to store the variable pool, you should be sure to pass the same table$
array to each invocation of the SUPERVAL subroutine which you would like to have access
to the variables in that pool.
The value of expression$ may incorporate any of the following operators:

Operators Available to SUPERVAL

+ - * / ^ ( )
In addition, the value of expression$ may incorporate any of the following numeric functions:

Functions Available to SUPERVAL
SIN COS TAN ATN SQR
SINH COSH TANH ASIN ACOS
SEC CSC COT MAXNUM EPS
PI SGN ABS RAD DEG
LOG LOG2 LOG10 EXP RND
INT ROUND IP FP CEIL

DATE TIME

Note that numeric functions requiring two arguments, including the two-argument form of
the ROUND function, are not available for use in the value of expression$.

452 True BASIC Language System



Example: The following program:
LIBRARY “STRLIB.TRC”
DIM vars$(1)

CALL SuperVal(vars$(), “a = 3^2”, result)
CALL SuperVal(vars$(), “b = Sqr(a)”, result)
PRINT result

DO
LINE INPUT PROMPT “Expression (0 to quit): “: expr$
IF expr$ = “0” then EXIT DO
CALL SuperVal(vars$(), expr$, result)
PRINT result

LOOP

END

produces output similar to the following:
3 
Expression (0 to quit): a
9 
Expression (0 to quit): b
3 
Expression (0 to quit): a + b
12 
Expression (0 to quit): c = a/(b*2)
1.5 
Expression (0 to quit): a * Pi
28.274334 
Expression (0 to quit): 0

Exceptions: 1 SuperVal string isn’t a proper expression.
2 Unknown function or variable in SuperVal.
3 Bad variable name in SuperVal: name
3002 Negative number to non-integral power.
3003 Zero to negative power.
3004 LOG of number <= 0.
3005 SQR of negative number.
4001 VAL string isn’t a proper number.

See also: EVAL, VAL, LVAL, DOLLARVAL

TODAY$ Function
Library: STRLIB.TRC
Syntax: TODAY$
Usage: LET a$ = TODAY$

Summary: Returns the current date in string form consisting of the name of the day of the week, the
month name, the day of the month, and the year.

Details: The TODAY$ function returns the current date in string form. The format begins with the
name of the weekday, followed by the full name of the month, the day of the month, and the
full year.
For instance, the TODAY$ function might return:
Tuesday, June 14, 1994

If the current computer hardware is not able to report the date, then the TODAY$ function
generates an error.
The TODAY$ function obtains its results from your operating system, which in turn obtains
its results from your computer’s internal clock. If you find that the TODAY$ function is
returning erroneous results, you most likely have to reset your computer’s internal clock.

453String Handling Libraries



Example: None.
Exceptions: 1 Bad date given to NiceDate$: 00000000

1 Bad date given to WeekDay: 00000000
1 Bad date given to WeekDay$: 00000000

See also: DATE$, DATE, NICEDATE$, SHORTDATE$, WEEKDAY$, WEEKDAY, TIME,
TIME$, NICETIME$, NOW$

UNIQ$ Function
Library: STRLIB.TRC
Syntax: UNIQ$ (strex)
Usage: LET a$ = UNIQ$ (text$)

Summary: Returns the set of characters contained within the value of text$.
Details: The UNIQ$ function returns a string containing the set of characters contained in the value

of its argument.
That is, the UNIQ$ function returns a string which contains one of each character which
appears in the value of its argument. The characters will be organized within the resulting
string in ascending order by their ASCII codes. Thus, uppercase letters will be listed before
all lowercase letters.

Example: The following program:
LIBRARY "StrLib.trc"
DECLARE DEF Uniq$
LET s$ = "Now is the time for all good men"
PRINT s$
PRINT Uniq$(s$)
END

produces the following output:
Now is the time for all good men
Nadefghilmnorstw

Exceptions: None
See also: CHARUNION$, CHARINT$, CHARDIFF$, CHARS$

UPPER$ Function
Library: STRLIB.TRC
Syntax: UPPER$
Usage: LET set$ = UPPER$

Summary: Returns the set of uppercase alphabetic characters.
Details: The UPPER$ function returns a string containing the set of characters representing the

letters of the alphabet, in uppercase only, arranged in ascending order according to their
ASCII codes. (For a table of the ASCII codes and their corresponding characters, see
Appendix A.)
That is, it returns the equivalent of the string constant:
“ABCDEFGHIJKLMNOPQRSTUVWXYZ”

Example: None.
Exceptions: None
See also: LOWER$, LETTERS$, DIGITS$, ALPHANUM$, PUNCT$, CONTROL$

WEEKDAY Function
Library: STRLIB.TRC
Syntax: WEEKDAY (strex)

454 True BASIC Language System



Usage: LET a = WEEKDAY (adate$)

Summary: Returns the number of the weekday on which the specified date falls.
Details: The WEEKDAY function takes as its argument a date in the format produced by the DATE$

function and returns the number of the day of the week on which that date falls.
The WEEKDAY function returns a number between 1 and 7, inclusive, where 1 indicates
Sunday and 7 indicates Saturday.
The value of adate$ must represent a date between the years 1901 and 2099, inclusive, in
the same format produced by the DATE$ function. That is, the value of adate$ must be a
string in the form “YYYYMMDD”, where YYYY represents the year, MM the month, and DD
the day. If adate$ does not represent such a value, then the WEEKDAY function generates
an error.
To return the full name of the day of the week on which a particular date falls, use the
WEEKDAY$ function.

Example: The following program:
LIBRARY "StrLib.trc"
DECLARE DEF Weekday
PRINT Weekday("19971015")
END

produces the following output:
4

Exceptions: 1 Bad date given to WeekDay: 00000000
See also: DATE$, DATE, NICEDATE$, SHORTDATE$, TODAY$, WEEKDAY$, TIME, TIME$,

NICETIME$, NOW$

WEEKDAY$ Function
Library: STRLIB.TRC
Syntax: WEEKDAY$ (strex)
Usage: LET a$ = WEEKDAY$ (adate$)

Summary: Returns the full name of the weekday on which the specified date falls.
Details: The WEEKDAY$ function takes as its argument a date in the format produced by the DATE$

function and returns the full name of the day of the week on which that date falls.
The value of adate$ must represent a date between the years 1901 and 2099, inclusive, in
the same format produced by the DATE$ function. That is, the value of adate$ must be a
string in the form “YYYYMMDD”, where YYYY represents the year, MM the month, and DD
the day. If adate$ does not represent such a value, then the WEEKDAY$ function generates
an error.
To return the number of the day of the week on which a particular date falls, use the
WEEKDAY function.

Example: The following program:
LIBRARY "StrLib.trc"
DECLARE DEF Weekday$
PRINT Weekday$("19971015")
END

produces the following output:
Wedneadsy

Exceptions: 1 Bad date given to WeekDay$: 00000000
See also: DATE$, DATE, NICEDATE$, SHORTDATE$, TODAY$, WEEKDAY, TIME, TIME$,

NICETIME$, NOW$

455String Handling Libraries



Sorting and Searching Libraries
The library file SORTLIB.TRC contains several sorting and searching utilities. Each sorting and searching
subroutine comes in two forms, one for numbers and one for strings. The name of the subroutine ends with an “N”
for numbers, and in “S” for strings.
The two subroutines SORTN and SORTS perform ordinary in-place sorts. The two subroutines PSORTN and
PSORTS perform indexed (or pointer) sorts. 
The two subroutines CSORTN and CSORTS perform sorting according to a relation specified by the
programmer. The two subroutines CPSORTN and CPSORTS perform indexed (or pointer) sorts according to a
relation defined by the programmer.
The four subroutines CSEARCHN, CSEARCHS, SEARCHN, and SEARCHS search lists (numeric or string)
for a match. SEARCHN and SEARCHS use the ordinary relational operator “=”. CSEARCHN and CSEARCHS
perform searches according to a relation specified by the programmer.
CSORTN, CPSORTN, and CSEARCHN call a subroutine COMPAREN, which is included in SortLib.tru.  It is
currently coded to produce the usual ascending sort.  If you require a different sorting relation, you can proceed
in one of two ways.  First, you can make the changes in the subroutine COMPAREN in SortLib.tru, and then
recompile SortLib.tru.  Second,  you can include your own version of COMPAREN following the END statement
in your main program; this definition takes precedence over the one in the library file.

CSORTS, CPSORTS, and CSEARCHS performing sorts and searches using special ordering relations specified by
calling one of several relation-specifying subrouintes before invoking the sort.  These special subroutine calls
include:

Sort_Off Sort using ASCII sorting order and entire string
Sort_ObserveCase Treat upper- and lowercase as different (default)
Sort_IgnoreCase Treat upper- and lowercase as equivalent
Sort_NiceNumbers_on See the header of SortLib.tru for definitions
Sort_NiceNumbers_off Ditto (default)
Sort_NoKeys Sort using the entire string
Sort_OneKey Sort on the substring field specified
Sort_TwoKeys Sort on the two substring fields specified

CSEARCHN and CSEARCHS require the list to have been previously sorted using the same relations; i.e., use the
same COMPAREN for CSEARCHN, and the same options for CSEARCHS as for CSORTS.The two subroutines
REVERSEN and REVERSES simply reverse the order of the elements in the numeric or string array. That is,
the first element will become the last, and so on.

CPSORTN Subroutine
Library: SORTLIB.TRC
Syntax: CALL CPSORTN (numarrarg, numarrarg)
numarrarg:: numarr

numarr bowlegs
Usage: CALL CPSORTN (values(), indices())

Summary: Performs a pointer sort on the values stored in values and stores the pointers, or indices, to
the elements in indices in the order specified by a customized comparison routine.

Details: The CPSORTN subroutine performs a “pointer sort” on the values stored in the numeric
array values. Pointer sorts do not actually rearrange the values in the array which they are
sorting, rather they create a second array that contains the first array’s indices arranged in
the order of the sorted values. The CPSORTN subroutine returns this array of indices as
indices.
For a more detailed discussion of pointer sorts, see the PSORTN subroutine later in this chapter.

456 True BASIC Language System



The PSORTN subroutine compares elements based upon the standard relational operators in
order to create a list of indices that represent the values sorted into ascending order. While
this is useful for the vast majority of circumstances, you may occasionally need to specify a
different comparison.
The CPSORTN subroutine allows you to specify a particular comparison that will be used to
determine the way in which the items will be ordered. 
Note that the CPSORTN subroutine sorts the entire values array. Thus, if you have only
assigned values to the first 100 elements of a 1000-element array, the resulting indices
array will contain the indices of 900 zero-valued elements of values merged into the sorted
result.

Example: The following program:
LIBRARY “SortLib.TRC”

DIM name$(6), grade(6), indices(6)
MAT READ name$, grade
DATA Kollwitz, Hu, Starr, Ransom, White, Sankar
DATA 75,       93, 95,    68,     84,    88

CALL CPSortN(grade, indices)   ! Sort by grades
FOR i = 1 to 6

LET j = indices(i)
PRINT name$(j); grade(j)

NEXT i

END

SUB CompareN (a, b, compflag)
IF a > b then

LET compflag = -1
ELSEIF a = b then

LET compflag =  0
ELSE

LET compflag =  1
END IF

END SUB

performs a pointer sort on a set of parallel arrays and uses the results to print both arrays
sorted into descending order by grade. The result is the same as that of using PSORTN
followed by CALL ReverseN (indicies).

Exceptions: None
See also: CPSORTS, PSORTN, SORTN

CPSORTS Subroutine
Library: SORTLIB.TRC
Syntax: CALL CPSORTS (strarrarg, numarrarg)

strarrarg:: strarr
strarr bowlegs
numarrarg:: numarr
numarr bowlegs

Usage: CALL CPSORTS (values$(), indices())

Summary: Performs a pointer sort on the values stored in values$ and stores the pointers, or indices,
to the elements in indices in the order specified by the programmer.

Details: The CPSORTS subroutine performs a “pointer sort” on the values stored in the string array
values$. Pointer sorts do not actually rearrange the values in the array which they are
sorting, rather they create a second array which contains the first array’s indices arranged in

457Sorting and Searching Libraries



the order of the sorted values. The CPSORTS subroutine returns this array of indices as
indices.
For a more detailed discussion of pointer sorts, see the PSORTS subroutine later in this
chapter.
The PSORTS subroutine compares elements based upon the standard relational operators in
order to create a list of indices that represent the values sorted into ascending order. While
this is useful for the vast majority of circumstances, you may occasionally need to specify a
different comparison.
The CPSORTS subroutine allows you to specify the comparison that will be used to determine
the way in which the items will be ordered. 
Note that the CPSORTS subroutine sorts the entire values$ array. Thus, if you have only
assigned values to the first 100 elements of a 1000-element array, the resulting indices
array will contain the indices of 900 null-valued elements of values$merged into the sorted
result.

Example: The following program:
LIBRARY “SortLib.TRC”

DIM name$(6), grade(6), indices(6)
MAT READ name$, grade
DATA Kollwitz, Hu, Starr, Ransom, White, Sankar
DATA 75,       93, 95,    68,     84,    88

CALL Sort_IgnoreCase
CALL CPSortS(name$, indices)   ! Sort by grades
FOR i = 1 to 6

LET j = indices(i)
PRINT name$(j); grade(j)

NEXT i

END

performs a case-blind pointer sort on a set of parallel arrays and uses the results to print both
arrays sorted by name.

Exceptions: None
See also: CPSORTN, PSORTS, SORTS

CSEARCHN Subroutine
Library: SORTLIB.TRC
Syntax: CALL CSEARCHN (numarrarg, numex, numvar, numvar)

numarrarg:: numarr
numarr bowlegs

Usage: CALL CSEARCHN (array(), number, index, found)

Summary: Searches array for the value number utilizing a user-defined comparison and returns
found as a non-zero value if it is found. Index reports the subscript value of numberwithin
array.

Details: The CSEARCHN subroutine searches through the numeric array array for an element with
the value number and returns the subscript of its location in index. This search is performed
using a customized comparison subroutine defined by the programmer.
The SEARCHN subroutine compares elements based upon the standard relational operators
in order to locate the value number within array. While this is useful for the vast majority
of circumstances, you may occasionally need to specify a different comparison.
The CSEARCHN subroutine requires that you have sorted the array using CSORTN, and that
you continue to use the same CompareN subroutine.

458 True BASIC Language System



It is your responsibility to ensure that the behavior of the CompareN subroutine is well-
defined and bug-free. If your CompareN subroutine is not well-behaved, the search results
may not be valid.
You may define CompareN in the main program file.
Since the CSEARCHN subroutine uses a binary search algorithm, the array must be sorted
into ascending order (perhaps through an invocation of the CSORTN subroutine) before being
passed to the CSEARCHN subroutine. In general, the CSEARCHN subroutine should
utilize the same form of the CompareN subroutine used by the CSORTN subroutine which
sorted the array.
If the value of number exists in array, the value of found is set to some non-zero value and
the value of index is set equal to the subscript of the element which contains it.
If the value of number cannot be located in array, the value of found is set equal to zero and
the value of index is set equal to the subscript of the element in which the value of number
would have been stored if it had been present. In other words, the value of index is set to one
subscript value past the location of the greatest value which is less than number. If number
is greater than every element in array, the value of indexwill be returned equal to array’s
upper bound plus 1.

Example: The following program:
LIBRARY “SortLib.TRC”

DIM array(100)
RANDOMIZE
FOR i = 1 to 100

LET array(i) = Int(100*Rnd) + 1
NEXT i
CALL CSortN(array)

DO
INPUT PROMPT “Search value (0 to quit): “: number
IF number <= 0 then EXIT DO
CALL CSearchN(array,number,i,found)
IF found <> 0 then

PRINT “Found: “; array(i)
ELSE

PRINT “Not found.”
END IF

LOOP

END

SUB CompareN (a, b, compflag)
IF a > b then

LET compflag = -1
ELSEIF a = b then

LET compflag =  0
ELSE

LET compflag =  1
END IF

END SUB

sorts a list of 20 random numbers between 1 and 100 into descending order and allows the
user to search the results.

Exceptions: None
See also: CSORTN, SEARCHN, CSEARCHS, CSORTS

459Sorting and Searching Libraries



CSEARCHS Subroutine
Library: SORTLIB.TRC
Syntax: CALL CSEARCHS (strarrarg, strex, numvar, numvar)
strarrarg:: strarr

strarr bowlegs
Usage: CALL CSEARCHS (array$(), string$, index, found)

Summary: Searches array$ for the value string$ utilizing a user-specified relation and returns
found as a non-zero value if it is found. Index reports the subscript value of string$within
array$.

Details: The CSEARCHS subroutine searches through the string array array$ for an element with
the value string$ and returns the subscript of its location in index. This search is
performed using the relations specified by the programmer.
The SEARCHS subroutine compares elements based upon the standard relational operators
in order to locate the value string$within array$. While this is useful for the vast majority
of circumstances, you may occasionally need to specify a different comparison.
The CSEARCHS subroutine allows you to specify the comparison that will be used to locate
the items.
Since the CSEARCHS subroutine uses a binary search algorithm, the array must be sorted
into ascending order (perhaps through an invocation of the CSORTS subroutine) before being
passed to the CSEARCHS subroutine. In general, the CSEARCHS subroutine should use
the same options used by the CSORTS subroutine which sorted the array.
If the value of string$ exists in array$, the value of found is set to some non-zero value and
the value of index is set equal to the subscript of the element which contains it.
If the value of string$ cannot be located in array$, the value of found is set equal to zero
and the value of index is set equal to the subscript of the element in which the value of
string$ would have been stored if it had been present. In other words, the value of index
is set to one subscript value past the location of the greatest value which is less than string$.
If string$ is greater than every element in array$, the value of index will be returned
equal to array$’s upper bound plus 1.

Example: The following program:
! Sort by last 3 letters, then search for same.
!
DIM array$(10)
MAT READ array$
DATA operculum, partlet, pettifog, grisette, douceur
DATA pollex, sannup, duende, keeshond, maccaboy

CALL Sort_OneKey (4, 6)

CALL CSortS(array$)
DO

INPUT PROMPT “Search string (aaa to quit): “: string$
IF string$ = “aaa” then EXIT DO
CALL CSearchS(array$,string$,i,found)
IF found<>0 then

PRINT “Found: “; array$(i)
ELSE

PRINT “Not found.”
END IF

LOOP
END

sorts a list of string data by characters 4 through 6 in each element and then allows the user
to search the list based on these same characters in an element.

460 True BASIC Language System



Exceptions: None
See also: CSORTS, SEARCHS, CSEARCHN, CSORTN

CSORTN Subroutine
Library: SORTLIB.TRC
Syntax: CALL CSORTN (numarrarg)
numarrarg:: numarr

numarr bowlegs
Usage: CALL CSORTN (array())

Summary: Sorts the specified numeric array using the customized comparison routine named
CompareN.

Details: The CSORTN subroutine sorts the elements of the specified numeric array into the order
determined by a customized comparison subroutine. 
The SORTN subroutine compares elements based upon the <= relational operator in order to
create a list sorted into ascending order. While this is useful for the vast majority of
circumstances, you may occasionally need to specify a different comparison.
The CSORTN subroutine allows you to define a particular comparison that will be used to
determine the ordering of the items. You do so by defining an external subroutine named
CompareN as in the following example:
The CSORTN subroutine performs an “in-place” sort, which means that it uses very little
memory over and above that already occupied by the array itself. 
Although it is of little consequence, you may also be interested to know that the sorting
algorithm used by the CSORTN subroutine is not stable; if you require a stable sort, use the
CPSORTN subroutine instead.
The sorting algorithm used is an optimized quick sort, which makes the CSORTN routine a
very efficient, general-purpose sorting routine. Note, however, that since the CSORTN
subroutine calls the CompareN subroutine for each comparison, it is not as fast as the
SORTN subroutine.
Note that the CSORTN subroutine sorts the entire array. Thus, if you have only assigned
values to the first 100 elements of a 1000-element array, the array will have 900 zeroes merged
into the sorted result.

Example: The following program:
LIBRARY “SortLib.TRC”

DIM array(100)
RANDOMIZE
FOR i = 1 to 100

LET array(i) = Int(100*Rnd) + 1
NEXT i
CALL CSortN(array)
MAT PRINT array

END

SUB CompareN (a, b, compflag)
IF a > b then

LET compflag = -1
ELSEIF a = b then

LET compflag =  0
ELSE

LET compflag =  1
END IF

END SUB

461Sorting and Searching Libraries



generates an array of 100 random numbers, sorts it into descending order, and prints the
sorted result on the screen.

Exceptions: None
See also: CSORTS, CPSORTN, SORTN, REVERSEN

CSORTS Subroutine
Library: SORTLIB.TRC
Syntax: CALL CSORTS (strarrarg)
strarrarg:: strarr

strarr bowlegs
Usage: CALL CSORTS (array())

Summary: Sorts the specified string array using the customized comparison specified by the
programmer.

Details: The CSORTS subroutine sorts the elements of the specified string array into the order
determined by a customized comparison. 
The SORTS subroutine compares elements based upon the <= relational operator in order to
create a list sorted into ascending order. While this is useful for the vast majority of
circumstances, you may occasionally need to specify a different comparison.
The CSORTS subroutine allows you to specify the comparison that will be used to determine
the ordering of the items. 
The CSORTS subroutine performs an “in-place” sort, which means that it uses very little
memory over and above that already occupied by the array itself. 
Although it is of little consequence, you may also be interested to know that the sorting
algorithm used by the CSORTS subroutine is not stable; if you require a stable sort, use the
CPSORTS subroutine instead.
The sorting algorithm used is an optimized quick sort, which makes the CSORTS routine a
very efficient, general-purpose sorting routine. Note, however, that since the CSORTS
subroutine calls the CompareS subroutine for each comparison, it is not as fast as the SORTS
subroutine.
Note that the CSORTS subroutine sorts the entire array. Thus, if you have only assigned
values to the first 100 elements of a 1000-element array, the array will have 900 null strings
merged into the sorted result.

Example: The following program:
LIBRARY “SortLib.TRC”
LIBRARY “CompNum.TRC”

DIM array$(100)
RANDOMIZE
FOR i = 1 to 100

LET array$(i) = “Item “ & Str$(Int(100*Rnd) + 1)
NEXT i
CALL Sort_NiceNumbers_on
CALL CSortS(array$)
MAT PRINT array$

END

generates an array of 100 strings containing numeric values, sorts it using the version of
CompareS contained in the COMPNUM library file, and prints the sorted result on the
screen.

Exceptions: None
See also: CSORTN, CPSORTS, SORTS, REVERSES

462 True BASIC Language System



PSORTN Subroutine
Library: SORTLIB.TRC
Syntax: CALL PSORTN (numarrarg, numarrarg)
numarrarg:: numarr

numarr bowlegs
Usage: CALL PSORTN (values(), indices())

Summary: Performs a pointer sort on the values stored in values and stores the pointers, or indices,
to the elements in indices in sorted order.

Details: The PSORTN subroutine performs a “pointer sort” on the values stored in the numeric
array values. Pointer sorts do not actually rearrange the values in the array which they
are sorting, rather they create a second array which contains the first array’s indices
arranged in the order of the sorted values. The PSORTN subroutine returns this array of
indices as indices.
For example, if values contained the following items:
10   12   23   14   -8   11   6

the resulting indices array would contain the following items:
5   7   1   6   2   4   3

but the items in values will still be in their original order:
10   12   23   14   -8   11   6

Notice that you can therefore print the elements of values in sorted order with code
similar to the following:
FOR i = Lbound(indices) to Ubound(indices)

PRINT values(indices(i))
NEXT i

Because they do not change the ordering of information in the values array, pointer sorts
are particularly useful when working with “parallel arrays.”
Note that the PSORTN subroutine sorts the entire values array. Thus, if you have only
assigned values to the first 100 elements of a 1000-element array, the resulting indices
array will contain the indices of 900 zero-valued elements of values merged into the
sorted result.

Example: The following program:
LIBRARY “SortLib.TRC”

DIM name$(6), grade(6), indices(6)
MAT READ name$, grade
DATA Kollwitz, Hu, Starr, Ransom, White, Sankar
DATA 75,       93, 95,    68,     84,    88

CALL PSortN(grade, indices)   ! Sort by grades
FOR i = 1 to 6

LET j = indices(i)
PRINT name$(j); grade(j)

NEXT i

END

performs a pointer sort on a set of parallel arrays and uses the results to print both arrays
sorted by grades.

Exceptions: None
See also: PSORTN, CPSORTS, SORTS

463Sorting and Searching Libraries



PSORTS Subroutine
Library: SORTLIB.TRC
Syntax: CALL PSORTS (strarrarg, numarrarg)
strarrarg:: strarr

strarr bowlegs
numarrarg:: numarr

numarr bowlegs
Usage: CALL PSORTS (values$(), indices())
Summary: Performs a pointer sort on the values stored in values$ and stores the pointers, or indices,

to the elements in indices in sorted order.
Details: The PSORTS subroutine performs a “pointer sort” on the values stored in the string array

values$. Pointer sorts do not actually rearrange the values in the array which they are
sorting, rather they create a second array which contains the first array’s indices arranged
in the order of the sorted values. The PSORTS subroutine returns this array of indices as
indices.
For example, if values$ contained the following items:
bat   zoo   cat   ant   dog   pig

the resulting indices array would contain the following items:
4   1   3   5   6   2

but the items in values$ will still be in their original order:
bat   zoo   cat   ant   dog   pig

Notice that you can therefore print the elements of values$ in sorted order with code
similar to the following:
FOR i = Lbound(indices) to Ubound(indices)

PRINT values$(indices(i))
NEXT i

Because they do not change the ordering of information in the values$ array, pointer sorts
are particularly useful when working with “parallel arrays.”
Note that the PSORTS subroutine sorts the entire values$ array. Thus, if you have only
assigned values to the first 100 elements of a 1000-element array, the resulting indices
array will contain the indices of 900 null-valued elements of values$ merged into the
sorted result.

Example: The following program:
LIBRARY “SortLib.TRC”

DIM name$(6), grade(6), indices(6)
MAT READ name$, grade
DATA Kollwitz, Hu, Starr, Ransom, White, Sankar
DATA 75,       93, 95,    68,     84,    88

CALL PSortS(grade$, indices)   ! Sort by grades
FOR i = 1 to 6

LET j = indices(i)
PRINT name$(j); grade(j)

NEXT i

END

performs a pointer sort on a set of parallel arrays and uses the results to print both arrays
sorted by name.

Exceptions: None
See also: PSORTN, CPSORTS, SORTS

464 True BASIC Language System



REVERSEN Subroutine
Library: SORTLIB.TRC
Syntax: CALL REVERSEN (numarrarg)
numarrarg:: numarr

numarr bowlegs
Usage: CALL REVERSEN (array())

Summary: Reverses the order of the elements within array.
Details: The REVERSEN subroutine reverses the order of the elements stored within the specified

numeric array. In other words, it swaps the first and last elements, the second and next-to-
last, and so forth.
Although it can be used on any numeric array, the REVERSEN subroutine is most often used
to reverse the results of the SORTN or CSORTN subroutines to produce a list sorted in
descending order. It can also be used to reverse the pointer list produced by PSORTN,
CPSORTN, PSORTS or CPSORTS.

Example: The following program:
LIBRARY “SortLib.TRC”

DIM array(20)
FOR i = 1 to 20

LET array(i) = Int(100*Rnd) + 1
NEXT i
CALL SortN(array)
CALL ReverseN(array)
MAT PRINT array

END

generates an array of random values between 1 and 100 and prints it sorted into descending
order.

Exceptions: None
See also: SORTN, CSORTN, REVERSES

REVERSES Subroutine
Library: SORTLIB.TRC
Syntax: CALL REVERSES (strarrarg)
strarrarg:: strarr

strarr bowlegs
Usage: CALL REVERSES (array$())

Summary: Reverses the order of the elements within array$.
Details: The REVERSES subroutine reverses the order of the elements stored within the specified

string array. In other words, it swaps the first and last elements, the second and next-to-last,
and so forth.
Although it can be used on any string array, the REVERSES subroutine is most often used to
reverse the results of the SORTS or CSORTS subroutines to produce a list sorted in
descending order.

Example: The following program:
LIBRARY “SortLib.TRC”

DIM array$(20)
FOR i = 1 to 20

LET array$(i) = Chr$(Int(26*Rnd) + 65)
NEXT i
CALL SortS(array$)

465Sorting and Searching Libraries



CALL ReverseS(array$)
MAT PRINT array$

END

generates an array of random uppercase letters and prints it sorted into descending order.
Exceptions: None
See also: SORTS, CSORTS, REVERSEN

SEARCHN Subroutine
Library: SORTLIB.TRC
Syntax: CALL SEARCHN (numarrarg, numex, numvar, numvar)

numarrarg:: numarr
numarr bowlegs

Usage: CALL SEARCHN (array(), number, index, found)

Summary: Searches array for the value number and returns found as a non-zero value if it is found.
Index reports the subscript value of number within array.

Details: The SEARCHN subroutine searches through the numeric array array for an element with
the value number and returns the subscript of its location in index.
Since the SEARCHN subroutine uses a binary search algorithm, the array must be sorted
into ascending order (perhaps through an invocation of the SORTN subroutine) before being
passed to the SEARCHN subroutine.
If the value of number exists in array, the value of found is set to some non-zero value and
the value of index is set equal to the subscript of the element which contains it.
If the value of number cannot be located in array, the value of found is set equal to zero and
the value of index is set equal to the subscript of the element in which the value of number
would have been stored if it had been present. In other words, the value of index is set to one
subscript value past the location of the greatest value which is less than number. If number
is greater than every element in array, the value of indexwill be returned equal to array’s
upper bound plus 1.

Example: The following program:
LIBRARY “SortLib.TRC”

DIM array(20)
FOR i = 1 to 20

LET array(i) = Int(100*Rnd) + 1
NEXT i
CALL SortN(array)

DO
INPUT PROMPT “Enter a number 1 to 100 (0 to quit): “: number
IF number <= 0 then EXIT DO
CALL SearchN(array, number, index, found)
IF found <> 0 then

PRINT “Found at”; index
ELSE

PRINT “Not found”
END IF

LOOP

END

generates an array of random values between 1 and 100 and allows the user to search it.
Exceptions: None
See also: SORTN, SEARCHS, CSEARCHN, CSORTN

466 True BASIC Language System



SEARCHS Subroutine
Library: SORTLIB.TRC
Syntax: CALL SEARCHS (strarrarg, strex, numvar, numvar)
strarrarg:: strarr

strarr bowlegs
Usage: CALL SEARCHS (array$(), string$, index, found)

Summary: Searches array$ for the value string$ and returns found as a non-zero value if it is found.
Index reports the subscript value of string$ within array.

Details: The SEARCHS subroutine searches through the string array array$ for an element with
the value string$ and returns the subscript of its location in index.
Since the SEARCHS subroutine uses a binary search algorithm, the array must be sorted into
ascending order (perhaps through an invocation of the SORTS subroutine) before being
passed to the SEARCHS subroutine.
If the value of string$ exists in array$, the value of found is set to some non-zero value
and the value of index is set equal to the subscript of the element which contains it.
If the value of string$ cannot be located in array$, the value of found is set equal to zero
and the value of index is set equal to the subscript of the element in which the value of
string$ would have been stored if it had been present. In other words, the value of index
is set to one subscript value past the location of the greatest value which is less than string$.
If string$ is greater than every element in array$, the value of index will be returned
equal to array$’s upper bound plus 1.

Example: The following program:
LIBRARY “SortLib.TRC”

DIM array$(20)
FOR i = 1 to 20

LET array$(i) = Chr$(Int(26*Rnd) + 65)
NEXT i
CALL SortS(array$)

DO
INPUT PROMPT “Enter an uppercase letter (a to quit): “: string$
IF string$ = “a” then EXIT DO
CALL SearchS(array$, string$, index, found)
IF found <> 0 then

PRINT “Found at”; index
ELSE

PRINT “Not found”
END IF

LOOP

END

generates an array of random uppercase letters and allows the user to search it.
Exceptions: None
See also: SORTS, SEARCHN, CSEARCHS, CSORTS

SORTN Subroutine
Library: SORTLIB.TRC
Syntax: CALL SORTN (numarrarg)

numarrarg:: numarr
numarr bowlegs

467Sorting and Searching Libraries



Usage: CALL SORTN (array())

Summary: Sorts the specified numeric array using a quick sort.
Details: The SORTN subroutine sorts the elements of the specified numeric array into ascending

order. Thus, the array element with the lowest value will be found in the first element of
array after the sort, and the array element with the highest value will be found in the last
element of array.
The SORTN subroutine performs an “in-place” sort, which means that it uses very little
memory over and above that already occupied by the array itself. 
The sorting algorithm used by the SORTN subroutine is not stable; if you require a stable sort,
use the PSORTN subroutine instead.
The sorting algorithm used is an optimized quick sort, which makes the SORTN routine a
very efficient, general-purpose sorting routine.
Note that the SORTN subroutine sorts the entire array. Thus, if you have only assigned
values to the first 100 elements of a 1000-element array, the array will have 900 zeroes merged
into the sorted result.
To sort an array into descending order, use the REVERSEN subroutine to reverse the results
of the SORTN subroutine.

Example: The following program:
LIBRARY “SortLib.TRC”

DIM array(1000)
RANDOMIZE
FOR i = 1 to 1000

LET array(i) = Rnd
NEXT i
CALL SortN(array)
MAT PRINT array
END

generates an array of 1000 random numbers, sorts it, and prints the sorted result on the
screen.

Exceptions: None
See also: SORTS, CSORTN, PSORTN, CPSORTN, REVERSEN

SORTS Subroutine
Library: SORTLIB.TRC
Syntax: CALL SORTS (strarrarg)

strarrarg:: strarr
strarr bowlegs

Usage: CALL SORTS (array$())

Summary: Sorts the specified string array using a quick sort.
Details: The SORTS subroutine sorts the elements of the specified string array into ascending order.

Thus, the array element with the lowest value will be found in the first element of array after
the sort, and the array element with the highest value will be found in the last element of
array.
The values of the elements will be compared as strings, which means that they are compared
character by character on the basis of each character’s numeric code. Thus, the string value
“Zebra” will be considered less than the string value “apple”. This is particularly
important when sorting strings which represent numeric constants, for the string value
“123”will be considered less than the string value “2”, which can lead to unexpected results.
The SORTS subroutine performs an “in-place” sort, which means that it uses very little
memory over and above that already occupied by the array itself. 

468 True BASIC Language System



The sorting algorithm used by the SORTS subroutine is not stable; if you require a stable sort,
use the PSORTS subroutine instead.
The sorting algorithm used is an optimized quick sort, which makes the SORTS routine a very
efficient, general-purpose sorting routine.
Note that the SORTS subroutine sorts the entire array. Thus, if you have only assigned values
to the first 100 elements of a 1000-element array, the array will have 900 null strings merged
into the sorted result.
To sort an array into descending order, use the REVERSES subroutine to reverse the results
of the SORTS subroutine.

Example: The following program:
LIBRARY “SortLib.TRC”

DIM array$(1)
MAT INPUT array$(?)
CALL SortS(array$)
MAT PRINT array$
END

obtains an array of string values from the user, sorts it, and prints the sorted result on the
screen.

Exceptions: None
See also: SORTN, CSORTS, PSORTS, CPSORTS, REVERSES

469Sorting and Searching Libraries



Graphics Libraries
This section describes subroutines for generating complicated graphical displays of data. The subroutines are
contained in three library files:

BGLIB.TRC for drawing pie charts, bar charts, and histograms; including the routines BARCHART,
HISTOGRAM, IBEAM, MULTIBAR, MULTIHIST, PIECHART, and several ASK... and
SET... routines for finding out about or setting attributes of graphs.

SGLIB.TRC for plotting data and function values; including the routines ADDDATAGRAPH,
ADDFGRAPH, ADDLSGRAPH, DATAGRAPH, FGRAPH, MANYDATAGRAPH,
MANYFGRAPH, SORTSPOINTS, and many ASK... and SET... routines for finding out
about or setting attributes of graphs

SGFUNC.TRC for plotting values of functions that you define: 
ADDFGRAPH, FGRAPH, MANYFGRAPH

The graphics subroutines are described below, in alphabetical order.

ADDDATAGRAPH Subroutine
Library: SGLIB.TRC
Syntax: CALL ADDDATAGRAPH (numarrarg,, numarrarg, numex, numex, strex)

numarrarg:: numarr
numarr bowlegs

Usage: CALL ADDDATAGRAPH (x(), y(), pstyle, lstyle, colors$)

Summary: Draws another line graph of a set of data points over the current graph.
Details: The ADDDATAGRAPH subroutine draws a line graph of the set of data points whose

coordinates are represented by the values of the x and y arrays over the current graph; it
simply adds the new graph to the existing graph. Therefore, portions of the added data graph
may lie off the graph.
The x array contains the points’ x-coordinates, and the y array contains their y-coordinates.
The coordinates in the two arrays are matched according to their subscripts; that is, the
elements with subscripts of 1 within both arrays are interpreted as the coordinates of a single
point, as are the elements with subscripts of 2, and so on. Thus, the x and y arrays must have
the same upper and lower bounds, or an error will be generated.
The value of pstyle determines the point style that will be used to draw the data points
which comprise the graph. The allowable values for pstyle are summarized in the following
table:

Available Point Styles
Value of pstyle Resulting Point

0 No point (display line only)
1 Dot
2 Plus sign
3 Asterisk
4 Circle
5 X
6 Box
7 Up triangle
8 Down triangle
9 Diamond
10 Solid Box
11 Solid up triangle
12 Solid down triangle
13 Solid diamond

470 True BASIC Language System



The value of lstyle determines the line style that will be used to connect the data points which
comprise the graph. The allowable values for lstyle are summarized in the following table:

Available Line Styles
Value of lstyle Resulting Line

0 No line (display points only)
1 Solid line
2 Dashed line
3 Dotted line
4 Dash-dotted line

The graph is actually composed of a series of line segments connecting the data points. You can
suppress the display of the data points by passing a value of 0 in pstyle, or you can suppress
the display of the connecting line segments by passing a value of 0 in lstyle.
Note that the ADDDATAGRAPH subroutine draws and connects the points in the order in
which they are stored in the x and y arrays. If your points are not stored in left to right order,
you may wish to use the SORTPOINTS subroutine to order the points before passing them
to the ADDDATAGRAPH subroutine.
The value of colors$ determines the color that will be used to draw the new graph. It
generally consists of a single color name (in any combination of uppercase or lowercase
letters). The valid color names are:

RED MAGENTA YELLOW
GREEN BLUE CYAN
BROWN WHITE BLACK

BACKGROUND
Note: the color “BACKGROUND” refers to the current background color.
The value of colors$ may also contain a color number instead of a color name, allowing you
to access any of the colors supported by the current computer system.
Note that the ADDDATAGRAPH subroutine assumes that a graph currently exists which
has been created by an invocation of the FGRAPH or DATAGRAPH subroutine. The
ADDDATAGRAPH subroutine simply adds the line representing the specified data points to
the existing graph; it does not rescale the graph or redraw the labels or title. If you attempt to
invoke the ADDDATAGRAPH subroutine when a suitable graph has not already been
displayed, an error will be generated.

Example: The following program, SGData2.TRU, can be found in the directory TBDEMOS:
!  SGData2   Chris’ & Dave’s cars’ mileage.

!  Both drove the same kind of car.  Notice that one car’s mileage
!  goes up and down depending on the season (winter is low).
!  The other is less affected.  Also, notice a few erroneous
!  data points!

LIBRARY “..\TBLibs\SGLib.trc”

DIM cmiles(0 to 200), cgallons(200), cmpg(200)
DIM dmiles(0 to 200), dgallons(200), dmpg(200)

CALL ReadData (cmiles, cgallons, cmpg)
CALL ReadData (dmiles, dgallons, dmpg)

CALL SetText (“Gas Mileage”, “Miles Driven (Thousands)”, “MPG”)
CALL DataGraph (cmiles, cmpg, 0, 3, “red green yellow”)
CALL AddDataGraph (dmiles, dmpg, 0, 1, “green”)

471Graphics Libraries



GET KEY key

SUB ReadData (miles(), gallons(), mpg())

READ miles(0)
LET n = 0
DO

LET n = n + 1
READ miles(n), gallons(n)

LOOP until miles(n) = 0
LET n = n - 1

FOR i = 1 to n
LET mpg(i) = (miles(i) - miles(i-1)) / gallons(i)

NEXT i
MAT redim mpg(n), miles(1:n)
MAT miles = (1/1000) * miles

END SUB

! Chris’s car

DATA 677.3                        ! first recorded

DATA 1104.9,9.5,  1567.6,9.3,  1869.7,6.7,  2179.5,6.0
DATA 2564.2,8.0,  2812.3,4.7,  3192.0,7.8,  3540.4,7.4
DATA 4044.4,10.2, 4317.5,5.8,  4747.8,8.7,  4946.2,3.7
DATA 5406.7,9.6,  5870.0,10.1, 6344.2,10.0, 6789.3,9.6
DATA 7208.1,9.1,  7624.8,9.6,  7786.6,3.2,  8244.3,9.4
DATA 8614.1,8.6,  9050.0,9.5,  9584,13.2,   9991.6,9.3
DATA 10389,9.4,   10804.4,9.1, 11216.1,10.3,11623.4,10.1
DATA 11970.4,9.54,12215.5,6.6, 12599.8,9.6, 12921.9,8.84
DATA 13238.1,7.7
DATA 13815.0,14.3,14170.0,8.8, 14531.0,8.3, 14880.9,9.0
DATA 15671,8.95, 16065,8.2,    16453,8.47,  16696,5.4
DATA 17144,8.8,  17568,9.1,    17997,8.65,  18450,9.3
DATA 18934,9.9,  19356,8.7,    19787,8.4,   20162,7.4
DATA 20572,8.25, 21025,8.8,    21345,9.0   ! did I read this right?
DATA 21713,5.0,  22043,6.6,    22514,9.2,  22968,9.6
DATA 23450,9.1,  23923,9.5,    24302,7.2,  24814,9.9
DATA 25272,9.1,  25738,9.0,    26128,7.7,  26603,8.9
DATA 26975,7.45, 27145,3.772
DATA 27523,7.36, 27834,6.4,    28266,8.4,  28652,8.3
DATA 29091,8.7,  29510,8.8,    29818,6.4,  30223,8.48
DATA 30626,8.9,  31056,8.24       ! ?
DATA 31410,8.16, 31786,8.6,    32161,8.9    ! ?
DATA 32550,9.2,  32941,9.045,  33302,9.3
DATA 0,0

! Dave’s car

DATA 0                            ! full tank on delivery
DATA 272,6.35,   599,6.56,     924,7.44,   1281,7.56
DATA 1462,4.47,  1705,4.32,    2099,8.02,  2673,12.03
DATA 3090,8.76,  3537,8.6,     3991,9.28,  4419,8.73
DATA 4779,7.86,  5022,5.4,     5407,7.88,  5731,7.3
DATA 6049,7.04,  6388,7.61,    6836,8.56,  7204,7.87
DATA 7633,9.21,  8000,7.93,    8455,9.52,  8765,7.17
DATA 9188,9.2,   9578,9.21,    10111,13.7, 10551,10.13
DATA 10884,6.16, 11261,8.16,   11550,7.01, 11888,8.43
DATA 12255,6.79, 12690,8.11,   13237,10.8, 13563,6.47
DATA 14036,8.89, 14418,8.91,   14758,7.28, 15183,9.16
DATA 15757,11,   16394,12.75,  16752,7.95, 17108,6.83

472 True BASIC Language System



DATA 17543,9.01, 17943,9.48,   18362,8.88, 18781,9.07
DATA 19179,8.83, 19361,4.63,   19600,6.07, 19898,6.57
DATA 0,0

END

produces a graph comparing the fuel economy of two cars.
Exceptions: 100 Graph’s title is too wide.

102 Graph’s horizontal label is too wide.
103 Graph’s vertical label is too long.
104 Need more room for graph’s vertical marks.
105 Need more room for graph’s horizontal marks.
106 Need greater width for graph.
107 Need greater height for graph.
110 Data arrays have different bounds in DataGraph
117 Can’t handle this graph range: low to high.
11008 No such color: color.

See also: DATAGRAPH, MANYDATAGRAPH, FGRAPH

ADDFGRAPH Subroutine
Library: SGFUNC.TRC, SGLIB.TRC
Syntax: CALL ADDFGRAPH (numex, strex)
Usage: CALL ADDFGRAPH (style, color$)

Summary: Draws another line graph of an externally defined function over the current graph.
Details: The ADDFGRAPH subroutine draws a line graph of the function F(x) over the current graph.

The ADDFGRAPH subroutine does not change the scale of the current graph; it simply adds
the new graph to the existing graph. Therefore, parts of the new function may be off the graph.
The function F(x) must be defined external to your main program. That is, it must be defined
using a DEF statement or a DEF structure which appears after the END statement. The
function you define must be defined over the entire domain specified. If it is not, the
ADDFGRAPH subroutine may generate an error or draw the graph incorrectly.
Note that both the ADDFGRAPH subroutine and the FGRAPH subroutine utilize an
externally defined function named F. Since a program may not contain two defined functions
with the same name, it is your responsibility to ensure that the function F(x) is defined to
calculate two different functions if you plan to use the ADDFGRAPH subroutine after calling
the FGRAPH subroutine. (See the following example for one method of accomplishing this.)
The value of style determines the line style that will be used to connect the data points which
comprise the graph. The allowable values for style are summarized in the following table:

Available Line Styles
Value of style Resulting Line

0 No line (display points only)
1 Solid line
2 Dashed line
3 Dotted line
4 Dash-dotted line

The graph is actually composed of a series of short line segments. You can control the
number of line segments used to display a graph with the SETGRAIN subroutine. Using
more line segments creates a smoother graph, but takes longer to draw.
The value of color$ determines the color that will be used to draw the new graph. It
generally consists of a single color name (in any combination of uppercase or lowercase
letters). The valid color names are:

473Graphics Libraries



RED MAGENTA YELLOW
GREEN BLUE CYAN
BROWN WHITE BLACK

BACKGROUND
The value of color$ may also contain a color number instead of a color name, allowing you
to access any color supported by the current computer system.
If the value of color$ contains more than one color, only the last color in the list will be
used.
Note that the ADDFGRAPH subroutine assumes that a graph currently exists which has
been created by an invocation of the FGRAPH or DATAGRAPH subroutine. The
ADDFGRAPH subroutine simply adds the line representing the current function F(x) to
the existing graph; it does not rescale the graph or redraw the labels or title. If you attempt
to invoke the ADDFGRAPH subroutine when a suitable graph has not already been
displayed, an error will be generated.

Example: The following program, SGFunc2.TRU, can be found in the directory TBDEMOS:
!  SGFunc2  Graph sine and cosine functions.

LIBRARY “..\TBLibs\SGFunc.trc”, “..\TBLibs\SGLib.trc”

PUBLIC flag

CALL SetText (“Sine and Cosine Waves”, “X Values”, “Y Values”)

CALL Fgraph (-2*pi, 2*pi, 1, “white white magenta”)

LET flag = 1
CALL AddFgraph (2, “cyan”)

GET KEY key

END

DEF F(x)
DECLARE PUBLIC flag
IF flag = 0 then LET F = Sin(x) else LET F = Cos(x)

END DEF

produces a graph of the functions Sin(x) and Cos(x). Notice the use of the public variable
flag to change the behavior of the defined function being graphed.

Exceptions: 118 No canvas window yet.
11008 No such color: color.

See also: SETGRAIN, FGRAPH, MANYFGRAPH

ADDLSGRAPH Subroutine
Library: SGLIB.TRC
Syntax: CALL ADDLSGRAPH (numarrarg, numarrarg, numex, strex)

numarrarg:: numarr
numarr bowlegs

Usage: CALL ADDLSGRAPH (x(), y(), style, color$)

Summary: Computes and draws the least-squares linear fit for the specified points.
Details: The ADDLSGRAPH subroutine calculates and draws the least-squares linear fit of a set of

data points.

474 True BASIC Language System



The least-squares linear fit of a set of data points is the straight line which best fits the
locations of those data points. That is, the least-squares linear fit of a set of data points is the
straight line which minimizes the vertical distance between itself and each of the data points.
Such a line may be used to help predict where data points might lie in areas for which data is
unavailable.
The set of data points is specified as pairs of coordinates passed as the contents of the x and y
arrays. The x array contains the points’ x-coordinates, and the y array contains their y-
coordinates. The coordinates in the two arrays are matched according to their subscripts; that
is, the elements with subscripts of 1 within both arrays are interpreted as the coordinates of
a single point, as are the elements with subscripts of 2, and so on. Thus, the x and y arrays
must have the same upper and lower bounds, or an error will be generated.
The value of style determines the line style that will be used to draw the linear fit. The
allowable values for style are summarized in the following table:

Available Line Styles
Value of lstyle Resulting Line

0 No line (display points only)
1 Solid line
2 Dashed line
3 Dotted line
4 Dash-dotted line

The value of color$ determines the color that will be used to draw the linear fit. It
generally consists of a single color name (in any combination of uppercase or lowercase
letters). The valid color names are:

RED MAGENTA YELLOW
GREEN BLUE CYAN
BROWN WHITE BLACK

BACKGROUND
Note: the color “BACKGROUND” refers to the current background color.
The value of color$ may also contain a color number instead of a color name, allowing you
to access any of the colors supported by the current computer system.
Note that the ADDLSGRAPH subroutine assumes that a graph currently exists which has
been created by an invocation of one of the various graphing subroutines. The
ADDLSGRAPH subroutine simply adds the line representing the specified data points to
the existing graph; it does not rescale the graph or redraw the labels or title. If you attempt
to invoke the ADDLSGRAPH subroutine when a suitable graph has not already been
displayed, an error will be generated.

Example: The following program, SGLSquar.TRU, can be found in the directory TBDEMOS:
!  SGLSquar   Add a least-squares line to data points.

!  Data taken from “The Shortwave Propagation Handbook” (2nd ed)
!  by George Jacobs and Theodore J. Cohen.  Page 111.

LIBRARY “..\TBLibs\SGLib.trc”

DIM x(120), y(120)

MAT READ x, y                     ! Data later

CALL SetYscale (70, 170)

CALL SetText (“Sunspots vs. Solar Flux”, “Daily Sunspot Number”,
“Daily Solar Flux”)
CALL DataGraph (x, y, 6, 0, “red green yellow”)
CALL AddLSgraph (x, y, 1, “red”)

475Graphics Libraries



DATA  16,  17,   5,   4,  18,  19,  21,  24,  22,  25
DATA  28,  30,  32,  33,  31,  35,  21,  25,  26,  30
DATA  28,  31,  37,  37,  39,  38,  34,  25,  40,  41
DATA  43,  44,  42,  45,  47,  48,  50,  50,  52,  56
DATA  57,  59,  46,  42,  41,  45,  48,  52,  44,  45
DATA  49,  55,  58,  59,  53,  55,  55,  59,  57,  65
DATA  64,  61,  63,  64,  66,  65,  67,  69,  71,  76
DATA  75,  81,  80,  80,  81,  82,  87,  90,  84,  84
DATA  64,  65,  78,  78,  73,  80,  77,  74,  70,  70
DATA  61,  63,  73,  74,  73,  77,  79,  78,  79,  63
DATA  81,  94,  97,  93,  93,  86,  79,  98,  93, 116
DATA 116, 115, 116, 104, 127, 125, 130, 131, 123, 139

DATA  81,  84,  84,  88,  89,  87,  90,  89,  87,  87
DATA  85,  82,  91,  90,  87,  85,  96,  95,  95,  99
DATA  93,  94,  95,  98,  96, 103, 105, 111, 100,  94
DATA  99,  97,  97,  94,  97,  98, 100,  95,  97, 102
DATA 104, 104, 104, 105, 107, 109, 108, 108, 112, 115
DATA 115, 115, 116, 117, 120, 119, 127, 125, 133, 103
DATA 106, 110, 108, 111, 108, 107, 108, 107, 108, 105
DATA 110, 102, 107, 108, 108, 106, 110, 114, 118, 119
DATA 116, 115, 119, 118, 116, 114, 115, 114, 121, 122
DATA 126, 127, 125, 128, 131, 126, 127, 131, 130, 133
DATA 131, 129, 131, 123, 135, 138, 140, 144, 146, 148
DATA 158, 157, 156, 157, 154, 159, 159, 163, 162, 166

GET KEY key

END

produces a graph with a least-squares linear fit superimposed over it.
Exceptions: None
See also: SETLS, ASKLS, DATAGRAPH, ADDDATAGRAPH, MANYDATAGRAPH

ASKANGLE Subroutine
Library: SGLIB.TRC
Syntax: CALL ASKANGLE (strex)
Usage: CALL ASKANGLE (measure$)

Summary: Reports the manner in which subsequent polar graphs drawn by the various data and function
plotting subroutines will interpret angle measurements.

Details: The ASKANGLE subroutine is used to report the manner in which subsequent data and
function polar plots produced by the DATAGRAPH, ADDDATAGRAPH,
MANYDATAGRAPH, FGRAPH, ADDFGRAPH, and MANYFGRAPH subroutines will
interpret angle measurements.
If the value of measure$ is returned equal to “DEG” these subroutines will interpret angular
coordinates for polar graphs as degrees. If the value of measure$ is returned equal to “RAD”
these subroutines will interpret angular coordinates for polar graphs as radians.
Note that the ASKANGLE subroutine only reports the interpretation of angular coordinates
by polar graphs. Use the ASKGRAPHTYPE subroutine to report whether or not subsequent
graphs will be drawn as polar graphs.
You can use the SETANGLE subroutine to control the manner in which the next data or
function polar plot will interpret angular coordinates.

Example: None
Exceptions: None
See also: SETANGLE, SETGRAPHTYPE, DATAGRAPH, ADDDATAGRAPH,

MANYDATAGRAPH, FGRAPH, ADDFGRAPH, MANYFGRAPH

476 True BASIC Language System



ASKBARTYPE Subroutine
Library: BGLIB.TRC
Syntax: CALL ASKBARTYPE (strvar)
Usage: CALL ASKBARTYPE (type$)

Summary: Reports the arrangement of the bars within each group of subsequently drawn multiple bar
chart or histogram.

Details: The ASKBARTYPE subroutine is used to report the arrangement of the bars within each
group of a bar chart or histogram that will produced by a subsequent invocation of the
MULTIBAR or MULTIHIST subroutine.
Both the MULTIBAR and MULTIHIST subroutines draw multiple bar-based graphs in a single
frame. In such a graph, bars associated with a particular unit are grouped together.
The ASKBARTYPE subroutine allows you to report how the bars in each group will be
arranged by returning one of the following values in type$:

Types of Bar Groupings
Type$ value Description
“SIDE” Bars arranged side by side with space between them
“STACK” Bars stacked one above the other
“OVER” Bars arranged side by side but overlapped slightly

By default, the bar type is set to a value of “SIDE”. You can use the SETBARTYPE
subroutine to change the current bar type setting.

Example: None
Exceptions: None
See also: SETBARTYPE, MULTIBAR, MULTIHIST

ASKGRAIN Subroutine
Library: SGLIB.TRC
Syntax: CALL ASKGRAIN (numvar)
Usage: CALL ASKGRAIN (grain)

Summary: Reports the grain with which subsequent invocations of the various function plotting
subroutines will draw the line graph.

Details: The ASKGRAIN subroutine reports the grain with which subsequent invocations of the
FGRAPH, ADDFGRAPH, and MANYFGRAPH subroutines will draw the line
representing the function.
These subroutines actually graph the curve of the function which they are plotting as a
series of line segments. The grain controls the number of line segments used to form each
graphed curve. The higher the value of the grain, the more line segments are used and the
smoother the resulting curve appears. However, higher grains also mean more work for the
computer, and this means that each curve takes longer to draw.
By default, the FGRAPH, ADDFGRAPH, and MANYFGRAPH subroutines use a grain
value of 64, which means that each line graph is composed of 64 individual line segments.
This value strikes a generally acceptable balance of smoothness and speed, but this value
can be changed using the SETGRAIN subroutine.

Example: None
Exceptions: None
See also: SETGRAIN, FGRAPH, ADDFGRAPH, MANYFGRAPH

477Graphics Libraries



ASKGRAPHTYPE Subroutine
Library: SGLIB.TRC
Syntax: CALL ASKGRAPHTYPE (strvar)
Usage: CALL ASKGRAPHTYPE (type$)

Summary: Reports the type of graph that will be drawn by subsequent data and function plotting
subroutines.

Details: The ASKGRAPHTYPE subroutine is used to report the type of graph that will be produced for
subsequent data and function plots produced by the DATAGRAPH, ADDDATAGRAPH,
MANYDATAGRAPH, FGRAPH, ADDFGRAPH, and MANYFGRAPH subroutines.
The type of subsequent graphs is reported as the value of type$. The possible values of
type$ are:

Types of Graphs
Type$ value Description

“XY” Normal graph
“LOGX” Semi-logarithmic graph with x-axis logarithmically scaled
“LOGY” Semi-logarithmic graph with y-axis logarithmically scaled
“LOGXY” Logarithmic graph with both x- and y-axes logarithmically scaled
“POLAR” Polar graph

You can use the SETGRAPHTYPE subroutine to control the type of graph that will be used
for the next data or function plot.

Example: None
Exceptions: None
See also: SETGRAPHTYPE, DATAGRAPH, ADDDATAGRAPH, MANYDATAGRAPH,

FGRAPH, ADDFGRAPH, MANYFGRAPH

ASKGRID Subroutine
Library: BGLIB.TRC or SGLIB.TRC
Syntax: CALL ASKGRID (strvar)
Usage: CALL ASKGRID (style$)

Summary: Reports the presence, direction, and type of the grid that will be used in subsequently drawn
charts and graphs.

Details: The ASKGRID subroutine is used to report on the presence, direction, and type of the grid
that will be drawn within the frame of graphs or charts produced by subsequent invocations
of the BARCHART, MULTIBAR, HISTOGRAM, MULTIHIST, IBEAM, FGRAPH,
MANYFGRAPH, DATAGRAPH, MANYDATAGRAPH subroutines.
The ASKGRID subroutine reports the presence and direction of the grid lines by returning
one of the following values in style$:

Available Grid Directions
Style$ value Description

“” No grid lines
“H” Horizontal grid lines only
“V” Vertical grid lines only
“HV” Both horizontal and vertical grid lines

The returned value of style$ may also include instructions that indicate the type of grid
lines that will be drawn. These instructions take the form of special characters appended to
the letter (or letters) in the returned value of style$. If no such modifiers are present, grid
lines will be drawn as solid lines. The following modifiers are possible:

478 True BASIC Language System



Available Grid Type Modifiers
Modifier Description

- Dashed grid lines
. Dotted grid lines
-. Dash-dotted grid lines

For example, a value of “H-.V”would indicate that dash-dotted grid lines will be used in the
horizontal direction and solid grid lines will be used in the vertical direction.
By default, the grid lines are turned off. You can use the SETGRID subroutine to change the
current grid setting.

Example: None
Exceptions: None
See also: SETGRID, BARCHART, MULTIBAR, HISTOGRAM, MULTIHIST, IBEAM,

FGRAPH, MANYFGRAPH, DATAGRAPH, MANYDATAGRAPH

ASKHLABEL Subroutine
Library: BGLIB.TRC or SGLIB.TRC
Syntax: CALL ASKHLABEL (strvar)
Usage: CALL ASKHLABEL (hlabel$)

Summary: Reports the value of the horizontal label which will be displayed for subsequently drawn
charts and graphs.

Details: The ASKHLABEL subroutine is used to report the value of the horizontal label that will be
used to label the frame of graphs or charts drawn by subsequent invocations of the
BARCHART, MULTIBAR, HISTOGRAM, MULTIHIST, IBEAM, FGRAPH,
MANYFGRAPH, DATAGRAPH, and MANYDATAGRAPH subroutines.
The ASKHLABEL subroutine returns the value of the horizontal label as hlabel$.
You may report the current values for the title, the horizontal label, and the vertical label
simultaneously using the ASKTEXT subroutine. Use the ASKVLABEL and ASKTITLE
subroutines to report the values of the vertical label and the title, respectively.
You may use the SETHLABEL subroutine to set the current value of the horizontal label.

Example: None
Exceptions: None
See also: SETHLABEL, ASKTEXT, ASKVLABEL, ASKTITLE, BARCHART, MULTIBAR,

HISTOGRAM, MULTIHIST, IBEAM, PIECHART, FGRAPH, MANYFGRAPH,
DATAGRAPH, MANYDATAGRAPH

ASKLAYOUT Subroutine
Library: BGLIB.TRC
Syntax: CALL ASKLAYOUT (strvar)
Usage: CALL ASKLAYOUT (direction$)

Summary: Reports the direction of the bars within subsequently drawn bar charts and histograms.
Details: The ASKLAYOUT subroutine is used to report the direction of the bars within each bar chart

or histogram produced by a subsequent invocation of the MULTIBAR or MULTIHIST
subroutine.
The ASKLAYOUT subroutine allows you to report the direction in which the bars will be
drawn by returning one of the following values in direction$:

479Graphics Libraries



Types of Bar Layouts
Type$ value Description

“HORIZONTAL” Bars oriented horizontally
“VERTICAL” Bars oriented vertically

By default, the bar direction is set to a value of “VERTICAL”. You can use the
SETLAYOUT subroutine to change the current bar layout setting.

Example: None
Exceptions: None
See also: SETLAYOUT, BARCHART, MULTIBAR, HISTOGRAM, MULTIHIST

ASKLS Subroutine
Library: SGLIB.TRC
Syntax: CALL ASKLS (numvar)
Usage: CALL ASKLS (flag)

Summary: Reports whether least-squares linear fits will be drawn automatically for subsequent data
plots.

Details: The ASKLS subroutine is used to report whether or not least-squares linear fits will be drawn
automatically for subsequent data plots produced by the DATAGRAPH,
ADDDATAGRAPH, and MANYDATAGRAPH subroutines.
If the ASKLS subroutine returns flag with a value of 1, subsequent calls to the
DATAGRAPH, ADDDATAGRAPH, and MANYDATAGRAPH subroutines will
automatically display the graph’s least-squares linear fit. If it returns flagwith a value of 0,
they won’t.
You can use the SETLS subroutine to control whether least-squares linear fitting is currently
active or inactive.

Example: None
Exceptions: None
See also: SETLS, ADDLSGRAPH, DATAGRAPH, ADDDATAGRAPH, MANYDATAGRAPH

ASKTEXT Subroutine
Library: BGLIB.TRC or SGLIB.TRC
Syntax: CALL ASKTEXT (strvar, strvar, strvar)
Usage: CALL ASKTEXT (title$, hlabel$, vlabel$)

Summary: Reports the values of the title, horizontal label, and vertical label that will be displayed for
subsequently drawn charts and graphs.

Details: The ASKTEXT subroutine is used to report the values of the title, horizontal label, and vertical
label that will be used to label the frame of graphs or charts drawn by subsequent invocations of
the BARCHART, MULTIBAR, HISTOGRAM, MULTIHIST, IBEAM, FGRAPH,
MANYFGRAPH, DATAGRAPH, and MANYDATAGRAPH subroutines. (These values also
apply to the PIECHART subroutine, but only the value of the title is used.)
The ASKTEXT subroutine returns the value of the title as title$, the value of the
horizontal label as hlabel$, and the value of the vertical label as vlabel$.
You may report the value of the title, the horizontal label, or the vertical label individually
using the ASKTITLE, ASKHLABEL, or ASKVLABEL subroutines, respectively.
You may use the SETTEXT subroutine to set the current values of the title, the horizontal
label, and the vertical label.

Example: None
Exceptions: None

480 True BASIC Language System



See also: SETTEXT, ASKTITLE, ASKHLABEL, ASKVLABEL, BARCHART, MULTIBAR,
HISTOGRAM, MULTIHIST, IBEAM, PIECHART, FGRAPH, MANYFGRAPH,
DATAGRAPH, MANYDATAGRAPH

ASKTITLE Subroutine
Library: BGLIB.TRC or SGLIB.TRC
Syntax: CALL ASKTITLE (strvar)
Usage: CALL ASKTITLE (title$)

Summary: Reports the value of the title which will be displayed for subsequently drawn charts and
graphs.

Details: The ASKTITLE subroutine is used to report the value of the title that will be used to label the
frame of graphs or charts drawn by subsequent invocations of the BARCHART,
MULTIBAR, HISTOGRAM, MULTIHIST, IBEAM, FGRAPH, MANYFGRAPH,
DATAGRAPH, MANYDATAGRAPH, and PIECHART subroutines.
The ASKTITLE subroutine returns the value of the title as title$.
You may report the current values for the title, the horizontal label, and the vertical label
simultaneously using the ASKTEXT subroutine. Use the ASKHLABEL and ASKVLABEL
subroutines to report the values of the horizontal label and the vertical label, respectively.
You may use the SETTITLE subroutine to set the current value of the title.

Example: None
Exceptions: None
See also: SETTITLE, ASKTEXT, ASKHLABEL, ASKVLABEL, BARCHART, MULTIBAR,

HISTOGRAM, MULTIHIST, IBEAM, PIECHART, FGRAPH, MANYFGRAPH,
DATAGRAPH, MANYDATAGRAPH

ASKVLABEL Subroutine
Library: BGLIB.TRC or SGLIB.TRC
Syntax: CALL ASKVLABEL (strvar)
Usage: CALL ASKVLABEL (vlabel$)

Summary: Reports the value of the vertical label which will be displayed for subsequently drawn charts
and graphs.

Details: The ASKVLABEL subroutine is used to report the value of the vertical label that will be used
to label the frame of graphs or charts drawn by subsequent invocations of the BARCHART,
MULTIBAR, HISTOGRAM, MULTIHIST, IBEAM, FGRAPH, MANYFGRAPH,
DATAGRAPH, and MANYDATAGRAPH subroutines.
The ASKVLABEL subroutine returns the value of the vertical label as vlabel$.
You may report the current values for the title, the horizontal label, and the vertical label
simultaneously using the ASKTEXT subroutine. Use the ASKHLABEL and ASKTITLE
subroutines to report the values of the horizontal label and the title, respectively.
You may use the SETVLABEL subroutine to set the current value of the vertical label.

Example: None
Exceptions: None
See also: SETVLABEL, ASKTEXT, ASKHLABEL, ASKTITLE, BARCHART, MULTIBAR,

HISTOGRAM, MULTIHIST, IBEAM, PIECHART, FGRAPH, MANYFGRAPH,
DATAGRAPH, MANYDATAGRAPH

481Graphics Libraries



BALANCEBARS Subroutine
Library: BGLIB.TRC
Syntax: CALL BALANCEBARS (numarrarg, numarrarg, strarrarg, strarrarg, strex)

strarrarg:: strarr
strarr bowlegs

numarrarg:: numarr
numarr bowlegs

Usage: CALL BARCHART (d1(,), d2(,), units$(), legends$(), colors$)

Summary: Draws a balanced bar chart, setting off d1(,) values on one side of the axis versus d2(,) values
on the other.

Details: The BALANCEBARS subroutine draws a balanced bar chart in the current logical window,
setting off d1(,) values on one side of the axis versus d2(,) values on the other. This is not a
particularly common kind of bar chart, but is useful for comparing income versus expenses,
etc.
Simply put, it draws a multi-bar chart of d1(,) on the top or right side of the axis, and the same
style chart of d2(,) on the bottom or left side of the axis. Neither array may contain any
negative values.
The data arrays d1 and d2 are as in the MULTIBAR subroutine, and the units$ and legends$
arrays label both sets of data.
The units$ array must contain the same number of items as the data array. Each element
of the units$ array will be used as a label for the bar associated with the corresponding
element of the data array.
The value of colors$ determines the color scheme that will be used to draw the graph. It
generally consists of at least three color names (in any combination of uppercase or lowercase
letters) separated by spaces. The valid color names are:

RED MAGENTA YELLOW
GREEN BLUE CYAN
BROWN WHITE BLACK

BACKGROUND
The value of colors$ may also contain color numbers instead of color names, allowing you
to access any of the colors supported by the current computer system.
The first color specified by the value of colors$will be used for the graph’s title. The second
color will be used for the graph’s frame, including the horizontal and vertical labels. And the
third color will be used for the graph’s data. 
If colors$ contains four colors, the third color will be used for drawing bars representing
positive values, and the fourth color will be used for drawing bars representing negative
values. If colors$ contains more than four colors, the extra colors will not be used. If
colors$ contains fewer than four colors, the last color specified will be used to fill out the
remaining colors. If the value of colors$ is the null string, then the current foreground color
is used for the entire graph.
By default, the BALANCEBARS subroutine draws the graph with the bars oriented
vertically. The y-axis is automatically scaled to fit the data, and the bars are evenly spaced
along the x-axis. The labels will appear beneath each bar.
You can change the graph’s orientation so that the bars are drawn horizontally by first
invoking the SETLAYOUT subroutine with the argument “HORIZONTAL”. In this situation,
the x-axis will be automatically scaled to fit the data, and the bars will be evenly spaced along
the y-axis. The labels will appear to the left of each bar.
The text used for the graph’s title and vertical and horizontal labels will be the values most
recently set by the SETTEXT subroutine.

482 True BASIC Language System



Example: The following program, BGBar3.TRU, can be found in the directory TBDEMOS:
!  BGBar3  Show a simple balanced bar chart of products,
!          with income/expense for last year and this year.

LIBRARY “..\TBLibs\BGLib.trc”

DIM income(4,2), expense(4,2), units$(4), legend$(2)

MAT READ income, expense, units$, legend$
DATA 43,34, 54,63, 33,12, 62,92   ! Incomes
DATA 39,24, 49,52, 17,13, 43,57   ! Expenses
DATA Faucets, Swings, Hoses, Flamingos      ! Units
DATA Last Year, This Year         ! Legend

CALL SetBarType (“over”)
CALL SetText (“Income/Expense: Last 2 Years”, “”, “Thousands”)
LET colors$ = “yellow yellow red green”
CALL BalanceBars (income, expense, units$, legend$, colors$)

GET KEY key

END

produces a bar chart representing quarterly profits.
Exceptions: 100 Graph’s title is too wide.

102 Graph’s horizontal label is too wide.
103 Graph’s vertical label is too long.
104 Need more room for graph’s vertical marks.
105 Need more room for graph’s horizontal marks.
106 Need greater width for graph.
107 Need greater height for graph.
108 Vertical marks aren’t wide enough—use SetVMarkLen.
109 Horizontal marks aren’t wide enough—use SetHMarkLen.
111 Data and unit arrays don’t match for BarChart.
117 Can’t handle this graph range: low to high.
11008 No such color: color.

See also SETBARTYPE, SETTEXT

BARCHART Subroutine
Library: BGLIB.TRC
Syntax: CALL BARCHART (numarrarg, strarrarg, strex)

strarrarg:: strarr
strarr bowlegs

numarrarg:: numarr
numarr bowlegs

Usage: CALL BARCHART (data(), units$(), colors$)

Summary: Draws a simple bar chart of the specified data values, labeled with the specified units and
drawn in the specified color scheme.

Details: The BARCHART subroutine draws a bar chart in the current logical window.
The bar chart will contain one bar for each element of the data array, and the height of each
bar will be determined by the value of its corresponding element in the data array.
The units$ array must contain the same number of items as the data array. Each element
of the units$ array will be used as a label for the bar associated with the corresponding
element of the data array.
The value of colors$ determines the color scheme that will be used to draw the graph. It

483Graphics Libraries



generally consists of at least three color names (in any combination of uppercase or lowercase
letters) separated by spaces. The valid color names are:

RED MAGENTA YELLOW
GREEN BLUE CYAN
BROWN WHITE BLACK

BACKGROUND
The value of colors$ may also contain color numbers instead of color names, allowing you
to access any of the colors supported by the current computer system.
The first color specified by the value of colors$will be used for the graph’s title. The second
color will be used for the graph’s frame, including the horizontal and vertical labels. And the
third color will be used for the graph’s data. 
If colors$ contains four colors, the third color will be used for drawing bars representing
positive values, and the fourth color will be used for drawing bars representing negative
values. If colors$ contains more than four colors, the extra colors will not be used. If
colors$ contains fewer than four colors, the last color specified will be used to fill out the
remaining colors. If the value of colors$ is the null string, then the current foreground color
is used for the entire graph.
By default, the BARCHART subroutine draws the graph with the bars oriented vertically.
The y-axis is automatically scaled to fit the data, and the bars are evenly spaced along the x-
axis. The labels will appear beneath each bar.
You can change the graph’s orientation so that the bars are drawn horizontally by first
invoking the SETLAYOUT subroutine with the argument “HORIZONTAL”. In this situation,
the x-axis will be automatically scaled to fit the data, and the bars will be evenly spaced along
the y-axis. The labels will appear to the left of each bar.
The text used for the graph’s title and vertical and horizontal labels will be the values most
recently set by the SETTEXT subroutine.

Example: The following program, BGBar1.TRU, can be found in the directory TBDEMOS:
!  BGBar1   Draw a simple bar chart.

LIBRARY “..\TBLibs\BGLib.trc”

DIM units$(4), data(4)

MAT READ units$, data
DATA Q-1, Q-2, Q-3, Q-4
DATA 498, 322, 395, 430

CALL SetText (“Quarterly Profits”, “Quarter”, “Thousands”)
CALL BarChart (data, units$, “white cyan magenta”)

GET KEY key

END

produces a bar chart representing quarterly profits.
Exceptions: 100 Graph’s title is too wide.

102 Graph’s horizontal label is too wide.
103 Graph’s vertical label is too long.
104 Need more room for graph’s vertical marks.
105 Need more room for graph’s horizontal marks.
106 Need greater width for graph.
107 Need greater height for graph.
108 Vertical marks aren’t wide enough—use SetVMarkLen.
109 Horizontal marks aren’t wide enough—use SetHMarkLen.
111 Data and unit arrays don’t match for BarChart.
117 Can’t handle this graph range: low to high.

484 True BASIC Language System



11008 No such color: color.
See also: SETTEXT, SETLAYOUT, MULTIBAR, HISTOGRAM

DATAGRAPH Subroutine
Library: SGLIB.TRC
Syntax: CALL DATAGRAPH (numarrarg,, numarrarg, numex, numex, strex)

numarrarg:: numarr
numarr bowlegs

Usage: CALL DATAGRAPH (x(), y(), pstyle, lstyle, colors$)

Summary: Draws a simple line graph of a set of data points.
Details: The DATAGRAPH subroutine draws a line graph of the set of data points whose coordinates

are represented by the values of the x and y arrays.
The x array contains the points’ x-coordinates, and the y array contains their y-coordinates.
The coordinates in the two arrays are matched according to their subscripts; that is, the
elements with subscripts of 1 within both arrays are interpreted as the coordinates of a single
point, as are the elements with subscripts of 2, and so on. Thus, the x and y arrays must have
the same upper and lower bounds, or an error will be generated.
Both the x- and y-axes will be scaled automatically by the DATAGRAPH subroutine.
The value of pstyle determines the point style that will be used to draw the data points
which comprise the graph. The allowable values for pstyle are summarized in the following
table:

Available Point Styles
Value of pstyle Resulting Point

0 No point (display line only)
1 Dot
2 Plus sign
3 Asterisk
4 Circle
5 X
6 Box
7 Up triangle
8 Down triangle
9 Diamond
10 Solid Box
11 Solid up triangle
12 Solid down triangle
13 Solid diamond

The value of lstyle determines the line style that will be used to connect the data points
which comprise the graph. The allowable values for lstyle are summarized in the following
table:

Available Line Styles
Value of lstyle Resulting Line

0 No line (display points only)
1 Solid line
2 Dashed line
3 Dotted line
4 Dash-dotted line

The graph is actually composed of a series of line segments connecting the data points. You can
suppress the display of the data points by passing a value of 0 in pstyle, or you can suppress

485Graphics Libraries



the display of the connecting line segments by passing a value of 0 in lstyle.
Note that the DATAGRAPH subroutine draws and connects the points in the order in which
they are stored in the x and y arrays. If your points are not stored in left to right order, you
may wish to use the SORTPOINTS subroutine to order the points before passing them to the
DATAGRAPH subroutine.
The value of colors$ determines the color scheme that will be used to draw the graph. It
generally consists of three color names (in any combination of uppercase or lowercase letters)
separated by spaces. The valid color names are:

RED MAGENTA YELLOW
GREEN BLUE CYAN
BROWN WHITE BLACK

BACKGROUND
The value of colors$ may also contain color numbers instead of color names, allowing you
to access any of the colors supported by the current computer system.
The first color specified by the value of colors$ will be used for the graph’s title. The
second color will be used for the graph’s frame, including the horizontal and vertical labels.
And the third color will be used for the graph’s data. 
The text used for the graph’s title and vertical and horizontal labels will be the values most
recently set by the SETTEXT subroutine.

Example: The following program, SGData1.TRU, can be found in the directory TBDEMOS:
!  SGData1   Average fuel economy for all cars in USA.  Source: EPA.

LIBRARY “..\TBLibs\SGLib.trc”

DIM year(36), mpg(36)

MAT READ year, mpg

DATA 1940, 1945, 1950, 1951, 1952, 1953, 1954, 1955
DATA 1956, 1957, 1958, 1959, 1960, 1961, 1962, 1963, 1964, 1965
DATA 1966, 1967, 1968, 1969, 1970, 1971, 1972, 1973, 1974, 1975
DATA 1976, 1977, 1978, 1979, 1980, 1981, 1982, 1983
DATA 15.29,15.03,14.95,14.99,14.67,14.70,14.58,14.53
DATA 14.36,14.40,14.30,14.30,14.28,14.38,14.37,14.26,14.25,14.07
DATA 14.00,13.93,13.79,13.63,13.57,13.57,13.49,13.10,13.43,13.53
DATA 13.72,13.94,14.06,14.29,15.15,15.54,16.25,16.70

CALL SetText (“Fuel Economy - All Cars”, “”, “MPG”)
CALL DataGraph (year, mpg, 9, 1, “red green yellow”)

GET KEY key

END

produces a graph of the average fuel economy of all new cars produced in each year from
1940 through 1983.

Exceptions: 100 Graph’s title is too wide.
102 Graph’s horizontal label is too wide.
103 Graph’s vertical label is too long.
104 Need more room for graph’s vertical marks.
105 Need more room for graph’s horizontal marks.
106 Need greater width for graph.
107 Need greater height for graph.
108 Vertical marks aren’t wide enough—use SetVMarkLen.
109 Horizontal marks aren’t wide enough—use SetHMarkLen.
110 Data arrays have different bounds in DataGraph

486 True BASIC Language System



117 Can’t handle this graph range: low to high.
11008 No such color: color.

See also: SETTEXT, ADDDATAGRAPH, MANYDATAGRAPH, FGRAPH

FGRAPH Subroutine
Library: SGFUNC.TRC, SGLIB.TRC
Syntax: CALL FGRAPH (numex, numex, numex, strex)
Usage: CALL FGRAPH (startx, endx, style, colors$)

Summary: Draws a simple line graph of an externally defined function.
Details: The FGRAPH subroutine draws a line graph of the function F(x) over the domain startx

to endx.
The function F(x) must be defined external to your main program. That is, it must be defined
using a DEF statement or a DEF structure which appears after the END statement. The
function you define must be defined over the entire domain specified. If it is not, the FGRAPH
subroutine may generate an error or draw the graph incorrectly.
The y-axis will be scaled automatically by the FGRAPH subroutine.
The value of style determines the line style that will be used to connect the data points
which comprise the graph. The allowable values for style are summarized in the following
table:

Available Line Styles
Value of style Resulting Line

0 No line (display points only)
1 Solid line
2 Dashed line
3 Dotted line
4 Dash-dotted line

The graph is actually composed of a series of short line segments. You can control the number
of line segments used to display a graph with the SETGRAIN subroutine. Using more line
segments creates a smoother graph, but takes longer to draw.
The value of colors$ determines the color scheme that will be used to draw the graph. It
generally consists of three color names (in any combination of uppercase or lowercase letters)
separated by spaces. The valid color names are:

RED MAGENTA YELLOW
GREEN BLUE CYAN
BROWN WHITE BLACK

BACKGROUND
The value of colors$ may also contain color numbers instead of color names, allowing you
to access any of the colors supported by the current computer system.
The first color specified by the value of colors$will be used for the graph’s title. The second
color will be used for the graph’s frame, including the horizontal and vertical labels. And the
third color will be used for the graph’s data. 
The text used for the graph’s title and vertical and horizontal labels will be the values most
recently set by the SETTEXT subroutine.

Example: The following program, SGFunc1.TRU, can be found in the directory TBDEMOS:
!  SGFunc1   Graph the function “Sin(x*x)”.

LIBRARY “..\TBLibs\SGFunc.trc”, “..\TBLibs\SGLib.trc”

CALL SetText (“Sin(x*x)”, “X Values”, “Y Values”)
CALL Fgraph (-pi, pi, 2, “white white magenta”)

487Graphics Libraries



GET KEY key

END

DEF F(x) = Sin(x*x)

produces a graph of the function Sin(x2).
Exceptions: 100 Graph’s title is too wide.

102 Graph’s horizontal label is too wide.
103 Graph’s vertical label is too long.
104 Need more room for graph’s vertical marks.
105 Need more room for graph’s horizontal marks.
106 Need greater width for graph.
107 Need greater height for graph.
108 Vertical marks aren’t wide enough—use SetVMarkLen.
109 Horizontal marks aren’t wide enough—use SetHMarkLen.
117 Can’t handle this graph range: low to high.
11008 No such color: color.

See also: SETTEXT, SETGRAIN, ADDFGRAPH, MANYFGRAPH

HISTOGRAM Subroutine
Library: BGLIB.TRC
Syntax: CALL HISTOGRAM (numarrarg, strex)
numarrarg:: numarr

numarr bowlegs
Usage: CALL HISTOGRAM (data(), colors$)

Summary: Draws a simple histogram of the specified data values in the specified color scheme.
Details: The HISTOGRAM subroutine draws a simple histogram in the current logical window.

The histogram automatically “groups” similar values from the data array and draws one bar
per group. The height of each bar reflects the number of members in the associated group. 
For instance, if you use the HISTOGRAM subroutine to chart students’ grades, it might
group all those students with grades in the range 80 through 84 and draw a single bar to
represent this group of students. The bars will be labeled “75>”, “80>”, “85>”, and so forth. This
means that the first bar represents the group of students whose grades are greater than or
equal to 75 but less than 80. The second bar represents the group with grades greater than or
equal to 80 but less than 85, and so forth.
The value of colors$ determines the color scheme that will be used to draw the graph. It
generally consists of at least three color names (in any combination of uppercase or lowercase
letters) separated by spaces. The valid color names are:

RED MAGENTA YELLOW
GREEN BLUE CYAN
BROWN WHITE BLACK

BACKGROUND
The value of colors$ may also contain color numbers instead of color names, allowing you
to access any of the colors supported by the current computer system.
The first color specified by the value of colors$will be used for the graph’s title. The second
color will be used for the graph’s frame, including the horizontal and vertical labels. And the
third color will be used for the graph’s data. 
If colors$ contains more than three colors, the extra colors will not be used. If colors$
contains fewer than three colors, the last color specified will be used to fill out the remaining
colors. If the value of colors$ is the null string, then the current foreground color is used for
the entire graph.

488 True BASIC Language System



By default, the HISTOGRAM subroutine draws the graph with the bars oriented vertically.
The y-axis is automatically scaled to fit the data, and the bars are evenly spaced along the x-
axis. The labels will appear beneath each bar.
You can change the graph’s orientation so that the bars are drawn horizontally by first
invoking the SETLAYOUT subroutine with the argument “HORIZONTAL”. In this situation,
the x-axis will be automatically scaled to fit the data, and the bars will be evenly spaced along
the y-axis. The labels will appear to the left of each bar.
The text used for the graph’s title and vertical and horizontal labels will be the values most
recently set by the SETTEXT subroutine.

Example: The following program, BGHisto1.TRU, can be found in the directory TBDEMOS:
!  BGHisto1   Draw a simple histogram.

LIBRARY “..\TBLibs\BGLib.trc”

DIM data(30)

MAT READ data
DATA 65, 70, 93, 85, 83, 68, 77, 92, 83, 85
DATA 89, 72, 75, 81, 80, 84, 73, 79, 78, 84
DATA 80, 79, 72, 91, 85, 82, 79, 76, 74, 79

CALL SetText (“Final Grades”, “”, “# of Students”)
CALL Histogram (data, “white cyan magenta”)

GET KEY key

END

produces a histogram of student grades.
Exceptions: 100 Graph’s title is too wide.

102 Graph’s horizontal label is too wide.
103 Graph’s vertical label is too long.
104 Need more room for graph’s vertical marks.
105 Need more room for graph’s horizontal marks.
106 Need greater width for graph.
107 Need greater height for graph.
108 Vertical marks aren’t wide enough—use SetVMarkLen.
109 Horizontal marks aren’t wide enough—use SetHMarkLen.
111 Data and unit arrays don’t match for Histogram.
117 Can’t handle this graph range: low to high.
11008 No such color: color.

See also: SETTEXT, SETLAYOUT, BARCHART, MULTIHIST

IBEAM Subroutine
Library: BGLIB.TRC
Syntax: CALL IBEAM (numarrarg, numarrarg, strarrarg, strex)

strarrarg:: strarr
strarr bowlegs

numarrarg:: numarr
numarr bowlegs

Usage: CALL IBEAM (high(), low(), units$(), colors$)

Summary: Draws an “I-beam” chart of the specified data values, labeled with the specified units and
drawn in the specified color scheme.

489Graphics Libraries



Details: The IBEAM subroutine draws an “I-beam” chart in the current logical window.
The I-beam chart displays ranges of values and will contain one I-beam for each element of the
high array. The height and position of each I-beam will be determined by the difference
between corresponding elements of the high and low arrays. For this reason, the high and
low arrays must contain the same number of elements.
The units$ array must contain the same number of items as the high and low arrays. Each
element of the units$ array will be used as a label for the I-beam associated with the
corresponding elements of the high and low arrays.
The value of colors$ determines the color scheme that will be used to draw the graph. It
generally consists of at least three color names (in any combination of uppercase or lowercase
letters) separated by spaces. The valid color names are:

RED MAGENTA YELLOW
GREEN BLUE CYAN
BROWN WHITE BLACK

BACKGROUND
The value of colors$ may also contain color numbers instead of color names, allowing you
to access any of the colors supported by the current computer system.
The first color specified by the value of colors$will be used for the graph’s title. The second
color will be used for the graph’s frame, including the horizontal and vertical labels. And the
third color will be used for the graph’s data. 
If colors$ contains more than three colors, the extra colors will not be used. If colors$
contains fewer than three colors, the last color specified will be used to fill out the remaining
colors. If the value of colors$ is the null string, then the current foreground color is used for
the entire graph.
By default, the IBEAM subroutine draws the graph with the I-beams oriented vertically. The
y-axis is automatically scaled to fit the data, and the I-beams are evenly spaced along the x-
axis. The labels will appear beneath each I-beam.
You can change the graph’s orientation so that the I-beams are drawn horizontally by first
invoking the SETLAYOUT subroutine with the argument “HORIZONTAL”. In this situation,
the x-axis will be automatically scaled to fit the data, and the I-beams will be evenly spaced
along the y-axis. The labels will appear to the left of each I-beam.
The text used for the graph’s title and vertical and horizontal labels will be the values most
recently set by the SETTEXT subroutine.

Example: The following program, BGIBeam.TRU, can be found in the directory TBDEMOS:
!  BGIBeam   Show I-beam chart of stock values.

LIBRARY “..\TBLibs\BGLib.trc”

DIM low(5), high(5), units$(5)

MAT READ low, high, units$
DATA 33.1, 33.2, 34.1, 34.1, 33.1
DATA 34.5, 33.9, 36.2, 34.7, 33.9
DATA Mon, Tues, Wed, Thurs, Fri

CALL SetText (“Stock Values”, “Day”, “Price”)
CALL Ibeam (low, high, units$, “magenta white white”)

GET KEY key

END

produces an I-beam chart representing the daily ranges of a stock’s value over a one week
period.

Exceptions: 100 Graph’s title is too wide.

490 True BASIC Language System



102 Graph’s horizontal label is too wide.
103 Graph’s vertical label is too long.
104 Need more room for graph’s vertical marks.
105 Need more room for graph’s horizontal marks.
106 Need greater width for graph.
107 Need greater height for graph.
108 Vertical marks aren’t wide enough—use SetVMarkLen.
109 Horizontal marks aren’t wide enough—use SetHMarkLen.
111 Data and unit arrays don’t match for IBeam.
117 Can’t handle this graph range: low to high.
11008 No such color: color.

See also: SETTEXT, SETLAYOUT

MANYDATAGRAPH Subroutine
Library: SGLIB.TRC
Syntax: CALL MANYDATAGRAPH (numarrarg,, numarrarg, numex, strarrarg, strex)
strarrarg:: strarr

strarr bowlegs
numarrarg:: numarr

numarr bowlegs
Usage: CALL MANYDATAGRAPH (x(,), y(,), connect, legends$(), colors$)

Summary: Draws multiple line graphs of a set of data points.
Details: The MANYDATAGRAPH subroutine draws several line graphs within a single frame. Each

graph is based upon a set of data points whose coordinates are represented by the values of
corresponding rows of the x and y arrays. For example, the statement:
DIM x(3,15), y(3,15)

would create the x and y matrices for a graph with three lines, each composed of fifteen data
points.
Each row of the xmatrix contains the x-coordinates for the points of a single line graph, and the
corresponding row of the y matrix contains their y-coordinates. The coordinates in the separate
rows of the two matrices are matched according to their second subscripts, or column numbers;
that is, the elements with second subscripts of 1 within corresponding rows of both matrices are
interpreted as the coordinates of a single point, as are the elements with second subscripts of 2,
and so on. Thus, the x and y matrices must have the same upper and lower bounds in both
dimensions, or an error will be generated.
Both the x- and y-axes will be scaled automatically by the MANYDATAGRAPH subroutine.
Each graph will use a different point style. These point styles will be drawn in order from the
available point styles (with point styles 0 and 1 excepted). When the possible point styles are
exhausted, they will be reused from the beginning of the list. For an ordered list of the
available point styles, see the discussion of the DATAGRAPH subroutine.
If the value of connect is not equal to 0, the data points of each line graph will be connected
by a line segment.
Note that the MANYDATAGRAPH subroutine draws and connects the points in the order
in which they are stored in the x and y matrices. If your points are not stored in left to right
order, you may wish to use the SORTPOINTS2 subroutine to order the points before
passing them to the MANYDATAGRAPH subroutine.
The MANYDATAGRAPH subroutine creates a legend just below the graph’s title to assist
the user in identifying the various lines. Each label for the legend will be taken from the
corresponding element of the legends$ array. Thus, the number of rows in the x and y
arrays must be equal to the number of elements in the legends$ array.

491Graphics Libraries



If you would like to omit the legend entirely, then pass a legends$ array which contains no
elements.
The value of colors$ determines the color scheme that will be used to draw the graphs. It
generally consists of at least three color names (in any combination of uppercase or
lowercase letters) separated by spaces. The valid color names are:

RED MAGENTA YELLOW
GREEN BLUE CYAN
BROWN WHITE BLACK

BACKGROUND
The value of colors$ may also contain color numbers instead of color names, allowing you
to access any of the colors supported by the current computer system.
The first color specified by the value of colors$will be used for the graph’s title. The second
color will be used for the graph’s frame, including the horizontal and vertical labels. And the
remaining colors will be used for the graphs’ data.
If the number of graphs exceeds the number of colors provided for the graphs’ data, the
MANYDATAGRAPH subroutine uses line styles to help distinguish the lines of the graphs.
First, it draws solid lines in the colors specified. Then it switches to dashed, dotted, and finally
dash-dotted lines. Thus, if you graph five functions with the MANYFGRAPH subroutine
using the color scheme “red yellow green blue” you will get (in order): a solid green
line, a solid blue line, a dashed green line, a dashed blue line, and a dotted green line.
The text used for the graph’s title and vertical and horizontal labels will be the values most
recently set by the SETTEXT subroutine.

Example: The following program, SGData3.TRU, can be found in the directory TBDEMOS:
!  SGData3   Display multiple sets of data points.

LIBRARY “..\TBLibs\SGLib.trc”

DIM x(5,10), y(5,10), legends$(5)

MAT READ legends$
DATA A, B, C, D, E

FOR i = 1 to 5
FOR j = 1 to 10

LET x(i,j) = j
LET y(i,j) = (i*i*j) ^ 2

NEXT j
NEXT i

CALL SetText (“Multiple Sets of Data”, “Signal”, “Reflection”)
CALL SetGraphType (“logy”)
LET colors$ = “white white magenta cyan”
CALL ManyDataGraph (x, y, 1, legends$, colors$)

GET KEY key

END

produces a graph several related data sets.
Exceptions: 100 Graph’s title is too wide.

102 Graph’s horizontal label is too wide.
103 Graph’s vertical label is too long.
104 Need more room for graph’s vertical marks.
105 Need more room for graph’s horizontal marks.
106 Need greater width for graph.
107 Need greater height for graph.
108 Vertical marks aren’t wide enough—use SetVMarkLen.

492 True BASIC Language System



109 Horizontal marks aren’t wide enough—use SetHMarkLen.
110 Data arrays have different bounds in DataGraph
117 Can’t handle this graph range: low to high.
11008 No such color: color.

See also: SETTEXT, ADDDATAGRAPH, MANYDATAGRAPH, FGRAPH

MANYFGRAPH Subroutine
Library: SGFUNC.TRC, SGLIB.TRC
Syntax: CALL MANYFGRAPH (numex, numex, numex, strarr, strex)
Usage: CALL MANYFGRAPH (startx, endx, n, legends$(), colors$)

Summary: Draws multiple line graphs based upon an externally defined function.
Details: The MANYFGRAPH subroutine draws several line graphs within a single frame. All of the

functions drawn are based upon the definition of the function F(x) over the domain startx to
endx. The number of graphs which are to be drawn is indicated by the value of n.
The function F(x) must be defined external to your main program. That is, it must be defined
using a DEF statement or a DEF structure which appears after the END statement. The
functions you define must be defined over the entire domain specified. If they are not, the
MANYFGRAPH subroutine may generate an error or draw one or more of the graphs
incorrectly.
The MANYFGRAPH subroutine uses the public variable fnum to inform your defined function
F(x) which value to compute. The MANYFGRAPH subroutine sets the value of fnum to 1 when
plotting the first function, 2 when plotting the second function, and so on until the number of
functions specified by n have been plotted. Your defined function F(x) should contain a PUBLIC
statement listing fnum so that the MANYFGRAPH subroutine can communicate with it
properly. (See the following example for an illustration.)
The y-axis will be scaled automatically by the MANYFGRAPH subroutine.
The MANYFGRAPH subroutine creates a legend just below the graph’s title to assist the
user in identifying the various lines. Each label for the legend will be taken from the
corresponding element of the legends$ array. Thus, the value of n must be equal to the
number of elements in the legends$ array.
If you would like to omit the legend entirely, then pass a legends$ array which contains no
elements.
The value of colors$ determines the color scheme that will be used to draw the graphs. It
generally consists of at least three color names (in any combination of uppercase or lowercase
letters) separated by spaces. The valid color names are:

RED MAGENTA YELLOW
GREEN BLUE CYAN
BROWN WHITE BLACK

BACKGROUND
The value of colors$ may also contain color numbers instead of color names, allowing you
to access any of the colors supported by the current computer system.
The first color specified by the value of colors$ will be used for the graph’s title. The
second color will be used for the graph’s frame, including the horizontal and vertical labels.
And the remaining colors will be used for the graphs’ data.
If the number of graphs (represented by the value of n) exceeds the number of colors
provided for the graphs’ data, the MANYFGRAPH subroutine uses line styles to help
distinguish the lines of the graphs. First, it draws solid lines in the colors specified. Then it
switches to dashed, dotted, and finally dash-dotted lines. Thus, if you graph five functions
with the MANYFGRAPH subroutine using the color scheme “red yellow green
blue” you will get (in order): a solid green line, a solid blue line, a dashed green line, a
dashed blue line, and a dotted green line.

493Graphics Libraries



Each graph is actually composed of a series of short line segments. You can control the
number of line segments used to display the graphs with the SETGRAIN subroutine. Using
more line segments creates smoother graphs, but they take longer to draw.
The text used for the graph’s title and vertical and horizontal labels will be the values most
recently set by the SETTEXT subroutine.

Example: The following program, SGFunc3.TRU, can be found in the directory TBDEMOS:
!  SGFunc3   Graph many functions.

LIBRARY “..\TBLibs\SGFunc.trc”, “..\TBLibs\SGLib.trc”

DIM legend$(3)

MAT READ legend$
DATA #1, #2, #3

CALL SetText (“Various Waves”, “X Values”, “Y Values”)
LET colors$ = “white white cyan magenta white”
CALL ManyFgraph (-pi, 2*pi, 3, legend$, colors$)

GET KEY key

END

DEF F(x)
PUBLIC fnum
SELECT CASE fnum
CASE 1

LET F = Sin(x)
CASE 2

LET F = 1.5 * Cos(x*2)
CASE 3

LET F = .5 * Cos(x+pi/2)
END SELECT

END DEF

produces a single graph of three different functions. Notice the use of the public variable
fnum to define three distinct behaviors for the single function F(x).

Exceptions: 100 Graph’s title is too wide.
102 Graph’s horizontal label is too wide.
103 Graph’s vertical label is too long.
104 Need more room for graph’s vertical marks.
105 Need more room for graph’s horizontal marks.
106 Need greater width for graph.
107 Need greater height for graph.
108 Vertical marks aren’t wide enough—use SetVMarkLen.
109 Horizontal marks aren’t wide enough—use SetHMarkLen.
112 Data and legend arrays don’t match for ManyFGraph.
117 Can’t handle this graph range: low to high.
11008 No such color: color.

See also: SETTEXT, SETGRAIN, FGRAPH, ADDFGRAPH

494 True BASIC Language System



MULTIBAR Subroutine
Library: BGLIB.TRC
Syntax: CALL MULTIBAR (numarrarg, strarrarg, strarrarg, strex)

strarrarg:: strarr
strarr bowlegs

numarrarg:: numarr
numarr bowlegs

Usage: CALL MULTIBAR (data(), units$(), legends$(), colors$)

Summary: Draws a multi-bar chart of the specified data values, labeled with the specified units and
legend and drawn in the specified color scheme.

Details: The MULTIBAR subroutine draws a multi-bar chart in the current logical window. In a
multi-bar chart, each unit is represented by a cluster of bars. To produce simple bar charts
with only one bar per unit, use the BARCHART subroutine.
The multi-bar chart will contain one cluster of bars for each row of the data array, and each
cluster will contain one bar for each column of the data array. The height of each bar will be
determined by the value of the appropriate element in the data array.
For example, if the data array contains five rows and three columns, the multi-bar chart will
consist of five clusters, and each cluster will contain three bars.
The units$ array must contain the same number of items as the first dimension of the data
array. Each element of the units$ array will be used as a label for the cluster of bars
associated with the corresponding row of the data array.
The legends$ array generally must contain the same number of items as the second
dimension of the data array. The legends$ array will be used to add a legend to the graph
(positioned between the title and the graph itself) which will allow the user to identify the
individual bars within the clusters. Each element of the legends$ array provides the label
for the corresponding column of the data array. To suppress the appearance of such a legend,
pass a legends$ array which contains zero elements.
The value of colors$ determines the color scheme that will be used to draw the graph. It
generally consists of at least three color names (in any combination of uppercase or lowercase
letters) separated by spaces. The valid color names are:

RED MAGENTA YELLOW
GREEN BLUE CYAN
BROWN WHITE BLACK

BACKGROUND
The value of colors$ may also contain color numbers instead of color names, allowing you
to access any of the colors supported by the current computer system.
The first color specified by the value of colors$will be used for the graph’s title. The second
color will be used for the graph’s frame, including the horizontal and vertical labels and the
legend text. And the third color will be used for the graph’s data. 
If colors$ contains more than three colors, the third and following colors will be used in
repeating sequence for drawing the bars in each cluster. If colors$ contains fewer than
three colors, the last color specified will be used to fill out the remaining colors. If the value of
colors$ is the null string, then the current foreground color is used for the entire graph.
By default, the MULTIBAR subroutine draws the graph with the bars oriented vertically. The
y-axis is automatically scaled to fit the data, and the clusters are evenly spaced along the x-axis.
The labels stored in the units$ array will appear beneath each cluster.
You can change the graph’s orientation so that the bars are drawn horizontally by first
invoking the SETLAYOUT subroutine with the argument “HORIZONTAL”. In this situation,
the x-axis will be automatically scaled to fit the data, and the clusters will be evenly spaced
along the y-axis. The labels stored in the units$ array will appear to the left of each cluster.
By default, the MULTIBAR subroutine draws the bars in each cluster side-by-side; however,

495Graphics Libraries



they can also be drawn stacked or overlapped. Invoke the SETBARTYPE subroutine with an
appropriate argument prior to invoking the MULTIBAR subroutine in order to determine the
arrangement of the bars.
The text used for the graph’s title and vertical and horizontal labels will be the values most
recently set by the SETTEXT subroutine.

Example: The following program, BGBar2.TRU, can be found in the directory TBDEMOS:
!  BGBar2   Draw a simple multi-bar graph.

!  Last year’s sales in yellow; this year’s in green.

LIBRARY “..\TBLibs\BGLib.trc”

DIM data(4,2), units$(4), legend$(2)

MAT READ data, units$, legend$
DATA 103,106, 47,68, 112,115, 87,94
DATA Books, Software, Cards, Candy
DATA Last Year, This Year

CALL SetBarType (“side”)
CALL SetLayout (“h”)
CALL SetGrid (“v”)
CALL SetText (“Sales: Last Year and Current”,
“Thousands”,”Category”)

CALL MultiBar (data, units$, legend$, “red red yellow green”)

GET KEY key

END

produces a horizontal multi-bar chart representing a comparison of annual sales.
Exceptions: 100 Graph’s title is too wide.

101 Graph’s legend is too wide.
102 Graph’s horizontal label is too wide.
103 Graph’s vertical label is too long.
104 Need more room for graph’s vertical marks.
105 Need more room for graph’s horizontal marks.
106 Need greater width for graph.
107 Need greater height for graph.
108 Vertical marks aren’t wide enough—use SetVMarkLen.
109 Horizontal marks aren’t wide enough—use SetHMarkLen.
111 Data and unit arrays don’t match for MultiBar.
112 Data and legend arrays don’t match for MultiBar.
117 Can’t handle this graph range: low to high.
11008 No such color: color.

See also: SETTEXT, SETLAYOUT, SETBARTYPE, BARCHART, HISTOGRAM

MULTIHIST Subroutine
Library: BGLIB.TRC
Syntax: CALL MULTIHIST (numarrarg, strarrarg, strex)

strarrarg:: strarr
strarr bowlegs

numarrarg:: numarr
numarr bowlegs

Usage: CALL MULTIHIST (data(), legends$(), colors$)

496 True BASIC Language System



Summary: Draws multiple histograms of the specified data values in a single frame in the specified
color scheme.

Details: The MULTIHIST subroutine draws multiple histograms in the current logical window. All
histograms drawn by the MULTIHIST subroutine are overlaid in the same frame, with the
bars for similar data values forming “clusters.” To produce a simple histogram with only one
bar per unit, use the HISTOGRAM subroutine.
Each histogram automatically “groups” similar values from a single row of the data array
and draws one bar per group. Thus, each cluster will contain one bar for each row of the data
array. The height of each bar reflects the number of members in the associated group. 
For instance, if you use the HISTOGRAM subroutine to chart students’ grades for two
different classes, it might group all those students in the first class with grades in the range
80 through 84 and draw a single bar to represent this group of students. When the histogram
for the second class was compiled, a bar representing the number of students in that class with
grades in the range 80 through 84 would be added to the cluster containing the previous bar.
The resulting clusters will be labeled “75>”, “80>”, “85>”, and so forth. This means that the
first cluster will contain one bar representing the group of students in the first class whose
grades are greater than or equal to 75 but less than 80 and another bar representing students
from the second class whose grades fall in the same range. The second cluster will contain bars
representing the groups with grades greater than or equal to 80 but less than 85, and so forth.
The legends$ array generally must contain the same number of items as the second
dimension of the data array. The legends$ array will be used to add a legend to the graph
(positioned between the title and the graph itself) which will allow the user to identify the
individual bars within the clusters. Each element of the legends$ array provides a label for
one of the histograms produced from the data array. To suppress the appearance of such a
legend, pass a legends$ array which contains zero elements.
The value of colors$ determines the color scheme that will be used to draw the graph. It
generally consists of at least three color names (in any combination of uppercase or lowercase
letters) separated by spaces. The valid color names are:

RED MAGENTA YELLOW
GREEN BLUE CYAN
BROWN WHITE BLACK

BACKGROUND
The value of colors$ may also contain color numbers instead of color names, allowing you
to access any of the colors supported by the current computer system.
The first color specified by the value of colors$will be used for the graph’s title. The second
color will be used for the graph’s frame, including the horizontal and vertical labels and the
legend text. And the third color will be used for the graph’s data. 
If colors$ contains more than three colors, the third and following colors will be used in
repeating sequence for drawing the bars in each cluster. If colors$ contains fewer than
three colors, the last color specified will be used to fill out the remaining colors. If the value of
colors$ is the null string, then the current foreground color is used for the entire graph.
By default, the MULTIHIST subroutine draws the graph with the bars oriented vertically.
The y-axis is automatically scaled to fit the data, and the clusters are evenly spaced along the
x-axis. The cluster labels will appear beneath each cluster.
You can change the graph’s orientation so that the bars are drawn horizontally by first
invoking the SETLAYOUT subroutine with the argument “HORIZONTAL”. In this situation,
the x-axis will be automatically scaled to fit the data, and the clusters will be evenly spaced
along the y-axis. The cluster labels will appear to the left of each cluster.
By default, the MULTIHIST subroutine draws the bars in each cluster side-by-side; however,
they can also be drawn stacked or overlapped. Invoke the SETBARTYPE subroutine with an
appropriate argument prior to invoking the MULTIHIST subroutine in order to determine
the arrangement of the bars.

497Graphics Libraries



The text used for the graph’s title and vertical and horizontal labels will be the values most
recently set by the SETTEXT subroutine.

Example: The following program, BGHisto2.TRU, can be found in the directory TBDEMOS:
!  BGHisto2   Draw a multiple histogram.

LIBRARY “..\TBLibs\BGLib.trc”

DIM data(2,30), legend$(2)

MAT READ data, legend$
DATA 65, 70, 93, 85, 83, 68, 77, 92, 83, 85
DATA 89, 72, 75, 81, 80, 84, 73, 79, 78, 84
DATA 80, 79, 72, 91, 85, 82, 79, 76, 74, 79
DATA 75, 60, 83, 75, 73, 88, 67, 82, 73, 75
DATA 79, 62, 65, 71, 70, 74, 63, 69, 68, 74
DATA 70, 69, 62, 81, 75, 72, 69, 66, 64, 69

DATA Day, Evening

CALL SetBarType (“over”)
CALL SetText (“Final Grades”, “”, “# of Students”)
CALL MultiHist (data, legend$, “white cyan magenta cyan”)

GET KEY key

END

produces a horizontal multi-bar chart representing a comparison of annual sales.
Exceptions: 100 Graph’s title is too wide.

101 Graph’s legend is too wide.
102 Graph’s horizontal label is too wide.
103 Graph’s vertical label is too long.
104 Need more room for graph’s vertical marks.
105 Need more room for graph’s horizontal marks.
106 Need greater width for graph.
107 Need greater height for graph.
108 Vertical marks aren’t wide enough—use SetVMarkLen.
109 Horizontal marks aren’t wide enough—use SetHMarkLen.
111 Data and unit arrays don’t match for MultiHist.
112 Data and legend arrays don’t match for MultiHist.
117 Can’t handle this graph range: low to high.
11008 No such color: color.

See also: SETTEXT, SETLAYOUT, SETBARTYPE, HISTOGRAM, BARCHART

PIECHART Subroutine
Library: BGLIB.TRC
Syntax: CALL PIECHART (numarrarg, strarrarg, strex, numex, numex)

strarrarg:: strarr
strarr bowlegs

numarrarg:: numarr
numarr bowlegs

Usage: CALL PIECHART (data(), units$(), colors$, wedge, percent)

Summary: Draws a pie chart of the specified data values, labeled with the specified units and drawn in
the specified color scheme.

Details: The PIECHART subroutine draws a pie chart in the current logical window.

498 True BASIC Language System



A pie chart is displayed as a circle divided into wedges. The pie chart will contain one wedge
for each element of the data array, and the proportion of the circle’s area allocated to each
wedge will be determined by the proportional relationship of the value of its corresponding
element in the data array to the sum of the elements of the data array.
The wedge associated with the first element of the data array is placed at the top of the pie,
and the remaining items of the data array are arranged in order clockwise around the
remaining portion of the pie.
The units$ array must contain the same number of items as the data array. Each element
of the units$ array will be used as a label for the wedge of the pie associated with the
corresponding element of the data array. Each label will be connected to its associated wedge
by a line. If an element of the units$ array has a value of the null string, the associated
wedge will have neither a label nor a connecting line.
The value of colors$ determines the color scheme that will be used to draw the graph. It
generally consists of at least four color names (in any combination of uppercase or lowercase
letters) separated by spaces. The valid color names are:

RED MAGENTA YELLOW
GREEN BLUE CYAN
BROWN WHITE BLACK

BACKGROUND
The value of colors$ may also contain color numbers instead of color names, allowing you
to access any of the colors supported by the current computer system.
The first color specified by the value of colors$will be used for the graph’s title. The second
color will be used for the graph’s frame. And the remaining colors will be used repeatedly for
the wedges of the pie.
If the value of wedge fall between the lower and upper bounds of the data array, inclusive,
the wedge of the pie associated with the element of data whose index is represented by the
value of wedgewill be exploded out of the pie. That is, it will be drawn slightly separated from
the rest of the pie in order to draw the user’s attention. If the value of wedge falls outside this
range, no wedge will be exploded out of the pie.
If the value of percent is non-zero, each wedge will be labeled not only with the
corresponding element of the units$ array, but also with the percentage of the total which it
represents. If the value of percent is 0, the wedges will be labeled only with the elements of
the units$ array. Note that the percentages are rounded before being displayed. Therefore,
it is not guaranteed that they will add up to exactly 100%.

Example: The following program, BGPie.TRU, can be found in the directory TBDEMOS:
!  BGPie   Draw a simple pie chart.

!  Highlight hammers, and show percentages.

LIBRARY “..\TBLibs\BGLib.trc”

DIM data(5), units$(5)

MAT READ data, units$
DATA 120, 34, 87, 65, 21
DATA Nails, Hammers, Saws, Pliers, Awls

CALL SetTitle (“Honest Boy (tm) Product Income”)
CALL PieChart (data, units$, “yellow green red”, 2, 1)

GET KEY key

END

produces a pie chart representing income by product, highlighting hammers and displaying
percentages with each label.

499Graphics Libraries



Exceptions: 100 Graph’s title is too wide.
106 Need greater width for graph.
107 Need greater height for graph.
111 Data and unit arrays don’t match for PieChart.
11008 No such color: color.

See also: SETTITLE

SETANGLE Subroutine
Library: SGLIB.TRC
Syntax: CALL SETANGLE (strex)
Usage: CALL SETANGLE (measure$)

Summary: Controls the manner in which subsequent polar graphs drawn by the various data and
function plotting subroutines will interpret angle measurements.

Details: The SETANGLE subroutine is used to control the manner in which subsequent data and
function polar plots produced by the DATAGRAPH, ADDDATAGRAPH,
MANYDATAGRAPH, FGRAPH, ADDFGRAPH, and MANYFGRAPH subroutines will
interpret angle measurements.
When these subroutines interpret angle measurements, they interpret them as radians by
default. However, by passing a value of “DEG” as measure$, you can instruct them to
interpret angles in degrees. Passing a value of “RAD” to the SETANGLE subroutine will reset
the default interpretation.
Note that the SETANGLE subroutine only controls the interpretation of angular coordinates
by polar graphs. Use the SETGRAPHTYPE subroutine to cause subsequent graphs to be
drawn as polar graphs.
You can use the ASKANGLE subroutine to determine the manner in which the next data or
function polar plot will interpret angular coordinates.

Example: None
Exceptions: None
See also: ASKANGLE, SETGRAPHTYPE, DATAGRAPH, ADDDATAGRAPH,

MANYDATAGRAPH, FGRAPH, ADDFGRAPH, MANYFGRAPH

SETBARTYPE Subroutine
Library: BGLIB.TRC
Syntax: CALL SETBARTYPE (strex)
Usage: CALL SETBARTYPE (type$)

Summary: Controls the arrangement of the bars within each group of a multiple bar chart or histogram.
Details: The SETBARTYPE subroutine is used to control the arrangement of the bars within each

group of a bar chart or histogram produced by a subsequent invocation of the MULTIBAR or
MULTIHIST subroutine.
Both the MULTIBAR and MULTIHIST subroutines draw multiple bar-based graphs in a
single frame. In such a graph, bars associated with a particular unit are grouped together.
The SETBARTYPE subroutine allows you to control how the bars in each group will be
arranged by passing one of the following values in type$:

Types of Bar Groupings
Type$ value Description
“SIDE” Bars arranged side by side with space between them
“STACK” Bars stacked one above the other
“OVER” Bars arranged side by side but overlapped slightly

The value of type$ may be specified in any combination of uppercase and lowercase letters.

500 True BASIC Language System



If the value of type$ does not represent one of these values, an error will be generated.
By default, the bar type is set to a value of “SIDE”. You can use the ASKBARTYPE
subroutine to report the current bar type setting.

Example: See the example programs in the desciptions of BALANCEBARS (BGBar3.TRU,) MULTIBAR
(BGBar2.TRU,) and MULTIHIST (BGHisto2.TRU) for examples of the use of this subroutine.

Exceptions: 130 No such barchart type: xxx
See also: ASKBARTYPE, MULTIBAR, MULTIHIST

SETGRAIN Subroutine
Library: SGLIB.TRC
Syntax: CALL SETGRAIN (numex)
Usage: CALL SETGRAIN (grain)

Summary: Controls the grain with which subsequent invocations of the various function plotting
subroutines will draw the line graph.

Details: The SETGRAIN subroutine controls the grain with which subsequent invocations of the
FGRAPH, ADDFGRAPH, and MANYFGRAPH subroutines will draw the line
representing the function.
These subroutines actually graph the curve of the function which they are plotting as a series
of line segments. The grain controls the number of line segments used to form each graphed
curve. The higher the value of the grain, the more line segments are used and the smoother
the resulting curve appears. However, higher grains also mean more work for the computer,
and this means that each curve takes longer to draw.
By default, the FGRAPH, ADDFGRAPH, and MANYFGRAPH subroutines use a grain
value of 64, which means that each line graph is composed of 64 individual line segments. This
value strikes a generally acceptable balance of smoothness and speed, but you can change this
value by passing the new grain value in the grain argument to the SETGRAIN subroutine.
You can use the ASKGRAIN subroutine to report the current grain value.

Example: The following program, SGGrain.TRU, can be found in the directory TBDEMOS:
!  SGGrain   Demonstrate SetGrain.

LIBRARY “..\TBLibs\SGFunc.trc”, “..\TBLibs\SGLib.trc”

OPEN #1: screen 0, .49, 0, 1

CALL SetGrain (10)
CALL SetTitle (“Grain = 10”)
CALL Fgraph (-pi, pi, 1, “white white magenta”)

OPEN #2: screen .5, 1, 0, 1

CALL SetGrain (100)
CALL SetTitle (“Grain = 100”)
CALL Fgraph (-pi, pi, 1, “white white magenta”)

GET KEY key

END

DEF F(x) = Sin(3*x)

demonstrates the use of the SETGRAIN subroutine by displaying two graphs of the same
function side by side — one with a grain of 10 and the other with a grain of 100.

Exceptions: None
See also: ASKGRAIN, FGRAPH, ADDFGRAPH, MANYFGRAPH

501Graphics Libraries



SETGRAPHTYPE Subroutine
Library: SGLIB.TRC
Syntax: CALL SETGRAPHTYPE (strex)
Usage: CALL SETGRAPHTYPE (type$)

Summary: Controls the type of graph that will be drawn by subsequent data and function plotting
subroutines.

Details: The SETGRAPHTYPE subroutine is used to control the type of graph that will be produced
for subsequent data and function plots produced by the DATAGRAPH, ADDDATAGRAPH,
MANYDATAGRAPH, FGRAPH, ADDFGRAPH, and MANYFGRAPH subroutines.
The type of subsequent graphs is determined by the value passed as type$. The possible
values of type$ are:

Types of Graphs
Type$ value Description

“XY” Normal graph
“LOGX” Semi-logarithmic graph with x-axis logarithmically scaled
“LOGY” Semi-logarithmic graph with y-axis logarithmically scaled
“LOGXY” Logarithmic graph with both x- and y-axes logarithmically scaled
“POLAR” Polar graph

Logarithmic and semi-logarithmic graphs look very similar to normal graphs, but one or both
of the axes is scaled logarithmically.
Polar graphs, however, look quite different from normal graphs in that they are circular. For
this reason, the horizontal and vertical labels are ignored for polar graphs; only the title is
shown.
When a graphing routine is used to draw a polar graph, what would normally be the x- and y-
coordinates are interpreted as r and theta (or distance and angle) coordinates, respectively.
Therefore, as you might expect, the function plotting subroutines expect to find an externally
defined function in the form r = F(theta).
Polar graphs interpret angle measures as radians by default, but you can change this
interpretation using the SETANGLE subroutine.
You can use the ASKGRAPHTYPE subroutine to determine the type of graph that will be
used for the next data or function plot.

Example: See the example program in the description of MANYDATAGRAPH (SGData3.TRU) for an
example of the use of this subroutine.

Exceptions: None
See also: ASKGRAPHTYPE, DATAGRAPH, ADDDATAGRAPH, MANYDATAGRAPH,

FGRAPH, ADDFGRAPH, MANYFGRAPH

SETGRID Subroutine
Library: BGLIB.TRC or SGLIB.TRC
Syntax: CALL SETGRID (strex)
Usage: CALL SETGRID (style$)

Summary: Controls the presence, direction, and type of the grid within subsequently drawn charts and
graphs.

Details: The SETGRID subroutine is used to control the presence, direction, and type of the grid
within the frame of graphs or charts drawn by subsequent invocations of the BARCHART,
MULTIBAR, HISTOGRAM, MULTIHIST, IBEAM, FGRAPH, MANYFGRAPH,
DATAGRAPH, MANYDATAGRAPH subroutines.
The SETGRID subroutine allows you to control the presence and direction of the grid lines by
passing one of the following values in style$:

502 True BASIC Language System



Available Grid Directions
Style$ value Description

“” No grid lines
“H” Horizontal grid lines only
“V” Vertical grid lines only
“HV” Both horizontal and vertical grid lines

The value of style$ may be specified in any combination of uppercase and lowercase
letters. In addition, the value of style$ may include instructions that indicate the type of
grid lines that you would like drawn. By default, grid lines are drawn as solid lines.
However, you can append one of the following modifiers to a letter in the value of style$ to
specify a different line type for grid lines traveling in that direction:

Available Grid Type Modifiers
Modifier Description

- Dashed grid lines
. Dotted grid lines
-. Dash-dotted grid lines

For example, passing a value of “H-.V” for style$would result in dash-dotted grid lines in
the horizontal direction and solid grid lines in the vertical direction.
If the value of type$ does not represent a valid value, however, an error will be generated.
By default, the grid lines are turned off. You can use the ASKGRID subroutine to report the
current  grid setting.

Example: See the example program in the description of MULTIBAR (BGBar2.TRU) for an example of
the use of this subroutine.

Exceptions: 113 No such SetGrid direction: xxx
See also: ASKGRID, BARCHART, MULTIBAR, HISTOGRAM, MULTIHIST, IBEAM,

FGRAPH, MANYFGRAPH, DATAGRAPH, MANYDATAGRAPH

SETHLABEL Subroutine
Library: BGLIB.TRC or SGLIB.TRC
Syntax: CALL SETHLABEL (strex)
Usage: CALL SETHLABEL (hlabel$)

Summary: Sets the value of the horizontal label which will be displayed for subsequently drawn charts
and graphs.

Details: The SETHLABEL subroutine is used to set the value of the horizontal label that will be used
to label the frame of graphs or charts drawn by subsequent invocations of the BARCHART,
MULTIBAR, HISTOGRAM, MULTIHIST, IBEAM, FGRAPH, MANYFGRAPH,
DATAGRAPH, and MANYDATAGRAPH subroutines.
The SETHLABEL subroutine expects the value of the horizontal label to be passed as
hlabel$. Passing a null string effectively eliminates the horizontal label.
If the value you set for the horizontal label exceeds the available room, the graphing
subroutine which draws the next graph will generate an error.
There is no default value for the horizontal label. Therefore, if you want it to appear, you will
need to specify its values before drawing the graph.
You may specify new values for the title, the horizontal label, and the vertical label simultaneously
using the SETTEXT subroutine. Use the SETVLABEL and SETTITLE subroutines to set the
values of the vertical label and the title, respectively.
You may use the ASKHLABEL subroutine to report the current value of the horizontal label.

Example: None

503Graphics Libraries



Exceptions: None
See also: ASKHLABEL, SETTEXT, SETVLABEL, SETTITLE, BARCHART, MULTIBAR,

HISTOGRAM, MULTIHIST, IBEAM, PIECHART, FGRAPH, MANYFGRAPH,
DATAGRAPH, MANYDATAGRAPH

SETLAYOUT Subroutine
Library: BGLIB.TRC
Syntax: CALL SETLAYOUT (strex)
Usage: CALL SETLAYOUT (direction$)

Summary: Controls the direction of the bars within subsequently drawn bar charts and histograms.
Details: The SETLAYOUT subroutine is used to control the direction of the bars within each bar chart

or histogram produced by a subsequent invocation of the MULTIBAR or MULTIHIST
subroutine.
The SETLAYOUT subroutine allows you to control the direction in which the bars will be
drawn by passing one of the following values in direction$:

Types of Bar Groupings
Direction$ value Description
“HORIZONTAL” Bars oriented horizontally
“VERTICAL” Bars oriented vertically

The value of type$ may be specified in any combination of uppercase and lowercase letters.
In addition, the value of type$ may be truncated to any number of letters. That is, values of
“H” and “V” will suffice. If the value of type$ does not represent a valid value, however, an
error will be generated.
By default, the bar direction is set to a value of “VERTICAL”. You can use the ASKLAYOUT
subroutine to report the current bar layout setting.

Example: See the example program in the description of MULTIBAR (BGBar2.TRU) for an example of
the use of this subroutine.

Exceptions: 131 No such barchart direction: xxx
See also: ASKLAYOUT, BARCHART, MULTIBAR, HISTOGRAM, MULTIHIST

SETLS Subroutine
Library: SGLIB.TRC
Syntax: CALL SETLS (numex)
Usage: CALL SETLS (flag)

Summary: Controls whether least-squares linear fits will be drawn automatically for subsequent data
plots.

Details: The SETLS subroutine is used to control whether or not least-squares linear fits will be drawn
automatically for subsequent data plots produced by the DATAGRAPH,
ADDDATAGRAPH, and MANYDATAGRAPH subroutines.
The least-squares linear fit of a data plot is the straight line which best fits the locations of the
data points. That is, the least-squares linear fit of a data plot is the straight line which
minimizes the vertical distance between itself and each of the data points which form the plot.
Such a line may be used to help predict where data points might lie in areas of the graph for
which data is unavailable.
By default, the DATAGRAPH, ADDDATAGRAPH, and MANYDATAGRAPH subroutines
draw the data plots without displaying the least-squares linear fit of the data points. However,
invoking the SETLS subroutine with the value of flag equal to 1 will instruct subsequent
invocations of these routines to add such a linear fit to each graph they draw. You may then turn
off this line fitting by invoking the SETLS subroutine again with the value of flag equal to 0.

504 True BASIC Language System



When the DATAGRAPH and ADDDATAGRAPH subroutines draw a linear fit, they draw
a solid line in the data color. The MANYDATAGRAPH subroutine draws each graph’s linear
fit in the same color and line style as the lines connecting that graph’s data points.
You can use the ASKLS subroutine to determine whether least-squares linear fitting is
currently active or inactive.

Example: None
Exceptions: None
See also: ASKLS, ADDLSGRAPH, DATAGRAPH, ADDDATAGRAPH, MANYDATAGRAPH

SETTEXT Subroutine
Library: BGLIB.TRC or SGLIB.TRC
Syntax: CALL SETTEXT (strex, strex, strex)
Usage: CALL SETTEXT (title$, hlabel$, vlabel$)

Summary: Sets the values of the title, horizontal label, and vertical label which will be displayed for
subsequently drawn charts and graphs.

Details: The SETTEXT subroutine is used to set the values of the title, horizontal label, and vertical label
that will be used to label the frame of graphs or charts drawn by subsequent invocations of the
BARCHART, MULTIBAR, HISTOGRAM, MULTIHIST, IBEAM, FGRAPH,
MANYFGRAPH, DATAGRAPH, and MANYDATAGRAPH subroutines. (These values also
apply to the PIECHART subroutine, but only the value of the title is used.)
The SETTEXT subroutine expects the value of the title to be passed as title$, the value of
the horizontal label to be passed as hlabel$, and the value of the vertical label to be passed
as vlabel$. Passing a null string for any of these values effectively eliminates that label.
If the values you set for one or more of these labels exceeds the available room, the graphing
subroutine which draws the next graph will generate an error.
There are no default values for the title, the horizontal label, or the vertical label. Therefore,
if you want any of them to appear, you will need to specify their values before drawing the
graph.
You may specify a new value for the title, the horizontal label, or the vertical label individually
using the SETTITLE, SETHLABEL, or SETVLABEL subroutines, respectively.
You may use the ASKTEXT subroutine to report the current values of the title, the horizontal
label, and the vertical label.

Example: See almost all the example programs described in this section for examples of the use of this
subroutine.

Exceptions: None
See also: ASKTEXT, SETTITLE, SETHLABEL, SETVLABEL, BARCHART, MULTIBAR,

HISTOGRAM, MULTIHIST, IBEAM, PIECHART, FGRAPH, MANYFGRAPH,
DATAGRAPH, MANYDATAGRAPH

SETTITLE Subroutine
Library: BGLIB.TRC or SGLIB.TRC
Syntax: CALL SETTITLE (strex)
Usage: CALL SETTITLE (title$)

Summary: Sets the value of the title which will be displayed for subsequently drawn charts and graphs.
Details: The SETTITLE subroutine is used to set the value of the title that will be used to label the

frame of graphs or charts drawn by subsequent invocations of the BARCHART,
MULTIBAR, HISTOGRAM, MULTIHIST, IBEAM, FGRAPH, MANYFGRAPH,
DATAGRAPH, MANYDATAGRAPH, and PIECHART subroutines.

505Graphics Libraries



The SETTITLE subroutine expects the value of the title to be passed as title$. Passing a
null string effectively eliminates the title.
If the value you set for the title exceeds the available room, the graphing subroutine which
draws the next graph will generate an error.
There is no default value for the title. Therefore, if you want it to appear, you will need to
specify its values before drawing the graph.
You may specify new values for the title, the horizontal label, and the vertical label
simultaneously using the SETTEXT subroutine. Use the SETHLABEL and SETVLABEL
subroutines to set the values of the horizontal label and the vertical label, respectively.
You may use the ASKTITLE subroutine to report the current value of the title.

Example: See the examples programs in the descriptions of SETGRAIN (SGGrain.TRU) and
SORTPOINTS (SGSortPt.TRU) for examples of the use of this subroutine.

Exceptions: None
See also: ASKTITLE, SETTEXT, SETHLABEL, SETVLABEL, BARCHART, MULTIBAR,

HISTOGRAM, MULTIHIST, IBEAM, PIECHART, FGRAPH, MANYFGRAPH,
DATAGRAPH, MANYDATAGRAPH

SETVLABEL Subroutine
Library: BGLIB.TRC or SGLIB.TRC
Syntax: CALL SETVLABEL (strex)
Usage: CALL SETVLABEL (vlabel$)

Summary: Sets the value of the vertical label which will be displayed for subsequently drawn charts and
graphs.

Details: The SETVLABEL subroutine is used to set the value of the vertical label that will be used to
label the frame of graphs or charts drawn by subsequent invocations of the BARCHART,
MULTIBAR, HISTOGRAM, MULTIHIST, IBEAM, FGRAPH, MANYFGRAPH,
DATAGRAPH, and MANYDATAGRAPH subroutines.
The SETVLABEL subroutine expects the value of the vertical label to be passed as vlabel$.
Passing a null string effectively eliminates the vertical label.
If the value you set for the vertical label exceeds the available room, the graphing subroutine
which draws the next graph will generate an error.
There is no default value for the vertical label. Therefore, if you want it to appear, you will need
to specify its values before drawing the graph.
You may specify new values for the title, the horizontal label, and the vertical label
simultaneously using the SETTEXT subroutine. Use the SETHLABEL and SETTITLE
subroutines to set the values of the horizontal label and the title, respectively.
You may use the ASKVLABEL subroutine to report the current value of the vertical label.

Example: None
Exceptions: None
See also: ASKVLABEL, SETTEXT, SETHLABEL, SETTITLE, BARCHART, MULTIBAR,

HISTOGRAM, MULTIHIST, IBEAM, PIECHART, FGRAPH, MANYFGRAPH,
DATAGRAPH, MANYDATAGRAPH

SETXSCALE Subroutine
Library: SGLIB.TRC
Syntax: CALL SETXSCALE (numex, numex)
Usage: CALL SETXSCALE (70, 170)

Summary: Turns off auto-scaling and sets the x-range for subsequent graphs.

506 True BASIC Language System



Details: The SETXSCALE subroutine is used to set the value of the x-scale for subsequent graphs. It
turns off auto-scaling. The actual x-range may be slightly different as this subroutine may
round to “good-looking” numbers.

Example: None.
Exceptions: None
See also: SETYSCALE

SETYSCALE Subroutine
Library: SGLIB.TRC
Syntax: CALL SETYSCALE (numex, numex)
Usage: CALL SETYSCALE (70, 170)

Summary: Turns off auto-scaling and sets the y-range for subsequent graphs.
Details: The SETYSCALE subroutine is used to set the value of the y-scale for subsequent graphs. It

turns off auto-scaling. The actual y-range may be slightly different as this subroutine may
round to “good-looking” numbers.

Example: See the example in the description of ADDLSGRAPH (SLSquar.TRU) for an example of the
use of this subroutine.

Exceptions: None
See also: ADDLSGRAPH, SETXSCALE

SORTPOINTS Subroutine
Library: SGLIB.TRC
Syntax: CALL SORTPOINTS (numarrarg, numarrarg)

numarrarg:: numarr
numarr bowlegs

Usage: CALL SORTPOINTS (x(), y())

Summary: Sorts the one-dimensional parallel arrays x and y into ascending order by the values of stored
in the x array.

Details: The SORTPOINTS subroutine sorts the parallel, one-dimensional arrays x and y into
ascending order by the values stored in the x array.
Parallel arrays are simply arrays in which elements with identical subscripts are related.
For instance, the x and y arrays are considered to be parallel if the first element of the x array
is related to the first element of the y array, the second to the second, and so forth for each
element in both arrays. When parallel arrays are sorted, the elements in both arrays are
rearranged in an identical manner so as to maintain these relationships.
The SORTPOINTS subroutine is useful for sorting the arrays of coordinates passed into the
DATAGRAPH and ADDDATAGRAPH subroutines, but it can be used to sort any pair of
one-dimensional parallel arrays.
To sort two-dimensional arrays in a similar fashion, use the SORTPOINTS2 subroutine. To
sort a single one-dimensional array, use the SORTN subroutine.

Example: The following program, SGSortPt.TRU, can be found in the directory TBDEMOS:
!  SGSortPt   Display unsorted vs. sorted data points.

LIBRARY “..\TBLibs\SGLib.trc”

DIM x(10), y(10)

FOR i = 1 to 10                   ! Get some unsorted data points
LET x(i) = rnd
LET y(i) = rnd

507Graphics Libraries



NEXT i

OPEN #1: screen 0, .49, 0, 1      ! Left: unsorted points
CALL SetTitle (“Unsorted”)
CALL DataGraph (x, y, 10, 3, “”)

OPEN #2: screen .5, 1, 0, 1       ! Right: sorted points
CALL SetTitle (“Sorted”)
CALL SortPoints (x, y)
CALL DataGraph (x, y, 10, 3, “”)

GET KEY key

END

demonstrates the usefulness of using the SORTPOINTS subroutine with the
DATAGRAPH subroutine.

Exceptions: None
See also: SORTPOINTS2, DATAGRAPH, ADDDATAGRAPH, SORTN

SORTPOINTS2 Subroutine
Library: SGLIB.TRC
Syntax: CALL SORTPOINTS2 (numarrarg, numarrarg)

numarrarg:: numarr
numarr bowlegs

Usage: CALL SORTPOINTS2 (x(,), y(,))

Summary: Sorts the parallel rows of the two-dimensional arrays x and y into ascending order by the
values of stored in rows of the x array.

Details: The SORTPOINTS2 subroutine sorts the elements of the parallel rows of the two-
dimensional arrays x and y into ascending order by the values stored in the rows of the x
array.
Parallel arrays are simply arrays in which elements with identical subscripts are related.
For instance, the x and y arrays are considered to be parallel if the first element of the x array
is related to the first element of the y array, the second to the second, and so forth for each
element in both arrays. When parallel arrays are sorted, the elements in both arrays are
rearranged in an identical manner so as to maintain these relationships.
The SORTPOINTS2 subroutine treats corresponding rows of the x and y arrays as
individually parallel one-dimensional arrays. That is, the elements of each pair of
corresponding rows are rearranged independently of the other rows.
The SORTPOINTS2 subroutine is useful for sorting the arrays of coordinates passed into the
MANYDATAGRAPH subroutine, but it can be used to sort any pair of two-dimensional
arrays with parallel rows.
To sort one-dimensional arrays in a similar fashion, use the SORTPOINTS subroutine. To
sort a single one-dimensional array, use the SORTN subroutine.

Example: None
Exceptions: None
See also: SORTPOINTS, MANYDATAGRAPH, SORTN

508 True BASIC Language System



CHAPTER

24
Calling C Routines in True BASIC

True BASIC is a powerful language, and can accomplish many things for you. However, you may
find on occasion that you would like to extend the language to do something that can’t easily or
quickly be done in True BASIC. You may wish to rewrite a routine to execute more quickly, or you
may wish to interact with the environment in a way that True BASIC does not support. With the
Gold Edition of True BASIC, you can write these routines in C, link the routines into your True
BASIC program, and call them using the processes outlined below.

There are two basic strategies used for linking and calling C routines in True BASIC: one for the
Macintosh, one for Windows and OS/2. Those of you familiar with using C or assembly routines in
older versions of the Macintosh will find the current strategy for Macintoshes similar to that used
in the older versions of True BASIC.

In the notes below, we assume that you are familiar with the appropriate C compilers and linkers.
If you are not, you will need to familiarize yourself with C in general, and the specific compilers and
linkers you will use before you will be able to get to much out of these notes. At the moment, we use
CodeWarrior for the Macintosh, Visual C/C++ 6.0 for Win32, and VisualAge C++ for OS/2. Other
compilers should work as well, though.

General notes:
1 Your C routine will be passed one parameter: a pointer to the list of pointers to the

parameters passed by your True BASIC program. This list of pointers contains a long
word with a pointer to the parameter, followed by a long word you can ignore, followed
by the next long word with a pointer to a parameter, followed by another long word you
can ignore, etc.

2 You need to know how many parameters there are and in what order they will be.

24-1



3 Note that the pointers are in the list in the reverse order from the calling sequence. Thus,
if you issue the statement CALL MyCRoutine(a,b$), the first parameter you find
on the list passed to the C routine is b$, followed by a.

4 Each parameter will be either a True BASIC string, a True BASIC number, or a True
BASIC array. We have included a file named tbcdefs.h with definitions of each of
these items. Note that the definitions are different for the Mac than for Windows or OS/2.
The fields all have the same names, but the difference in byte-ordering means the
definitions appear in different orders.

5 We have included a simple example on the diskette or CD for each platform.

6 Note that you don’t have to use C--any language that will let you create a CODE resource
for the Mac or a DLL for Windows or OS/2, and will let you access the pointer to the True
BASIC variables will do fine.

M Macintosh:
The Process:

1 Write your C routine. (See the The Rules below).

2 Compile and link it as a CODE resource with both Type and ResType of TRU2 and ResID
of 0. Give it an appropriate library name.

3 Run the Mac version of finaltouch over it.

4 Use a LIBRARY statement in your True BASIC source code to use the result.

The Rules:
1 Your routine should be of type int.

2 You will be limited in what you will be able to do in the C routine because it must fit in a
code resource. For example, you will probably be unable to use most of the routines in the
standard C runtime library. You will, however, be able to use Toolbox routines directly.

3 True BASIC uses 4-byte ints, 8-byte doubles, and 68K struct alignment. You’ll need to
follow the same standards.

Finaltouch:
When running finaltouch, you will be asked for the SUB or DEF statement that defines your
routine. Just type the SUB or DEF line that your routine would have if it were written in True
BASIC, complete with its list of arguments. Finaltouch then asks for the name of the file that
contains your C routine. Supply the name you gave it in item 2 of “The Process” above.

24-2 True BASIC Language System Guide



You’ll also need to know:
1 Remember that True BASIC for the Mac is a Fat binary--it will run on either PPC or 68K

machines. Your C routine, however, will be compiled and linked for one or the other. If
the user tries to run it on the wrong platform, it will crash. You can get around this by
creating two libraries, one for 68K and one for PPC. Link both of them into your True
BASIC program with LIBRARY statements. Then, use TC_GetSysInfo or
Object with OBJM_SYSINFO to get the value of the attribute ENV, passing in
“ISA” as the variable you’re looking for. If the result contains “PPC”, you are running
on PPC. Otherwise you’re running on 68K:

dim v(1)
let env$ = "ISA"
let v(1) = 0
call object(9,0,"ENV",env$,v)
if pos(env$,"PPC") > 0 then

call... ! PPC version
else

call... ! 68K version
end if

Sample C Routine:
A sample routine has been provided, finfo.c, which allows you to get and set the file type and
creator for a file.

W Windows and O OS/2:
The Process:

1 Write your C routine. (See the The Rules below).

2 Compile and link it as a DLL.

3 Run the Windows or OS/2 version of finaltouch over it. (Finaltouch is distributed
as  FTOUCH.EXE.)

4 Use a LIBRARY statement in your True BASIC source code to use the result.

The Rules:
1 Your routine should be of type void.

Finaltouch:
When running finaltouch, you will be asked for the SUB or DEF statement that defines your
routine. Just type the SUB or DEF line that your routine would have if it were written in True

24-3Calling C Routines in True BASIC



BASIC, complete with its list of arguments. Finaltouch then asks for the name of the library
file. This is the name that you want to use in the LIBRARY statement, for example,
myfile.trc. Finaltouch next asks for the name of the DLL. Give just the basename: don’t
add the “.DLL”. Thus, for MYRTN.DLL, you would just answer MYRTN. Last, finaltouch asks for
the name of the routine in the DLL. This is the name that you gave the C routine (or the name that
you exported, if they are different). The resulting file will be the library file for True BASIC.

You’ll also need to know:
1 The DLL will need to be in the same directory as True BASIC or in the path defined by

the PATH (Windows) or LIBPATH (OS/2) environment variable when you run your True
BASIC program. If the system can’t find a DLL of the appropriate name, a “File not
found” exception (9003) will be raised when the C subroutine is called.

2 If the DLL does not contain a routine of the name you specified when running finaltouch,
a “No such function or subroutine” exception (-6) will be raised.

Sample C Routine:
A sample routine has been provided, tbplysnd.c, which allows you to play a given .WAV sound
file (Windows example; no OS/2 example currently provided).

Additional Resources:
Here are several web resources that contain useful information about C in general, and the specific
compilers and linkers we mention in this Guide.

http://www.metrowerks.com/ (CodeWarrior)

http://msdn.microsoft.com/visualc/ (Visual C++)

http://www.software.ibm.com/ad/visualage-c++/index.html (VisualAge C++)

24-4 True BASIC Language System Guide



CHAPTER

25
Using SOCKET Routines in True BASIC

The Internet is everywhere today. True BASIC’s socket routines will allow you to use True
BASIC to write programs to access other machines and servers on the Internet or any intranet
running the TCP/IP protocol.

True BASIC’s implementation generally follows the standard Berkeley sockets
implementation, so those familiar with Berkeley sockets should feel right at home. The socket
library written by Charlie Reiman of NCSA was helpful in developing these routines.

The first few paragraphs of this document will be a summary of how True BASIC matches up
with Berkeley sockets. Those less familiar should read past for a somewhat more in-depth
description, although these notes are not meant to serve as a sockets primer. There are several
primers both in print and on the web. A good place to start might be:

http://world.std.com/˜jimf/papers/sockets/sockets.html

True BASIC’s socket library is called TrueSock.trc. Make sure you include this in a
LIBRARY statement in your program, as well as DECLARE DEF statements for any of the
routines below defined as DEFs.

SUB TS_Init
No analog in the Berkeley sockets world. Call this subroutine first to set up the constants
mentioned below.

DEF TS_Socket(family,type,protocol)
Analogous to the socket() function. family should be one of AF_UNIX or AF_INET.
type should be one of SOCK_STREAM or SOCK_DGRAM. protocol should be one of
IPPROTO_TCP or IP_PROTO_UDP. Return value is the socket id. On some platforms, in
addition to socket errors, you may get the error "No such file." This means that the platform's
socket DLLs, necessary to use the socket features of True BASIC, are not installed, and you
will need to install them. If you are unsure how to do this, you will need review your operating
system’s documentation for information on how to find and install socket support. For
Windows, this must be Winsock 2.x, which is WS2_32.DLL, not Winsock 1.1.

Some Windows 95 installations may not have Winsock 2 installed. An update is available at:
http://www.microsoft.com/windows/downloads/bin/W95ws2setup.exe

25-1



SUB TS_Bind(tb_socket,family,port,addr$)
Analogous to the bind() function. tb_socket should be a valid socket id. family
should be one of AF_UNIX or AF_INET. addr$ takes one of several forms. For AF_UNIX,
it is simply a string with a filename. TS_Bind will take care of combining it with the other
information to make a standard address. For AF_INET, we expect either a string version of
the address as an integer, or the dotted notation. For example, for the address 192.168.0.12,
the value of addr$ should be either “192.168.0.12” or “3232235532”. If you have no preference
for a port and address, pass “0” for these arguments. Again, TS_Bind will take care of
turning it into a standard address.

SUB TS_Connect(tb_socket,family,port,addr$)
Analogous to the connect() function. Arguments are the same as for TS_Bind. 

DEF TS_Receive$(tb_socket,num_bytes)
Analogous to the recv() function. tb_socket is a valid socket id. num_bytes is the
number of bytes you want to receive. The return value is a string containing the data received.

SUB TS_Send(tb_socket,s$)
Analogous to the send() function. tb_socket is a valid socket id. s$ is the data to send.

SUB TS_Listen(tb_socket,backlog)
Analogous to the listen() function. tb_socket is a valid socket id. backlog is
maximum length of the queue of pending connections.

DEF TS_Accept(tb_socket,family,port,addr$)
Analogous to the accept() function. Arguments are the same as for TS_Bind. Return
value is the id for the accepted socket.

SUB TS_Close(tb_socket)
Analogous to the close() function (or, for those of you more used to WinSock, the
closesocket() function.) tb_socket is a valid socket id.

DEF TS_GetHostByName$(name$)
Analogous to the gethostbyname() function. name$ is the name of host you want an
address for. The return value is an address in dotted notation suitable for passing to any of
the routines above which require such an address.

For those who would like a bit more in the way of explanation about how to use the True
BASIC sockets library, we present the following example, which we will explain in the
paragraphs following. The point of the example is to connect briefly to an ftp server, then
disconnect again. In order for the example to work, you must have an active connection to the
Internet. First, the full example:

25-2 True BASIC Language System Guide



LIBRARY "truesock.trc"
DECLARE PUBLIC AF_INET,SOCK_STREAM,IPPROTO_TCP
DECLARE DEF TS_Socket,TS_Receive$,TS_GetHostByName$

CALL TS_Init

LET s = TS_Socket(AF_INET,SOCK_STREAM,IPPROTO_TCP)

CALL TS_Connect(s,AF_INET,21,TS_GetHostByName$("ftp.truebasic.com"))

LET r$ = TS_Receive$(s,100)
PRINT "> ";r$

CALL TS_Send(s,"QUIT"&chr$(10))
LET r$ = TS_Receive$(s,75)
PRINT "> ";r$

CALL TS_Close(s)

END

Now, a section-by-section explanation:

LIBRARY "truesock.trc"
DECLARE PUBLIC AF_INET,SOCK_STREAM,IPPROTO_TCP
DECLARE DEF TS_Socket,TS_Receive$,TS_GetHostByName$

We use the LIBRARY statement to link in True BASIC’s socket routines. The DECLARE
PUBLIC statement allows us to reference common “constants” set up in the library. These
constants will be explained further below. We use DECLARE DEF as True BASIC requires
to declare those functions we are going to use.

CALL TS_Init

We call the routine TS_Init to initialize all of the “constants” necessary to communicate
with the sockets library. These constants include those referenced above in the DECLARE
PUBLIC statement. This routine should always be called before any other socket routines are
called.

LET s = TS_Socket(AF_INET,SOCK_STREAM,IPPROTO_TCP)

Now, we create a socket. We need to supply three pieces of information: the protocol family,
the socket type, and the socket protocol.

The protocol family can be one of either AF_INET or AF_UNIX. Other families are available
in some implementations of sockets, but at the moment, these are the only two that True
BASIC supports. Pass AF_INET to use Internet protocols, generally used for

25-3Using SOCKET Routines in True BASIC



communications between machines; pass AF_UNIX to use internal protocols, generally used
for creating local pipes or process-to-process communications. Because we want to connect to
an ftp server on another machine, we pass AF_INET.

The socket type can be one of either SOCK_STREAM or SOCK_DGRAM. Again, other types
are available in some implementations of sockets, but at the moment, these are the only two
that True BASIC supports. The type SOCK_STREAM provides a reliable means to create a
two-way connection that supports byte streams where data of any size may be sent and
received. The type SOCK_DGRAM provides unreliable messages of a fixed maximum size. For
most applications for which you will use True BASIC’s sockets implemetation, you will use
SOCK_STREAM, as we will here.

The socket protocol can be one of either IPPROTO_TCP or IPPROTO_UDP. The protocol
you use will be determined largely by the type of socket you create. IPPROTO_TCP is a
transmission control protocol; IPPROTO_UDP is a user datagram protocol. We are using
SOCK_STREAM, so we will use IPPROTO_TCP. Just as with the socket type, for most
applications for which you will use True BASIC’s sockets implemetation, you will use
IPPROTO_TCP,

CALL TS_Connect(s,AF_INET,21,TS_GetHostByName$("ftp.truebasic.com"))

Having set up a socket to use, it is now time to actually make a connection to the ftp server.
We need to supply four pieces of information: the socket, the protocol family, the port to
connect to on the host, and the address of the host to connect to.

The first, the socket, is easy – we pass the socket id we received in the previous step. The
protocol family is easy as well – we pass the same protocol family that we specified in the
previous step.

The value for the port tells True BASIC what port you want to connect to on the host. One host
may run a number of different servers (ftp, http, telnet, etc.) While they all have the same
address, they run on different ports. We pass port number 21, as that is the normal port for
an ftp server. Some common ports are:

ftp: 21
telnet: 23
smtp: 25
gopher: 70
http: 80
pop3: 110

The address of the host is also not too hard. You may know the address in dotted notation, in
which case you can use it directly; for example, 192.168.0.1. However, if you’re actually
connecting via the Internet instead of an internal network, the address may change, and in
many cases you won’t know the address. So, we use the TB_GetHostByName$ function to
turn a host’s name into a numeric address, which we can then pass as the address.

25-4 True BASIC Language System Guide



LET r$ = TS_Receive$(s,100)
PRINT "> ";r$

Having connected to an ftp server, we know we are going to get a message. So, we call the
function TS_Receive$, telling it which socket to use (the same we’ve been using) and how
many bytes to look for, in this case, 100. If there is nothing to receive, it will wait until there
is something; if there is something, it will return whatever there is, even if it is fewer than 100
bytes. The bytes sent by the server are returned by the function. In our example, they are
placed in r$. In this case, if you are running the program, you should see something like this:

220 zaphod FTP server (Version wu-2.4.2-academ[BETA-15](1) Sun Dec
14 12:16:04 EST 1997) ready.

What you see (if there is anything to receive) will vary from server to server and from port to
port. Note that you need to have some idea of what to expect from the server. You don’t want
to call TS_Receive$ unless you expect there to be something to receive.

CALL TS_Send(s,"QUIT"&chr$(10))
LET r$ = TS_Receive$(s,75)
PRINT "> ";r$

Now, we are just going to quit. We know that the way to quit from an ftp server is to send the
message “QUIT” with an end-of-line character (which on Unix is ASCII 10, although others
will probably work.) So, we call TS_Send, once again passing the socket id, and passing the
string “QUIT” with the end-of-line character appended.

We call TS_Receive$ once again to get the ftp server’s final message, which will look
something like this:

221 Goodbye.

CALL TS_Close(s)

That’s all we wanted to do with that socket, so we call TS_Close, passing the socket id, to close
and release the socket.

25-5Using SOCKET Routines in True BASIC



CHAPTER

26
True BASIC SQL Libraries

TrueTrue BASIC provides a set of library routines for accessing SQL engines in a consistent
way across platforms.  This library is called tbsqllib.trc.  To use the routines in this
library, include the following statement at the beginning of your program or module:

LIBRARY "tbsqllib.trc"

This library has been written chiefly for the purpose of providing an interface to an SQL data-
base engine.  The routines let you establish a connection with a database, send queries to that
database, and retrieve results.  The results are returned as True BASIC arrays.  This array
format makes it easier for passing results to the toolkit routines for graphing or doing statis-
tical analysis.  

The examples presented in this manual, however, are designed to provide a template for using
the database routines and are therefore limited to showing you how to select fields from a
database table and insert entries into that table.  As you learn about SQL, you can use this
template for more complex queries that join results from different tables or that create inter-
mediate result sets.

Overview of server-database-table relations.
The one idea to keep in mind as you work with these routines is that there are really four lev-
els at which you can specify a connection: (a) the SQL server (e.g., MySQL), (b) the specific data-
base, (c) the tables, and (d) the fields in the individual tables, referenced by row and column.

Figure 26-1. Fundamental elements of a database.

fields
(rows, cols)

Database2

SQL Server

Database1

TABLE 1 TABLE 2

26-1



True BASIC's SQL routines use a "context" identifier (a number) to keep track of the connec-
tions to different databases even if they are on the same server.  This context value gets
returned to you when you connect to a SQL server and database.  You then pass this value to
all future TB SQL routines to indicate which connection your call refers to.

A single built-in function DEF sql_connect(MYHOST$, DBNAME$, MYUSERNAME$,
MYPASSWORD$) connects you to the host server and database.  You specify the table you want
in the actual SQL statements that you issue.  

The function returns an integer value called the context, which must be used in subsequent
subroutine calls. Most SQL statements have the table name and fields embedded in the SQL
statement, determining the exact server, database, table, and field that you are referencing.

For example, "SELECT id_participant FROM participant_table" will
select all the participant ids from the participant table.  The context identifier gets passed as
part of the subroutine call to indicate the database:  

CALL sql_query(context,query$,rows,cols) 

To retrieve the results and place them into a True BASIC array called "results$(,)", you would
use: 

CALL sql_getallresults(context,result$(rows,cols))

See the QuickStart guide in this chapter for a complete template for establishing connections
and issuing SQL queries.

Connecting to multiple databases.  
The TB SQL interface lets you connect to multiple databases on the same or different servers.
You can connect directly to the database engine for supported databases (e.g., MySQL) or
through the ODBC interface to access most other databases. (For Win32, Mac OS, and OS/2, all
connections will be made through the ODBC interface.) Note that the same set of routines is used
for both situations. You simply need to call the appropriate routines in TBSQLLIB. True BASIC
will automatically use a direct connection or the ODBC interface depending on the platform.

In many cases, you will be connecting to a single database engine on a specific machine.  This is
the scenario we will present in our examples; they can be modified easily to connect to multiple
databases on different machines

ODBC, currently supported in our Macintosh, Windows, and OS/2 products, is a system of APIs
and drivers for database access which allows one set of routines to access any ODBC-compliant
database, eliminating the need to code for each database separately. This allows us, and you, to
support any number of database engines with a minimum of effort. You must have installed the
operating system's ODBC support before using True BASIC's ODBC routines.

26-2 True BASIC Language System Guide



Getting help on SQL & ODBC. 
It is beyond the scope of this manual to provide a detailed overview of database management and
SQL (the standard query language). Information on SQL and specific database engines is
available at:

Learning SQL
Introduction to SQL: http://w3.one.net/˜jhoffman/sqltut.htm

MySQL
Homepage for MySQL:  http://www.tcx.se
Gamma release of MySQL manual: http://www.tcx.se/Manual/manual_toc.html

Oracle
Oracle: http://temp.redhat.com/linux-info/ldp/HOWTO/Oracle-HOWTO.html

ODBC
Microsoft: http://www.microsoft.com/data/odbc

ODBC for Linux
http://www.dharma.com/

More on SQL & ODBC for Linux
http://www.linuxmall.com
http://www.xnet.com/

26-3True BASIC SQL Libraries



Quick Start
The general sequence of steps for accessing a database is to connect to the database, query it,
retrieve any results, possibly update an entry, and close the connection.  For example,

LIBRARY "tbsqllib.trc"

DECLARE DEF sql_connect
DIM result$(0,0)

WHEN ERROR IN
! & at end and beginning of lines indicates line continuation
LET context = sql_connect("localhost","inventory","myname", "mypassword")
CALL sql_query(context,"SELECT product,quantity from WAREHOUSE", &

& rows,cols) ! & at end and beginning indicates line continuation
IF rows = 0 then

! no products in WAREHOUSE table.
! this is more likely when you have a WHERE clause.

ELSE
CALL sql_getallresults(context,result$(rows,cols))
FOR i = 1 to rows

! display results
PRINT "Product: " & result$(i,1)
PRINT "Quantity: " & result$(i,2)
PRINT

NEXT i
END IF

USE
PRINT "ERROR: " & extext$
PRINT exline$

END WHEN
CALL sql_close(context)
PRINT "done."
END

—————————————————–——————————————————————
[ ! ] NOTE:  You need to declare the function sql_connect in your programs

because it is defined in the tbsqllib library as opposed to being built into the
language.  In the example above, the host is “localhost”, the database name is
“inventory”, the username is “myname”, and the password is “mypassword”.
The query returns the product and quantity for all items in the WAREHOUSE
database and then prints a listing of them.

—————————————————–——————————————————————

26-4 True BASIC Language System Guide



The call to SUB sql_query does not return the actual results of the query but does tell you how
many rows and columns matched your query.  

The call to sql_getallresults returns all of the results for the query and places them in the array
result$(,).  For large result sets, you should use SUB sql_getresults which allows you to specify a
subset of the rows to return.  Otherwise, the call to sql_getallresults may take a while to return
and will use up substantial amounts of memory.

———————————————————————–————————————————
[ ! ] NOTE:  Some SQL statements such as INSERTs or UPDATEs will not generate

a retrievable set of results, though the call the sql_query may return the num-
ber of affected rows depending on your SQL engine.

——————————————————————–—————————————————
The other important technique to notice here is that the code is enclosed in an error handler with
the call to SUB sql_close after the handler.  This format ensures that the connection gets
terminated if an error occurs.  If an error occurs, extext$ will contain the True BASIC error
message and, in most cases, the specific error message returned from the database.  

Summary of Functions and Subroutines
The following functions and subroutines are defined in TBSQLLIB.TRU and are explained in the
following pages:

DEF sql_connect(MYHOST$,DBNAME$,MYUSERNAME$,MYPASSWORD$)

SUB sql_close(context)

SUB sql_matchfields(context,table$,pattern$,fieldlist$(,))

SUB sql_matchtables(context,pattern$,tablelist$())

SUB sql_gethandles(context,handles$) (ODBC only)

SUB sql_query(context,query$,rows,cols)

SUB sql_getresults(context,start row,rows,result$(rows,cols))

SUB sql_getallresults(context,result$(rows,cols))

The SQL subroutine is the only built-in subroutine.  This routine gets called by the routines and
functions in TBSQLLIB.TRC:

SUB sql(option,context,in$,inlen(),out$,outlen())

26-5True BASIC SQL Libraries



Connecting To A Database
Connecting to a database occurs with a single subroutine call where you pass the host name,
database name, username, and password.  A context identifier (an integer) is returned.  You will
use this context identifier for future calls to the SQL library routines.  You can make up to ten
simultaneous connections to different databases, regardless of whether they are on the same or
different servers. 

DEF sql_connect(MYHOST$,DBNAME$,MYUSERNAME$,MYPASSWORD$)
MYHOST: the name of the server (e.g., truebasic.com, localhost)
DBNAME: the name of the database
MYUSERNAME: the username (e.g., nobody, guest)
MYPASSWORD: the password for the username

ODBC
DBNAME will be ignored. MYHOST will be the name of the data source set up in the ODBC control
panel which includes a database name. MYUSERNAME and MYPASSWORD are the username
and password (if any) set up for the data source in the ODBC control panel.

MySQL
The host, username, password combination is used to look up access permissions in the permission
table.  MYHOST will most likely be ‘localhost’ for Web access.  Similarly, your CGI scripts will
probably use "nobody" as the username.  MySQL has three database tables that determine access:
db, host, and user. 

The MySQL User Database.
The values you pass to DEF sql_connect are checked against the user database which has the
following architecture: 

Field Type Null Key Default Extra 
User char(60) PRI   
password char(16) PRI   
Select_priv char(16)     
Insert_priv char(1) N  
Update_priv char(1)   N  
Delete_priv char(1) N  
Create_priv char(1) N  
Drop_priv char(1 N  
Reload_priv char(1) N  
Shutdown_priv char(1) N  
Process_priv char(1) N  
File_priv char(1) N

26-6 True BASIC Language System Guide



The User and password are the primary keys with all of the privileges, except SELECT, default to
“N” or “no”.  

In most cases, you will give people select permission which is equivalent to read-only access.  Insert
permission is generally not destructive since it allows people to add data.  Update, delete, and drop
permissions should be restricted.  You can control access to these functions by writing CGI scripts
that perform specific rather than variable operations (e.g., only updates from scripts that require
a password). 

The most common error when working with the permission tables is to forget to reload the table
after making a change.  To reload the tables, type:

mysqladmin reload

Reloading the permission tables makes your changes active.  Also note that the password is
encryted so you can't just pass a string in your UPDATEs to the table.  Use the password() function
that is part of MySQL (e.g., password("mypassword")).

For more information on MySQL, and especially about the permission tables, see the MySQL
documentation online at: http://www.webware-inc.com/MySQL/toc.html. 

Error Messages related to database connections
SQL errors start at -14000.  When an error occurs, the error message, calling sequence, and error
number get stored in the reserved True BASIC variables extext$, exline$, and extype
respectively.

Could not connect to the specified SQL host. (-14000)
No connection to SQL host established. (-14001)
Could not connect to the specified database. (-14002)
Null or badly formed DATABASE NAME. (-14006)
Error (MySQL): # (-14009)
Too many connections open. (-14011)

On some platforms, you may get the error "No such file.", as well. This means that the platform's
ODBC DLLs or shared libraries, necessary to use the ODBC features of True BASIC, are not
installed, and you will need to install them. These DLLs should have been installed with your
operating system or database engine; if they are not installed, you will need to review your
operating system or database engine documentation to find out how to install them.

26-7True BASIC SQL Libraries



Closing Connections
Don't forget to close the connection to your database engine at the end of your program. 

SUB sql_close(context)
This routine closes the server connection.  You pass the context identifier returned from the
sql_connect function.

It is good practice to enclose your SQL (and other code) in an error handler.  Call SUB sql_close after
the error handler to ensure that the connection gets closed.  See the example in the QuickStart
section of this chapter.

Obtaining Information About Data Sources
In many cases, you will already know the names of the databases and tables along with the data
types and default values for these fields.  However, it is good practice to dynamically construct
these by querying the database rather than hard-coding the settings and order of fields into your
programs.  Then you can modify your tables without having the changes ripple through all your
code that accesses those tables.

For example, when you issue a query that returns all the fields in a table (e.g., SELECT * FROM
myhugeartcollection), you will get the all the entries and all their fields in the order they appear in
the table.  If you have a PRIMARY KEY or other entry in the table definition, this field does not get
returned.  If you rearrange the table architecture, the fields returned by this SELECT statement
will reflect the new order.  

You can avoid this problem by specifying the fields you want returned.  For example, SELECT
painter,masterpiece FROM myhugeartcollection will return just the 'painter'
and 'masterpiece' fields for each entry.  

In some cases, you may need access to the names of the fields.  For convenience, we provide the
following routines for retrieving those field names.

SUB sql_matchfields(context,table$,pattern$,fieldlist$(,))
given a tablename, return the field names and data types matching pattern$. 

SUB sql_matchtables(context,pattern$,tablelist$())
returns tablenames matching pattern$ for current database.

The pattern$ parameter consists of characters with the percent symbol "%" being a wildcard for
multiple characters and the underscore symbol "_" serving as the wildcard for single characters.  

26-8 True BASIC Language System Guide



Wildcards let you create patterns that don't look for exact matches.  For example, a
pattern$="%Springfield,__" would return matches for "Walnut Avenue, Springfield,IL", "
Springfield,CA", etc.  Using pattern$="%" would return all the entries.  Using pattern$="_"
would return all entries with a single character for the field or table.  

To search for a wildcard character such as a table named “cmt_admin” you would use
"cmt\_admin".  In general, life will be easier for you if you refrain from using underscores,
percent symbols, hyphens, and quotation marks in table and field names!

Passing database handle to C routines
To extend True BASIC's support routines, you can get the handles for a database connection and
pass them to a C routine, use the subroutine:

SUB sql_gethandles(context,handles$) (ODBC only)
See the section entitled Using C routines with True BASIC in Chapter 24.

These handles will be encoded in the string handle$ which you should pass to the C routine. You
can retrieve them in the following way:

/* Assume "handles" is the True BASIC string already retrieved. */
SQLHANDLE *tbsqlhandles;
SQLHENV tbsqlhenv; /* environment handle */
SQLHDBC tbsqlhdbc; /* connection handle */
SQLHSTMT tbsqlhstmt; /* statement handle */

tbsqlhandles = (SQLHANDLE *) handles->str->text;
tbsqlhenv = tbsqlhandles[0];
tbsqlhdbc = tbsqlhandles[1];
tbsqlhstmt = tbsqlhandles[2];

Executing Queries
There is only one routine, SUB sql_query, that executes SQL queries and returns the number
of rows and columns affected.  Two other routines, SUB sql_getresults and SUB
sql_getallresults, let you retrieve a subset of the results or all the results, respectively.

You can check the number of rows affected by your query to determine which results routine to
use.

SUB sql_query(context,query$,rows,cols)
returns the number of rows and columns affected.   Note that some SQL statements like INSERT
and UPDATE may not return the number of rows affected. Also, some ODBC databases may not
know this value at the time for any operation. (See SUB sql_GetResults.)

The SQL queries can perform a wide range of operations from creating databases and tables, to
selecting information from them, to joining results from two queries.  

26-9True BASIC SQL Libraries



Debugging Queries
One useful strategy for debugging queries is to print out the query string along with the True
BASIC error messages.  For example:

LIBRARY "tbsqllib.trc"

DECLARE DEF sql_connect
DIM result$(0,0)
WHEN ERROR IN

LET context = sql_connect("localhost","inventory","myname", &
& "mypassword")

LET QUERY$ = "SELECT product,quantity from WAREHOUSE"
CALL sql_query(context,query$,rows,cols)
! get the results and do something with them

USE
PRINT "ERROR: " & extext$
PRINT exline$
PRINT "Query: " & query$         ! print the query out too

END WHEN
CALL sql_close(context)

The True BASIC error messages, in most cases, will contain an error message from the database.
However, it is sometimes difficult to interpret these messages without the query.

Error Messages related to queries
Null or badly formed SQL query. (-14003)
No results available for SQL query. (-14004)
Incomplete transfer of SQL query results (-14005).
Trouble creating DATABASE. (-14007)
Invalid argument for SUB SQL. (-14008)
Error (MySQL): # (-14009)

You should not get error -14008 if you use the routines in the library tbsqllib.trc since this
error message indicates an invalid option being passed to the built-in True BASIC routine SUB SQL
(see Internal Routines section below).

Quotation Marks In Queries
One common problem people have constructing queries involves quotation marks.  Quotation
marks need to be preceeded by a backslash for most SQL engines to handle them correctly.

The library tbsqllib.trc provides a routine for inserting backslashes before quotation marks.

SUB escape_quotes(entry$)
LET p=posr(entry$,"""")

26-10 True BASIC Language System Guide



do while p>0
LET entry$(p:0)="\"
LET p1=p
LET p=posr(entry$,"""",p1)

loop
END SUB

You can modify this routine to handle other characters that cause problems with specific database
engines.

Retrieving Results
SUB sql_getresults(context,startrow,rows,result$(rows,cols))
get results from last query.  Specify the first row to return in startrow and the number of rows
to return in "rows". If startrow is 0, then return all rows. If rows is 0, then return all rows after
startrow. The actual number of rows returned will be placed in rows upon exit. This is espe-
cially handy for those instances when SQL_Query could not return the correct number of rows.

SUB sql_getallresults(context,result$(rows,cols))
returns all results from last query in array format. Calling this routine is equivalent to calling
sql_getresults(context,0,0,result$).

Tips for SQL Developers
Indexes as a way to speed up SELECT statements
SELECT statements can retrieve information selectively from a database using a WHERE clause
to indicate the criteria.  For example, to retrieve all entries with a product ID greater than
twenty you could use the statement:

SELECT product_name FROM catalog WHERE product_id>20

This query would return the product name from the catalog table where the product_id is
greater than 20. 

The database engine has to search through the catalog table to determine which entries have a
product greater than 20.  The comparison needs to be made for each row in the database.  So the
larger the table, the longer this query will take.

One way to greatly increase the speed of this type of query is to create an index for the product ID. 

ALTER TABLE catalog ADD INDEX (product_id)

When you create an index for a field in a database, most database engines will create a separate
sorted list for that field.  This separate, sorted list will be used for comparisons instead of the
unsorted entries.

26-11True BASIC SQL Libraries



The UNIQUE attribute, as opposed to INDEX, can be used when you want the index to be a unique
value.

In general for most large tables, you should add an index for any field that appears in a WHERE
clause.  Most database engines let you create indexes for text fields as well as numeric fields.

TRADE-OFF: 
The disadvantage of adding indexes to a table is that it slows down INSERT queries.  This
slowdown is due to the fact that the sorted lists need to be updated as well.  So if you are doing
significantly more INSERTS than SELECTS, you may not want to add as many indexes.  You can
speed up INSERTS by LOCKING the table during INSERTs:

LOCK TABLES catalog WRITE
INSERT INTO catalog VALUES ("3D Graphics")
UNLOCK TABLES

On most database engines this reduces the number of times the index buffer gets flushed as well as
the number of multi-connection tests that need to be performed.  You should, however, check the
documentation for your SQL engine for details if you are concerned with performance.

Ultimately the speed of inserts is affected by the time connecting, sending the query to server,
parsing the query, inserting the record, inserting indexes, closing connection.  The True BASIC
libraries process and format the query, taking some additional time.  Opening the table, which you
should do once at the beginning of your program, takes some time too.

————————————————————–———————————————————
[ ! ] NOTE:  Note that many databases require that INDEXES and PRIMARY KEYs

be defined as NOT NULL.  Also, you can use the EXPLAIN command to see
which indexes are used in a specific SELECT statement.

————————————————————–———————————————————

Adding a primary key
A primary key is typically an integer value that uniquely identifies a row.

You can have only one primary key.  You can have this field auto increment so that a unique number
identifies each record in your table.  

CREATE TABLE catalog (id_product INT NOT NULL AUTO_INCREMENT, 
PRIMARY KEY (id_product), product_id INT NOT NULL, product_name varchar(100))

This command creates the table catalog with id_product as the PRIMARY KEY.

Getting the value of an AUTO_INCREMENT column in ODBC
You have just inserted a set of values into a table and want to get the value the primary index that
was just auto-incremented:

Getting the value of an AUTO_INCREMENT column can be done with a SELECT statement and

26-12 True BASIC Language System Guide



a WHERE clause if you have a unique item for which you can search.  The better method is to use
LAST_INSERT_ID:

INSERT INTO catalog (auto,text) VALUES (null,'3D Graphics')
SELECT LAST_INSERT_ID()

—————————————–——————————————————————————
[ ! ] NOTE:   If you delete a row from the table, then the next INSERT will replace

that row and assume its ID. Thus, assuming that your last INSERT will produce
the highest value in the auto-incremented column is not reliable.

—————————————————–——————————————————————

True BASIC Internal SQL Routines
The built-in routines for handling the SQL interface should only be used if you are writing your
own library of routines. True BASIC may in the future alter the internal routine or its
parameters.  By using the library tbsqllib.trc, you can ensure that the application code you
develop will not need to be updated if changes are made.  This strategy of providing library
routines that access built-in functions is a standard procedure at True BASIC where we attempt
to encapsulate functionality in modules and libraries.

Currently, there is a single built-in subroutine that supports the SQL interface:

SUB sql(option,context,in$,inlen(),out$,outlen())

The options for this routine are:
TBSQL_CONNECT     = 1
TBSQL_DATABASE    = 2
TBSQL_CLOSE       = 3
TBSQL_QUERY       = 4
TBSQL_GETRESULTS  = 5
TBSQL_CREATEDB    = 6 ! Not used for ODBC
TBSQL_DROPDB      = 7 ! Not used for ODBC
TBSQL_MATCHTABLES = 8
TBSQL_MATCHFIELDS = 9
TBSQL_GETHANDLES  = 10

The input and output strings are actually a concatenation of a series of strings.  The arrays inlen()
and outlen() contain the length of the substrings. In some cases, such as TBSQL_QUERY where
the number of rows and columns affected gets returned, these numerical values are returned as the
first and second elements in the array outlen().

SUB sql_query(context,query$,rows,cols)
! execute SQL query.
! returns rows,cols found.  (though in most cases you will
! know the number of cols and just be interested in the rows.)

26-13True BASIC SQL Libraries



dim inlen(1),outlen(0)

let inlen(1) = len(query$)
call sql(TBSQL_QUERY,context,query$,inlen(),out$,outlen())
if ubound(outlen)=2 then
let result_rows = outlen(1)
let result_cols = outlen(2)

else
let result_rows,result_cols = -1   ! error

end if
rows = result_rows
cols = result_cols

END SUB

In some cases, you will pass multiple strings to the SQL routine.  For example, to connect to the
server, you need to pass the host name, user name, and password:

let in$ = myhost$
let inlen(1) = len(myhost$)
let in$ = in$ & myusername$
let inlen(2) = len(myusername$)
let in$ = in$ & mypassword$
let inlen(3) = len(mypassword$)

call sql(TBSQL_CONNECT,context,in$,inlen(),out$,outlen())

You can examine the source code, tbsqllib.tru for more examples.

26-14 True BASIC Language System Guide



CHAPTER

27
True BASIC PostScript ™ Support

PostScript Support
The Gold Edition of True BASIC allows you to journal True BASIC graphics to a Post-
Script file. This enables you to have True BASIC write PostScript commands for True
BASIC graphics statements (such as BOX LINES) to a PostScript file at the same time
as they are being executed on the screen. When you finish, you will have a PostScript
file which can be printed on a PostScript printer in the printer’s native resolution or
which can be loaded into a number of page layout or drawing programs and manipu-
lated or included in a complex document.

Using PostScript with True BASIC
To start this PostScript output, include in your program a call to the built-in subroutine
BEGIN_POSTSCRIPT:

CALL Begin_PostScript(“mypsfile”,left,right,bottom,top)

The first parameter of this subroutine is the name of the file where the PostScript com-
mands are to go. If the file does not exist, it will be created. If it does exist, it will be
overwritten. The four numeric parameters define the region the PostScript output
should occupy on the display device, whether it is a printer or a drawing program. The
parameters are the left, right, bottom, and top edges of the region, and they are defined
in points. A point is 1/72 of an inch.

For example, if you wish to map the image in the current physical window onto a full 8.5
by 11 inch page with one inch margins, use (..., 72, 540, 72, 720) for the parameters.

———————————————————————–————————————————
[ ! ] NOTE:  The PostScript journalling includes the full physical window even

though you may be using a smaller logical window to produce your graphics.
——————————————————————–—————————————————

BEGIN_POSTSCRIPT will begin the file with an Encapsulated PostScript (EPS) Speci-
fication Version 2.0 header so that other applications which can import EPS files will
recognize and import it. While some EPS files have a preview section, not all versions of

27-1



True BASIC supply a preview section to files created with BEGIN_POSTSCRIPT. This
will affect how the EPS file looks when imported into some applications.

When you have finished with the section of graphics that you wish to have journalled to
PostScript file, include in your program a call to the built-in subroutine END_POST-
SCRIPT:

CALL End_PostScript(n)

This will close the file and stop the journalling. Currently, the variable n means noth-
ing. It is reserved for future use. If you call END_POSTSCRIPT without having called
BEGIN_POSTSCRIPT, the call will return without effect.

If while journalling to the PostScript file you wish to append your own PostScript com-
mands or comments to the current file, include a call to the built-in subroutine
ADD_POSTSCRIPT:

CALL Add_PostScript(add_line$)

The variable add_line$ represents the line you wish to place in the file. If add_line$ = ""
then a blank line will be placed in the file. 

Note: Any added non-blank line must be a legitimate PostScript command or comment.

If you call ADD_POSTSCRIPT while no PostScript file is open, the call will return with-
out effect. In some environments, the PostScript file is simply a text (ASCII) file, which
means you can also edit the file easily after it is created.

You may journal to only one PostScript file at a time. Calling BEGIN_POSTSCRIPT
while a PostScript file is already open will result in an error being caused.

Printing your PostScript File to a Printer
Perhaps the most common thing you will want to do with your PostScript file is obtain a
nice printout of it from a PostScript printer. To do this you will need a PostScript print-
ing utility that takes the raw PostScript file you have created and sends it to your
printer. 

M On the MacOS you can use the Apple Printer Utility which allows you to send a
PostScript file directly to a printer. 

W On Windows you can use a freeware utility called PrintFile.  Other utilities that
also can do the job are Drop*PS from Bare Bones Software, Ghostscript, and
GSView.  Each of these applications are available on a variety of operating systems
and comes with its own instructions on how best to use it.

27-2 True BASIC Language System Guide



Example Program
!
! A simple program to demonstrate PostScript journalling. The
! program will create a star on-screen and a PostScript file
! that will create a star on a PostScript device.
!

SET WINDOW -0.5,0.5,-0.5,0.5 ! put origin in center of screen

!
! Open a PostScript file; point values will leave a one-inch
! margin when output on standard letter size paper later.
!
CALL Begin_PostScript(“mypsfile”,72,540,72,720)

!
! Now, add a comment to remind us what the picture is of.
! The comment will appear in the PostScript file, but not
! in a PostScript image. (A percent symbol [%] is the 
! comment character in PostScript.)
!
CALL Add_PostScript(““)! A blank line for readability
CALL Add_PostScript(“% A demonstration PostScript file: a star.”)
CALL Add_PostScript(““)! A blank line for readability

!
! Now, draw our picture...
!
FOR rv = 0 to 2*pi step pi/6

DRAW simple_line with rotate(rv)
NEXT rv

CALL End_PostScript(1) ! Finished PostScript journalling

PICTURE simple_line
PLOT 0,0;0,0.5

END PICTURE

END

27-3True BASIC PostScript Support



True BASIC – Updated CHAIN Documentation Jan. 2013 1

CHAIN Statement 

CHAIN strex
CHAIN strex, RETURN
CHAIN strex arglist$
CHAIN strex arglist$, RETURN

The CHAIN statement stops the current program and starts up the program in 
the file named in strex. If the target program is not accessible, an exception does 
NOT occur. Instead a black DOS type SYSTEM COMMAND window opens with 
a white default OUTPUT window and True BASIC crashes. To avoid this 
happening you are advised to first check that strex exists BEFORE attempting to 
CHAIN to it.

IF arglist$ is present then there MUST be a matching PROGRAM statement in 
the target program with the same number of variables as arglist$. IF the 
PROGRAM statement is missing or the number of variables does not match 
arglist$ then an exception does NOT occur. Instead the arglist$ is ignored if the 
PROGRAM statement is missing, or if the number of variables is incorrect then 
only those that are correct will be filled. For example if there are 3 parameters in 
arglist$ and only 2 in the PROGRAM parameters then the first two from arglist$ 
will be transferred to the PROGRAM parameters. 

The parameters in arglist$ consist of variables separated by spaces, or one 
string variable that includes spaces in the text, e.g.

LET arglist$ = “Mary had a little lamb” (5 parameters)
LET arglist$ = arg1$ & “ “ & arg2$ & “ “ & arg3$ (3 parameters)

If the individual parameter is a filename then it is likely the filename may contain 
spaces. CHAIN considers such spaces as extra parameters, e.g.

LET arglist$=”C:\Program files\myfolder\myfile”
This will count as 2 parameters “C:\Program” and “files\myfolder\myfile”
To avoid such problems you may use the following two sub-routines.
The parameter passing mechanism in CHAIN is by value, the same as defined 
functions.

This routine checks to see if the target program exists, and cleans up the 
filename argfile$ that may be present in arglist$.

SUB check_CHAIN(targetfile$,argfile$)
        WHEN EXCEPTION IN
             OPEN #99:NAME targetfile$,create old,access outin,org byte
             ASK #99: FILESIZE bytes
             LET error$=””
             CLOSE #99
        USE
             CLOSE #99
             CAUSE EXCEPTION 10005 



True BASIC – Updated CHAIN Documentation Jan. 2013 2

             EXIT SUB
        END WHEN

        LET length=len(argfile$)
        FOR n=1 to length
             IF argfile$[n:n]=chr$(32) then
                  LET argfile$[n:n]=chr$(31)
             END IF
        NEXT n
END SUB

This routine should be used in the target file to restore the original filename.

SUB restore_name(argfile$)
        LET length=len(argfile$)
        FOR n=1 to length
             IF argfile$[n:n]=chr$(31) then
                  LET argfile$[n:n]=chr$(32)
             END IF
        NEXT n
END SUB

If the RETURN clause is missing, all memory storage associated with the parent 
program is released, allowing the target program to occupy and use more 
memory. 
If the RETURN clause is absent, any runtime error that occurs in the target 
program but is not handled within the target program by WHEN EXCETION IN 
will be handled and reported by the system.

If the RETURN clause is present, the parent program is retained in memory, and 
when the target program finishes, control is returned to the parent program at the 
first statement following the CHAIN statement.
If the RETURN clause is present, any runtime error that occurs in the target 
program but is not handled within the target program by WHEN EXCEPTION IN 
will be sent back to the parent program. If the target program is in source form 
and contains syntax errors, the exception number will be 10005, but the 
message will describe the actual error.

If the string-expression after the word CHAIN begins with a “!”, the rest of it 
will be taken as a command to the operating system. If the string-expression 
begins with a “!&”, and a RETURN clause is present, the parent program will 
continue immediately; and the command will be executed in background.

NOTE: On some Windows systems, "!" and "!&" behave effectively 
the same. There will still be a small difference, as the latter will 
return immediately, while the former will wait until the CHAINed 
application is launched before returning.



True BASIC – Updated CHAIN Documentation Jan. 2013 3

When the target program starts, all modules associated with it are initialised, 
even if the target program has already been chained to previously. However, 
loaded modules are not re-initialized.

On personal computer systems, chaining from source or compiled programs is 
permitted to either source or compiled target programs. Chaining to and from 
executable (bound) programs is also permitted except there are restrictions with 
UNIX based operating systems.

A target program can itself chain to another program. This process can continue 
indefinitely and is limited only the available memory.



509

APPENDIX 

A
Character Set

This table lists only the ASCII character set (0-127). Each character in this table appears with its decimal and
hexadecimal equivalent. These ASCII codes work on all True BASIC computers. 

The names shown in this table can be used as arguments for the ORD function. Note that the names beginning
with decimal number 095 (UND) are designed for use with computers that do not distinguish between upper-
and lowercase letters.

Different operating platforms usually offer additional characters, but they are non-standard across platforms
and no attempt is made here to summarize them. Consult your platform’s user guide for details. Note: the CHR$
function allows arguments in the range 0..255, and so can generate the non-ASCII characters in the range
128..255, provided you know the decimal number of such characters.

Decimal Name Hex 
000 nul 00

001 soh 01

002 stx 02

003 etx 03

004 eot 04

005 enq 05

006 ack 06

007 bel 07

008 bs 08

009 ht 09

010 lf 0A

011 vt 0B

012 ff 0C

013 cr 0D

014 so 0E

015 si 0F

016 dle 10

017 dc1 11

018 dc2 12

019 dc3 13

020 dc4 14

021 nak 15

Decimal Name Hex 
022 syn 16

023 etb 17

024 can 18

025 em 19

026 sub 1A

027 escape 1B

028 fs 1C

029 gs 1D

030 rs 1E

031 us 1F

032 space 20

033 ! 21

034 “ 22

035 # 23

036 $ 24

037 % 25

038 & 26

039 ` 27

040 ( 28

041 ) 29

042 * 2A

043 + 2B

Decimal Name Hex 
044 , 2C

045 — 2D

046 . 2E

047 / 2F

048 0 30

049 1 31

050 2 32

051 3 33 

052 4 34

053 5 35

054 6 36

055 7 37

056 8 38

057 9 39

058 : 3A

059 ; 3B

060 < 3C

061 = 3D

062 > 3E

063 ? 3F

064 @ 40

065 A 41



Decimal Name Hex 
066 B 42

067 C 43

068 D 44

069 E 45

070 F 46

071 G 47

072 H 48

073 I 49

074 J 4A

075 K 4B

076 L 4C

077 M 4D

078 N 4E

079 O 4F

080 P 50

081 Q 51

082 R 52

083 S 53

084 T 54

085 U 55

086 V 56

Decimal Name Hex 
087 W 57

088 X 58

089 Y 59

090 Z 5A

091 [ 5B

092 \ 5C

093 ] 5D

094 ^ 5E

095 _ UND 5F

096 ` GRA 60

097 a LCA 61

098 b LCB 62

099 c LCC 63

100 d LCD 64

101 e LCE 65

102 f LCF 66

103 g LCG 67

104 h LCH 68

105 i LCI 69

106 j LCJ 6A

107 k LCK 6B

Decimal Name Hex 
108 l LCL 6C

109 m LCM 6D

110 n LCN 6E

111 o LCO 6F

112 p LCP 70

113 q LCQ 71

114 r LCR 72

115 s LCS 73

116 t LCT 74

117 u LCU 75

118 v LCV 76

119 w LCW 77

120 x LCX 78

121 y LCY 79

122 z LCZ 7A

123 { LBR 7B

124 | VLN 7C

125 } RBR 7D

126 ˜ TIL 7E

127 DEL 7F

510 True BASIC Language System



APPENDIX

B
Error Numbers and Messages

The following run-time error (exception) numbers and messages are provided by the EXTYPE and EXTEXT$
functions (see Chapters 16 and 18). When there is no WHEN USE structure to intercept the error, the True BASIC
system prints the message and halts the program.
Errors in the True BASIC source code are not included here. Further explanations of both source program errors
and run-time errors can be found in Appendix C.

511

Extype Extext$

1001 Overflow in numeric constant
1002 Overflow.
1003 Overflow in numeric function.
1004 Overflow in VAL.
1005 Overflow in MAT operation.
1006 Overflow in READ.
1007 Overflow in INPUT (nonfatal).
1008 Overflow in file INPUT.
1009 Overflow in DET or DOT.
1051 String too long.
1052 String too long in MAT.
1053 String too long in READ.
1054 String too long in INPUT (nonfatal).
1105 String too long in file INPUT.
1106 String too long in assignment.
2001 Subscript out of bounds.

-3000 Argument not in range
3001 Division by zero.
3002 Negative number to non-integral power.
3003 Zero to negative power.
3004 LOG of number <= 0.
3005 SQR of negative number.
3006 MOD and REMAINDER can’t have 0 as

2nd argument.
3007 ASIN or ACOS argument must be between

1 and -1.
3008 Can’t use ANGLE(0,0).
3009 Can’t invert singular matrix.

-3050 Argument for SIN, COS, or TAN too large.
-3051 Argument too large or small for accurate

result.

Extype Extext$

4001 VAL string isn’t a proper number.
4002 CHR$ argument must be between 0 and

255.
4003 Improper ORD string.
4004 SIZE index out of range.
4005 TAB column less than 1 (nonfatal).
4006 MARGIN less than zonewidth.
4007 ZONEWIDTH out of range.
4008 LBOUND index out of range.
4009 UBOUND index out of range.
4010 REPEAT$ count < 0.

-4020 Improper NUM string.
4102 Improper TEXT JUSTIFY value (nonfatal).
4301 Mismatched parameters for CHAIN/PRO-

GRAM.
4302 Mismatched dimensions for CHAIN/PRO-

GRAM.
-4303 Invalid numeric argument “#”.
-4501 Error in PLAY string.
5000 Out of memory.
5001 Array too large.
6001 Mismatched array sizes.
6002 DET needs a square matrix.
6003 INV needs a square matrix.
6004 IDN must make a square matrix.

6005 Illegal array bounds.
6101 Mismatched string array sizes.
7001 Channel number must be 1 to 1000.
7002 Can’t use #0 here (nonfatal).
7003 Channel is already open.
7004 Channel isn’t open.



Extype Extext$

7051 Record LENGTH <= 0.
7100 Unknown value for OPEN option.
7102 Too many channels open.
7103 File’s record size doesn’t match OPEN

RECSIZE.
7104 Wrong type of file.

-7105 Wrong type of file for LOCK (UNLOCK.)
(These accesses not available in V5)

-7106 Wrong type of file for NETWORK
(NETOUT, NETIN) access.  (Not avail-
able)

-7107 Can’t UNLOCK range. (Not available)
-7108 Range or part of range is already LOCKed.

(Not available)
7202 Must be RECORD or BYTE for SET

RECORD.
7204 Can’t use SAME here.

-7250 Can’t SET RECSIZE on non-empty
RECORD file.

-7251 Must be BYTE file or empty for SET REC-
SIZE.

-7252 File pointer out of bounds.
7301 Can’t ERASE file not opened as OUTIN.
7302 Can’t output to INPUT file.
7303 Can’t input from OUTPUT file.
7308 Can’t PRINT or WRITE to middle of this

file.
7312 Can’t set ZONEWIDTH or MARGIN for

this file.
7313 Can’t set ZONEWIDTH or MARGIN for

INPUT file.
7317 Can’t PRINT to INTERNAL file.
7318 Can’t INPUT from INTERNAL file.
7321 Can’t SKIP REST on STREAM file.

-7351 Must be BYTE file for READ BYTES.
7401 Channel is not open for TRACE.
7402 Wrong file type for TRACE.
8001 Reading past end of data.
8002 Too few input items (nonfatal).
8003 Too many input items (nonfatal).
8011 Reading past end of file.
8012 Too few data in record.
8013 Too many data in record.
8101 Data item isn’t a number.
8102 Badly formed input line (nonfatal).
8103 String given instead of number (nonfatal).

-8104 Data item isn’t a string.
8105 Badly formed input line from file.

Extype Extext$

8201 Badly formed USING string.
8202 No USING item for output.
8203 USING value too large for field (nonfatal).
8208 USING exponent too large for field (nonfa-

tal).
8301 Output item bigger than RECSIZE.
8302 Input item bigger than RECSIZE.

-8304 Must SET RECSIZE before WRITE.
8401 Input timeout.
8402 Timeout value < 0.

-8450 Nested INPUT statements with TIME-
OUT clauses.

-8501 Must be a TEXT file.
-8502 Must be RECORD or BYTE file.
-8503 Can’t use READ or WRITE for TEXT file.
9000 File i/o error.
9001 File is read or write protected.
9002 Trouble using disk or printer.
9003 No such file.
9004 File already exists.
9005 Diskette removed, or wrong diskette.
9006 Disk full.
9007 Too many channels open.
9008 No such directory.
9100 Can’t open temporary file.
9101 Can’t open PRINTER.

-9200 File i/o error (PostScript).
-9201 File is read or write protected (PostScript).
-9202 Trouble using disk or printer (PostScript).
-9203 No such file (PostScript).
-9205 Diskette removed, or wrong diskette (Post-

Script)
-9206 Disk full (PostScript).
-9207 Too many channels open (PostScript).
-9208 No such directory (PostScript).
-9209 Illegal PostScript area definition.
-9210 PostScript journalling already enabled.
9601 Cursor set out of bounds.

10001 ON index out of range, no ELSE given.
10002 RETURN without GOSUB.
10004 No CASE selected, but no CASE ELSE.
10005 Program not available for CHAIN. *

-10006 Exception in CHAINed program.
10007 Break statement encountered.
11000 Can’t do graphics on this computer.

-11001 Window minimum = maximum.

512 True BASIC Language System



Extype Extext$

-11002 Screen minimum >= maximum.
-11003 Screen bounds must be 0 to 1.
11004 Can’t SET WINDOW in picture.

-11005 Channel isn’t a window.
-11008 No such color.
-11009 User-defined window coordinates too large

for GET MOUSE (POINT)
11140 No GET MOUSE on this computer.

-11210 Invalid option for SUB Clipboard.
-11211 Invalid type for SUB Clipboard.
-11212 Error opening clipboard for reading.
-11213 Error closing clipboard.
-11214 Error opening clipboard for writing.
-11215 Error putting text onto clipboard.
-11220 Unknown or invalid object ID.
-11221 Cannot reference a freed object ID.
-11222 Unknown or invalid SYSINFO request.
-11223 Attribute not used for specified object.
-11224 Unknown or invalid group method.
-11225 Unknown or invalid attribute in SET/GET.
-11226 Unknown or invalid font name.
-11227 Unknown in invalid font style.
-11228 Font size must be greater than zero.
-11229 TextEdit method passed to non-TextEdit

object.
-11232 Error adding paragraph.
-11233 Paragraph number is too large.
-11234 Error deleting paragraph.
-11235 Error appending paragraph.
-11236 Object ID out of range.
-11237 Unknown window method.
-11238 Unknown object method.
-11239 Unable to SHOW window.
-11240 Unknown or invalid object type specifica-

tion in CREATE.
-11241 Too many EXIT CHARS for Edit Field.

Extype Extext$

-11242 Can’t set ACTIVE until object is visible.
-11243 Can’t set NUM LINES.
-11244 Can’t set NUM PARS.
-11245 Can’t set NUM CHARS.
-11246 Can’t set LINES IN PAR.
-11248 Can’t set MAX WIDTH.
-11249 Can’t set FONT METRICS.
-11250 Too many trap chars for TextEdit.
-11251 Color must be >= 0.
-11252 Paragraph out of range for GET LINE.
-11253 Line out of range for GET LINE.
-11254 Unknown or invalid menu item type specifi-

cation.
-11255 Can’t check a menu separator.
-11256 Menu separators are not checkable.
-11257 Unknown or invalid control object type.
-11258 Unknown or invalid graphic object type.
-11259 Unknown or invalid window object type.
-11260 Unknown or invalid group object type.
-11261 Can’t check a menubar item.
-11262 Can’t make menubar item a separator.
-11263 Menu parent incorrect for menu type.
-11264 Can’t SELECT an unSHOWn window.
-11265 Unknown or invalid brush pattern.
-11266 Unknown or invalid pen pattern.
-11267 Unknown or invalid directory.
-11268 Can’t get current directory.
-11269 Unknown option for SUB System.
-11270 Can’t get STAT info for file in directory.
-11271 RECTANGLE minimum = maximum.
-11272 No Help File opened.
-11273 Not enough values for attribute list in

SET/GET.
-11300 Dialog box has no buttons specified.
-11301 Unknown or invalid dialog box specifica-

tion.

513Appendix B: Error Numbers and Messages

*EXTYPE 10005 will occur either if the target program is not available, or if it is a BASIC source program that
contains syntax errors. EXTYPE -10006 will occur only if CHAIN with RETURN is used, and is a catch-all
EXTYPE in the original program for mismatched parameters (4301 and 4302) and all runtime exceptions in the
target program that are not handled there.
——————————————————–––—————————————————————
[ ! ] Note: Exceptions 4301 and 4302 cannot be intercepted with an exception handler in the target pro-

gram, nor can they ever occur as the value of EXTYPE. They can appear only in the system error mes-
sage on the screen.

————————————————————–––———————————————————



Nonfatal exceptions do not halt the program, but allow it to continue. The nonfatal INPUT exceptions (1007,
1054, 8002, 8003, 8102, and 8103) request the user to reenter the entire input line. Exception 4005 causes the
TAB column to be 1. Exception 4102 ignores the improper value, and retains the previous value. Exception 7002
is ignored. Exceptions 8203 and 8204 print the partially completed line, print the offending number on the next
line, and continue the USING string on the third line. All nonfatal exceptions can be trapped with WHEN struc-
tures, as can fatal exceptions.

Nonfatal exceptions that occur lexically inside an exception handler are treated as fatal errors. That is, the line
causing the exception must lie physically between the WHEN EXCEPTION IN and the USE lines for the
exception to be treated as fatal.

514 True BASIC Language System



APPENDIX

C
Explanation of Error Messages

This appendix contains a list of all True BASIC error messages, in alphabetic order.
There are two general classes of True BASIC errors: compile-time errors and runtime errors.
Compile-time errors are caught when True BASIC compiles your source program, which it does before each run. Runtime
errors occur after your program has started running. Runtime error messages can be intercepted by an error handler in
your program . In this appendix, each runtime error message is followed by its number (EXTYPE value). The runtime
errors are summarized in Appendix B, in order of the EXTYPE value for each error.

Array too large (5001)
You’ve tried to redimension an array to a size larger than the original DIM statement. Change the DIM statement, or
use MAT REDIM.

ASIN or ACOS argument must be between 1 and -1. (3007)
The arcsine and arccosine functions are not defined for arguments larger than one in absolute value.

Argument for SIN, COS, or TAN too large. (-3050)
The argument for the sine, cosine, or tangent function is so large that range reduction results is almost complete loss of
precision.

Argument not in range (-3000)
The argument you have supplied to a function is not within the legal or defined range for that function. Check the defin-
ition of the function to make sure you are aware of any limitations. If your argument is the result of calculation in your
program, make sure you have not made a mistake in setting up the calculation.

Argument too large or small for accurate result. (-3051)
The argument in a call to the SIN, COS, or TAN function is too large to permit accurate reduction.

Argument types don’t match.
You’re calling a routine with some arguments, but earlier in your program you defined or called the same routine with
different arguments. Either you’re giving a different number of arguments in the calls, or their types are different – that
is, you’re passing strings instead of numbers, or vice versa. Check this call against preceding calls, and against the rou-
tine’s definition. 

Bad FIND item; try using quotes.
When you’re trying to find a string which contains a comma or quotation marks, you must enclose the entire string within
quote marks. (These rules are the same as the rules for strings in INPUT replies or DATA statements.) 

Badly formed input line (nonfatal). (8102)
Your reply to an INPUT statement is badly formed. Most likely you have not properly matched up opening and closing
quote marks. You will be requested to reenter the entire input line.

Badly formed input line from file. (8105)
The reply to an INPUT statement from a file is badly formed. Most likely you have not properly matched up opening and
closing quote marks. See the INPUT statement in Chapter 4  for a description of input replies. 

515



Badly formed USING string. (8201)
The format string in your USING$ function or PRINT USING statement is incorrect. Some format item doesn’t follow
True BASIC’s rules. See Chapter 3 and Appendix D for a description of format strings. 

Break statement encountered. (10007)
You’ve encountered a BREAK statement in a program-unit in which debugging is active.

Can’t chain from bound program.
You cannot chain from a bound program (one that is directly executable) on some systems.

Can’t continue.
You’ve just given a CONTINUE command, to resume running a suspended program. However, True BASIC cannot con-
tinue the program. There are several possible reasons. You cannot continue a program that you haven’t yet started run-
ning, or one which you’ve just changed. You cannot continue a program which stopped because an error occurred. And
you cannot continue a suspended program after using a DO command. If you are trying to debug a program which stopped
because of an error, try using the BREAK command to insert breakpoints before the erroneous line, and then run the pro-
gram again. 

Can’t copy region into itself.
The True BASIC editor does not let you copy a region into itself. For instance, you may not make a copy of some subrou-
tine within that subroutine. If you really want to, you can put a copy of the region somewhere else, and then move this
copy into the original region. 

Can’t do graphics on this computer. (-11000)
Your computer cannot draw graphics. Therefore you may not use the SET WINDOW, PLOT, DRAW, BOX, FLOOD,
GET POINT, or GET MOUSE statements. 

Can’t edit compiled program.
Your program is compiled, and so cannot be changed. Once you’ve given a COMPILE command, you are only allowed to
RUN, SAVE, or REPLACE the program. If a change needs to be made, call up the uncompiled version and change it. 

Can’t ERASE file not opened as OUTIN. (7301)
You may not use the ERASE statement on a file, unless the file has been opened with ACCESS OUTIN. See the OPEN
statement in Chapters 12 and 18 for a description of the OPEN statement and file accesses. 

Can’t get STAT info for file in directory. (11270)
The user tried to usea a directory name in the template for Exec_Reader which is not allowed. 

Can’t INPUT from INTERNAL file. (7318)
You are trying to use the INPUT statement with an INTERNAL file; use READ instead.

Can’t input from OUTPUT file. (7303)
You may not read input from a file which was opened with ACCESS OUTPUT. If you must read from this file, change
the OPEN statement to use ACCESS OUTIN. 

Can’t invert singular matrix. (3009)
You are using the matrix INV function, but the matrix you want to invert is singular. Singular matrices simply have no
inverses. 

Can’t open temporary file. (9100)
You are using the file statement ERASE REST. True BASIC requires a temporary file to carry out this instruction, and
had trouble opening one.

Can’t open PRINTER (9101)
You have tried to open the printer but True BASIC has been informed that the attempt has failed, either because the
printer isn’t attached or has not been turned on. (This condition cannot be detected on all machines.)

516 True BASIC Language System



Can’t output to INPUT file. (7302)
You may not write data to a file which was opened with ACCESS INPUT. If you must output to this file, change the
OPEN statement to use ACCESS OUTIN. 

Can’t PRINT to INTERNAL file. (7317)
You are trying to use the PRINT statement with an INTERNAL file; use WRITE instead.

Can’t PRINT or WRITE to middle of this file. (7308)
You may not overwrite data in a text file. Use the RESET statement (see Chapter 12) to move the file pointer to the end
of the file before printing to it, or ERASE the file.

Can’t set ZONEWIDTH or MARGIN for INPUT file. (7313)
You are trying to set the zonewidth or margin on a file opened for input only. Change the file OPEN statement to include
ACCESS OUTPUT or ACCESS OUTIN.

Can’t set ZONEWIDTH or MARGIN for this file. (7312)
You are trying to set the zonewidth or margin on a file whose type is not TEXT or DISPLAY SEQUENTIAL.

Can’t SET RECSIZE on non-empty RECORD file. (-7250)
Once a record file has been created, it has a fixed record size. You cannot change a file’s record size without unsaving the
file and recreating it, or erasing the file. See the UNSAVE and ERASE statements. 

Can’t SET WINDOW in picture. (11004)
Pictures may not reset window or screen coordinates. Move the OPEN SCREEN or SET WINDOW statement to out-
side the picture. 

Can’t SKIP REST on STREAM file. (7321)
You are trying to SKIP REST on a STREAM file. SKIP REST applies only to skipping the rest of a record in a DIS-
PLAY or INTERNAL SEQUENTIAL file. STREAM files don’t have records.

Can’t UNLOCK range. (-7107)
LOCK and UNLOCK are not available in the initial release of Version 5.

Can’t use ANGLE(0,0). (3008)
ANGLE(0,0) is not defined. Make sure that at least one of its arguments is nonzero. 

Can’t use READ or WRITE for TEXT file. (-8503)
You are trying to use READ or WRITE on a file whose type is TEXT; use INPUT or PRINT instead. Or, you can open
the file with ORG SEQUENTIAL and RECTYPE DISPLAY (TEXT files and DISPLAY SEQUENTIAL files are
indistinguishable in content.)

Can’t use SAME here. (7204)
You are using the record-setter SAME and either the most recent operation on that channel caused an exception, or no
record operation has taken place since the channel was opened.

Can’t use this statement here.
You’ve used part of a True BASIC structure, but in the wrong place. For instance, you might have placed a CASE part
outside of any SELECT CASE statement, or ELSE IF statement outside of any IF-THEN statement. True BASIC also
prints this message if you add an extraneous statement between the SELECT CASE line and its first CASE part. Refer
to the proper chapters of this manual to see how the structured statements are formed. 

Can’t use #0 here (nonfatal). (7002)
You may not use channel #0 in OPEN or CLOSE statements, since #0 is always open. This exception is ignored unless
trapped.

517Appendix C: Explanation of Error Messages



Channel is already open. (7003)
You are trying to open a channel which is already open. Check and make sure that you’re not already using this channel
number somewhere else in your program. Also remember to CLOSE a channel when you’re done with it.

Channel is not open for TRACE. (7401)
You are trying to use TRACE to a file, but have not opened the file. Check to see that you have opened the file in the same
program-unit.

Channel isn’t a window. (-11005)
You are trying to switch to another window with the WINDOW statement, but the channel you’ve given is connected to
a file (not a window). Check and make sure that you’re giving the right channel number in the WINDOW statement. 

Channel isn’t open. (7004)
You’re trying to use a channel to access a file or window, but that channel isn’t open. Each channel must be opened by an
OPEN statement before it can be used. Check to see that you’ve given the right channel number, and that you did open
the channel. Also make sure you didn’t accidentally close the channel with a CLOSE statement. Finally, make sure that
if the channel was opened in a different program-unit, it was passed as an argument. 

Channel number must be 1 to 1000. (7001)
Channel numbers must lie in the range 1 to 1000. Change your program so it doesn’t use numbers outside this range.

CHR$ argument must be between 0 and 255. (4002)
You’ve tried to convert a number that is out-of-range to a character.

(Compiled program.)
This reminder appears in the editing window when you call up a compiled program, and after you give the COMPILE
command. Since compiled programs have been digested into an internal format, you cannot see the program’s text. Nor
may you try to change the program in any way; instead, you must call up the uncompiled version and modify it. 

Constant too large: constant in routine.
The numeric constant displayed is too large for your computer to handle. Use the built-in function MAXNUM to find the
largest possible number on your computer, and change your program to use a smaller number. 

Cursor set out of bounds. (9601)
Your SET CURSOR statement gives a row and column position that lie outside the current window’s bounds. Remem-
ber that each window has its own cursor addresses – the top left position in each window is row 1, column 1. Use ASK
MAX CURSOR to find out how many rows and columns are available. 

Data item isn’t a number. (8101)
You are trying to READ a number from a record file, but the current record in the file contains a string. You must read
strings into string variables. Make sure that you are at the right spot in the file. 

Data item isn’t a string. (-8104)
You are trying to READ a string from a record file, but the current record in the file contains a number. You must read
numbers into numeric variables. Make sure that you are at the right spot in the file. 

DET needs a square matrix. (6002)
The DET function can only be used on a square matrix, since the determinant is mathematically defined only for such
matrices.

Disk full. (9006)
You are writing output to a file, and the disk has become full. On some operating systems, this error may be given if the
directory containing the file has become full. Try removing other files from the disk. Your operating system may also lose
track of storage on the disk, so consult your operating system guide to see if there is some special utility program you can
run to recover lost storage. 

518 True BASIC Language System



Disk full (PostScript). (-9206)
This is the same as Disk full (9006), but specifically for a PostScript file opened with COPY_POSTSCRIPT. It could
occur while journalling graphics to a PostScript file.

Diskette removed, or wrong diskette. (9005)
You had opened a file, but, while True BASIC was using it, you removed the diskette and inserted another one. Don’t
switch diskettes while they’re in use! 

Diskette removed, or wrong diskette (PostScript). (-9205)
This is the same as Diskette removed, or wrong diskette (9005), but specifically for a PostScript file opened with
COPY_POSTSCRIPT. It could occur while journalling graphics to a PostScript file.

Division by zero. (3001)
One of your expressions tried to divide some quantity by zero. If you want to substitute the largest possible number and
continue (without an error), enclose the expression in a WHEN statement:

WHEN ERROR IN
LET x = (1+2+3)/0

USE
LET x = Maxnum

END WHEN

Maxnum is a True BASIC function which gives the largest positive number available on your computer. 

Do you want to save this file?
True BASIC gives you this reminder when you try to call up another file, start a new current file, or end your True BASIC
session without saving or replacing your current file. Enter yes if you do want to save the file (replacing the current saved
copy), no if you want to discard your changes, or cancel if you want to do something else (for example, save the file with a
different name). If you’re typing the response, you can abbreviate any of these replies to a single letter. 

Doesn’t belong here.
The cursor points to some word in your program that doesn’t make sense. Look to see what kind of statement you are
using, and then look up the proper form of that statement in Chapter 18 of this manual. Then correct your program and
continue. 

Ending doesn’t match beginning.
You are using a structured statement, such as FOR-NEXT or IF-THEN-ELSE, and the ending statement doesn’t prop-
erly match the beginning of the structure. Most likely you have forgotten the ending statement for some structure within
this one. Or you may have begun a FOR loop using one index variable, but used another variable on the NEXT statement.
Read the statements inside the structure carefully to see what you’ve left out. 

Error in PLAY string. (-4501)
The string given in your PLAY statement doesn’t follow True BASIC’s rules. See the description of PLAY in Chapters 15
and 18 for a description of how to write melodies in PLAY strings. 

Exception in CHAINed program. (-10006)
You have chained to a program with the RETURN option, and an exception has occurred in the target program and was
not handled there. Also included are the parameter mismatch exception (4301 and 4302).

Expected “thing”.
The cursor points to a spot where True BASIC expected some word or punctuation, but found something else. This mes-
sage may jog your memory enough so that you can repair the statement. Otherwise, look up the statement in this man-
ual, and then fix your program. 

Expected relational operator.
The cursor points to a spot where you must put a relational operator, such as = or <. Finish writing out the comparison
which must be there. (Note that True BASIC does not allow testing statements like IF A THEN ..., as some other BASICs
do. Change such statements to IF A<>0 THEN ....) 

519Appendix C: Explanation of Error Messages



File already exists. (9004)
You are trying to create a new file, but it already exists. Check to make sure that you’ve given the right file name. If you
want to overwrite an existing file, change the CREATE NEW in the OPEN statement to be CREATE NEWOLD. 

File already exists. Do you want to overwrite it?
You have tried to SAVE a file which already exists. Answering yes to this question replaces the file on disk. Any other
response abandons the command. If you’re typing the reply, you can abbreviate your response to the letter. 

File i/o error. (9000)
You have encountered a file input or output error that is not covered by the other file error messages.

File i/o error (PostScript). (-9200)
This is the same as File i/o error (9000), but specifically for a PostScript file opened with COPY_POSTSCRIPT. It could
occur while journalling graphics to a PostScript file.

File is read or write protected. (9001)
You are trying to read or write a file, but your operating system has write- or read-protected this file. True BASIC does
not know how to handle read and write protection, so exit from True BASIC and use your operating system to remove the
protection. This can also happen if your disk is write-protected; if so, you can remove the write protection from the disk
and try again. 

File is read or write protected (PostScript). (-9201)
This is the same as File is read or write protected (9001), but specifically for a PostScript file opened with COPY_POST-
SCRIPT. It could occur while journalling graphics to a PostScript file.

File pointer out of bounds. (-7252)
You are trying to use the RESET or SET POINTER or SET RECORD statement to change a file’s pointer. However,
the position you’ve given is either less than 1, or past the end of the file. Try using the ASK FILESIZE statement to find
how long the file is. 

File’s record size doesn’t match OPEN RECSIZE. (7103)
Each record file has its RECSIZE built into it. The RECSIZE of the file you’re trying to open doesn’t match the REC-
SIZE given in your OPEN statement. Are you sure you’re opening the right file? You may delete the RECSIZE part from
your OPEN statement to simply use the file’s record size. If you’re sure you want the RECSIZE given in the OPEN state-
ment, try performing a little test to discover the saved file’s RECSIZE. Open the file (without giving a RECSIZE), and
then use the ASK RECSIZE statement to determine the file’s record size. 

IDN must make a square matrix. (6004)
Identity matrices must be square. Therefore, when you use the IDN(x,y) function, you must make sure that x = y.

Illegal array bounds. (6005)
You’ve redimensioned an array in a MAT REDIM statement or with a redim-expression in a MAT statement where the
upper bound is less than the lower bound minus one (e.g., MAT A = Zer(-5) or MAT REDIM X(10 to 5). True
BASIC allows the lower bound to exceed the upper bound by one – thus defining an array with no elements. 

Illegal array bounds for name in routine.
You’ve defined an array in a DIM, LOCAL, SHARE, or PUBLIC statement with an upper bound less than the lower
bound minus one. (True BASIC allows the lower bound to exceed the upper bound by one, thus defining an array with no
elements.) 

Illegal data.
Your DATA statement is not properly written. Put commas between data items, but don’t put a comma at the end of the
list of items. Make sure that all quoted items are properly enclosed in quote marks: items such as “abc”def are not
allowed. See the DATA statement in Chapters 7 and 18 for descriptions of how to use data items that contain quote
marks or commas. 

520 True BASIC Language System



Illegal exit.
You’ve written an EXIT DO statement outside of any DO-LOOP structure. Or you have written an unknown kind of
EXIT statement, such as “EXITFRED.” Check to make sure that the EXIT statement lies properly within its structure,
and that the word following EXIT is spelled correctly. 

Illegal expression.
The cursor points to something in an expression that doesn’t follow True BASIC’s rules. Check to make sure that you
haven’t given two operators in a row (such as “1++2”), that you haven’t written down a number improperly (such as
“1,000”), and that all your variable names follow True BASIC’s rules. 

Illegal file.
You’ve written a SET or ASK statement that requires a channel number, but doesn’t have one. Or you’ve added a channel
number to a SET or ASK statement that doesn’t allow one. Add or delete the channel number, as appropriate.

Illegal keyword.
The cursor points to a word that doesn’t make sense in that location. For instance, you may have forgotten to add LINES,
AREA, or CLEAR in a BOX statement. Look up the statement in this manual, and correct your program. 

Illegal line number.
You might have a non-numbered line in a line-numbered program, or vice versa, or a GOTO or GOSUB to a nonexistent
line number, or one in a control structure. You might have a badly formed line number (e.g., more than six digits). Or you
might have a line with a number less than or equal to the previous line. 

Illegal number.
The cursor points to some spot where a number is required, but you’ve given something else. If you’ve written a
number there, make sure that you’ve followed True BASIC’s rules on numeric constants (see Chapter 17). Sometimes
True BASIC is very finicky about what it will accept as a number: for instance, only integer constants are allowed as
array bounds in DIM and OPTION BASE statements, and as line numbers. 

Illegal option.
The only options supported by True BASIC are OPTION ANGLE, OPTION BASE, OPTION NOLET, and OPTION
TYPO. Make sure you’ve spelled ANGLE, BASE, DEGREES, RADIANS, NOLET, or TYPO properly. 

Illegal parameter.
You’ve written a SUB or DEF or PICTURE line, defining a routine. Something is wrong with one of the parameters in
the parameter list. You may have listed one parameter twice, or used something more complicated than a simple vari-
able name. 

Illegal PostScript area definition. (-9209)
The arguments supplied to COPY_POSTSCRIPT are incorrect. You have passed a right value that is less than or equal
to the left value, or a top value less than or equal to the bottom value.

Illegal statement.
Each statement must begin with some True BASIC keyword, such as LET or SELECT. Check to make sure that you’ve
spelled the keyword properly. If you want to omit the keyword “LET”, see the description of the OPTION NOLET state-
ment in Chapters 2 and 18. 

Illegal statement: need LET for assignment, or try the NOLET command.
This is a wordier version of the “Illegal statement” error message if it looks like an assignment. Unless you use OPTION
NOLET, True BASIC requires that you use the word LET when assigning to a variable.

Improper NUM string. (-4020)
The string you’ve given to the NUM function doesn’t represent an IEEE 64-bit floating point number. Check to make sure
that you’ve correctly created, or read in, the string. 

521Appendix C: Explanation of Error Messages



Improper ORD string. (4003)
The ORD function requires either a one-character string, or a string giving the official name of an ASCII character. No
leading or trailing spaces are allowed. See Appendix A for a list of all the legal names for ASCII characters. 

Improper TEXT JUSTIFY value (nonfatal). (4102)
You’ve used an invalid word in SET TEXT JUSTIFY. See the SET TEXT JUSTIFY statement in Chapter 18 for the valid
words. Invalid words will be ignored and the program will continue with the previous TEXT JUSTIFY values.

Input item bigger than RECSIZE. (8302)
This message is only given for damaged record files. It indicates that some record in the file is bigger than the file’s record
size. This message can only arise if the diskette containing the file has somehow decayed, or if the file was tampered with
as a byte file, or from some application other than True BASIC. 

Input timeout. (8401)
You have executed an INPUT or similar statement with a TIMEOUT clause, and the user has failed to respond within
the allotted time.

INV needs a square matrix. (6003)
Matrix inversion is defined only for square matrices. You are trying to use the INV function on a non-square matrix.
Make sure that your matrix is two-dimensional, with the same size in each dimension. 

Invalid numeric argument (-4303)
Using the CHAIN statement, you have passed a non-numeric argument to a program which expects a numeric argument
in that position. Check the PROGRAM statement in the program to which you are CHAINing to find out what argu-
ments it expects.

LBOUND index out of range. (4008)
You are using a call such as LBOUND(A,3) and the array A doesn’t have three dimensions. Check to make sure that the
dimension given lies between 1 and the number of dimensions in the array. 

LOG of number <= 0. (3004)
Logarithms are only defined for positive numbers. 

MARGIN less than zonewidth. (4006)
Your SET MARGIN statement is trying to set a margin less than the zonewidth. This is not allowed. Check your mar-
gin, or change the zonewidth before you change the margin.

Mismatched array sizes. (6001)
You’re using a MAT statement that requires arrays of the same size, but the arrays are different sizes. For example,
matrix addition requires the two arrays added together to have the same sizes. Matrix multiplication has slightly more
complicated rules. 

Mismatched string array sizes. (6101)
You’re using a MAT statement with concatenation of string arrays, and the arrays are not the same size.

Mismatched dimensions for CHAIN/PROGRAM. (4302)
You are attempting to pass any array argument in the WITH clause of a CHAIN statement, but the number of its dimen-
sions does not agree with that of the array parameter in the PROGRAM statement. (This exception cannot be handled
by a WHEN USE structure.)

Mismatched parameters for CHAIN/PROGRAM. (4301)
The number and type of the arguments in a WITH clause in a CHAIN statement do not match the parameters in the cor-
responding PROGRAM statement. This exception will also occur if the CHAIN statement has a WITH clause while the
PROGRAM statement is either missing or lacks parameters, and vice versa. (This exception cannot be handled by a
WHEN USE structure.)

522 True BASIC Language System



Missing end statement.
Your program doesn’t end with an END statement. All True BASIC programs must contain END statements. Add an
END statement and try again. 

MOD and REMAINDER can’t have 0 as 2nd argument. (3006)
The MOD and REMAINDER functions do not allow zero as their second argument, since this is equivalent to dividing
by zero. Check to make sure you’re giving the arguments in the right order. 

Must be a function name.
You’ve written a DEF or FUNCTION line, but no proper function name follows the DEF or FUNCTION. See Chapter
10 for a description of how to define functions. 

Must be a number.
True BASIC allows numeric expressions almost anywhere that simple numbers are allowed, but there are a few excep-
tions. For instance, CASE tests may not use numeric expressions. Only numeric constants are allowed. If you must use
an expression, rewrite the SELECT CASE structure as an IF-THEN-ELSE structure. 

Must be a picture name.
Your DRAW statement names something other than a picture. Change the DRAW statement so it refers to a picture, and
try again.

Must be a program name.
You have used a PROGRAM statement without supplying an identifier (name) after it. The format of the PROGRAM
statement is PROGRAM identifier or PROGRAM identifier(funparmlist)..

Must be a string constant.
True BASIC allows string expressions almost anywhere that string constants are legal, but there are a few exceptions.
For instance, CASE tests may not use string expressions. If you must use a string expression, rewrite the SELECT
CASE structure as an IF-THEN-ELSEIF structure.

Must be a subroutine name.
The CALL statement can only be used to call subroutines. Change the statement so it uses a subroutine name. 

Must be a variable.
You’ve used an expression, or a routine name, where only a variable will do. For example, you must use variables in LET,
INPUT, ASK, and GET statements. Look up the statement in this manual to make sure you are using it properly. Also
make sure that the variable you’re using isn’t already used as a subroutine, picture, function, or array. 

Must be an array.
There are many places in True BASIC where you must give an array’s name, instead of an ordinary variable. For instance,
the MAT statements work only on arrays. Various functions, such as LBOUND and SIZE, also work only on arrays. Make
sure that you’re spelling the array’s name correctly and that you’ve named the array in a DIM statement. 

Must be an integer.
The function specified must have an integer argument. Check to see that you have supplied an integer. If the argument
is the result of calculation in your program, check to see if you need to use the INT or ROUND function to ensure that the
result is an integer.

Must be BYTE file for READ BYTES. (-7351)
You’re trying to use a READ BYTE statement on a text or record file. Files must be opened as byte files in order to be read
or written as byte files. Change the OPEN statement for this file to include an ORGANIZATION BYTE part. (See
Chapter 12 for a description of byte files.) 

Must be BYTE file or empty for SET RECSIZE. (-7251)
SET RECSIZE can only be used on byte files or empty record files. Text files don’t have record sizes, and non-empty
record files have their record sizes built into them. Check to make sure that you’re using the right channel.

523Appendix C: Explanation of Error Messages



Must be RECORD or BYTE file. (-8502)
You’re using the READ or WRITE statement on a text file, or on a window. These statements work only for record and
byte files. Check to make sure that you’re using the proper channel. Use the INPUT and PRINT statements for text files
and windows. 

Must be RECORD or BYTE file for SET RECORD. (7202)
SET RECORD cannot be used on text files. You may reset a text file’s pointer only to the very beginning or very end of
the file.

Must be a TEXT file. (-8501)
You’re using an INPUT or PRINT statement on a record file or a byte file. Record and byte files can only be read and writ-
ten by READ and WRITE statements. Check to make sure that the file you opened is actually a text file, if you don’t want
to handle record files. (ASK ORGANIZATION can tell you a file’s type.) 

Must invoke with CHAIN to pass array argument other than command line.
You have specified an array in the funparmlist in the PROGRAM statement of your program but have invoked the pro-
gram from the editor instead of from a CHAIN statement. Arrays may be passed into a program only through the use of
the CHAIN statement.

Must SET RECSIZE before WRITE. (-8304)
You cannot write to an empty record file without somehow first indicating that file’s record size. You may either execute
a SET RECSIZE statement before the first WRITE statement, or you may specify the file’s record size in the OPEN
statement. See Chapters 12 and 18 for a description of SET RECSIZE and OPEN. 

Name can’t be redefined.
You can’t use the same name for two different things. Thus, if you have a variable named X, you cannot also have a sub-
routine or array named X. Rename one of the things, so everything has its own unique name. True BASIC also prints this
message when you try to use a “reserved word” as a variable. 

Negative number to non-integral power. (3002)
You’re trying to compute n^x, but n is negative and x is not an integer. The results are mathematically meaningless. 

Nested INPUT statements with TIMEOUT clauses. (-8450)
While executing an INPUT or similar statement with a TIMEOUT clause, you have initiated another such statement,
perhaps as a side effect of a function evaluation.

No CASE selected, but no CASE ELSE. (10004)
You have executed a SELECT CASE statement, but no CASE test has succeeded. Since you didn’t have a CASE ELSE
part to catch this problem, True BASIC prints this error message. Check to make sure that the expression you’ve selected
is reasonable. Add a CASE ELSE part to handle all cases other than ones caught by the tests. If you want to ignore any-
thing besides those things tested for, add a CASE ELSE part with no statements in it. 

No GET MOUSE on this computer. (11140)
You’re trying to use a GET MOUSE statement, but your computer does not support a “mouse” input device or you have
forgotten to “install the driver” for your mouse. You may be able to use the GET POINT statement instead. 

No main program.
Your current file contains only functions, pictures, and/or subroutines – but doesn’t contain a main program. Go back and
write a main program! 

No saved copy—still want to compile?
You’ve just given a compile command. Remember that True BASIC discards the uncompiled version of your program
after compiling it. Here, True BASIC has noticed that you do not have a saved version of this program; either you’ve never
saved a copy, or you’ve modified it since you last saved a copy. Answer “yes” if you want to go ahead and compile the pro-
gram, or “no” if you want to stop and save a copy before trying again. 

524 True BASIC Language System



No such color. (-11008)
You’re using the SET COLOR statement with some color name that True BASIC doesn’t recognize. You may give color
names in upper- or lowercase, but may not use extra spaces in the names. See Chapter 13 for a complete list of the color
names known to True BASIC. 

No such directory. (9008)
You have tried to enter a nonexistent directory, or given a name which isn’t a directory. 

No such directory (PostScript). (-9208)
This is the same as No such directory (9008), but specifically for a PostScript file being opened with COPY_POSTSCRIPT.

No such file. (9003)
You’re trying to use a file that doesn’t exist. Check to make sure you spelled the program’s name properly, and to make
sure you have inserted the correct disk in your computer. 
(True BASIC attaches extensions to file names for some operating systems. For example, True BASIC programs are usu-
ally saved with a “.TRU” extension under the Windows and OS/2 systems. Check to make sure you’ve added the correct
extension in an OPEN statement that tries to open programs.) 

No such file (PostScript). (-9203)
This is the same as No such file (9003), but specifically for a PostScript file being opened with COPY_POSTSCRIPT.

No such line numbers.
You’ve given a range of line numbers in some command, but no lines have those numbers. 

No USING item for output. (8202)
The format string in your USING$ function or PRINT USING statement has no format items in it. That is, it contains
only literal text. See Chapter 3 and Appendix D for descriptions of how to write format strings and add a format item.

ON index out of range, no ELSE given. (10001)
You’ve used an ON GOTO or ON GOSUB statement, and the number on which you’re branching is out of range. For
instance, you can get this message for “ON X GOSUB 100,120,130” if X is less than 1 or greater than 3. Check to make
sure that the index’s value is reasonable. If you want to handle indexes out of bounds, add an ELSE part to the ON state-
ment. See Appendix E for a description. 

Out of memory. (5000)
Your problem requires more memory than is attached to your computer. Since True BASIC will use all the memory sup-
plied with your computer, you may be able to fix this problem by buying more memory. Otherwise, you must try to use
less memory. Here are a few suggestions.
Use smaller arrays. Arrays can take up a surprising amount of space, especially if they have more than one dimension.
If you have big arrays, see if you can solve your problem using smaller arrays.
Compile your program, and use the compiled version. The program text itself may take up a fair amount of room. Save
your program and then compile it. This will compile your program into a much more compact form. Try running the com-
piled version of the program. 
Check for “run-away” calls. You may have accidentally written a procedure that calls itself. This is perfectly legal, and
often useful. But each call requires some amount of space, and such an accident can cause this error. The same effect
comes from a routine that GOSUBs into itself, but forgets to RETURN.
If you are an advanced programmer, you may wish to try the Packb and Unpackb routines as a last resort. They let you
pack data, so that more data can be fit into memory. see the PACKB subroutine and the UNPACKB function for details. 

Output item bigger than RECSIZE. (8301)
You’re trying to WRITE an item to a record file, but it doesn’t fit in the record size established for that file. Use ASK REC-
SIZE to find the file’s record size. No item can be longer than the record size. Remember that numbers are stored using
eight characters (bytes) per number. 

525Appendix C: Explanation of Error Messages



Overflow. (1002)
You’ve computed a number bigger than the one your computer can handle. Use the built-in function MAXNUM to find
the largest number that your computer can use. If you wish to have overflows silently turned into the largest possible
number, enclose your computation in a WHEN structure: 
WHEN ERROR IN

LET x = 10^(10^10)
USE

LET x = Maxnum
END WHEN

Overflow in DET or DOT. (1009)
You have generated an overflow in the course of evaluating the DET or DOT function.

Overflow in file INPUT. (1008)
You have generated an overflow in the course of inputting a number from a TEXT or DISPLAY SEQUENTIAL file.

Overflow in INPUT (nonfatal). (1007)
You have entered as input a number that is too large. You will need to reenter the entire input line.

Overflow in MAT operation. (1005)
You have generated an overflow in the course of evaluating a MAT operation.

Overflow in numeric constant. (1001)
You have used a numeric constant that is just too large, as in LET x = 1e1000.

Overflow in numeric function. (1003)
You have generated an overflow in the course of evaluating a function, such as EXP or TAN.

Overflow in READ. (1006)
You have generated an overflow in the course of reading a number from a data statement.

Overflow in VAL. (1004)
You have generated an overflow in the course of evaluating the VAL function.

PostScript journalling already enabled. (-9210)
You have tried to call BEGIN_POSTSCRIPT after having already called BEGIN_POSTSCRIPT without subse-
quently calling END_POSTSCRIPT. You may journal to only one PostScript file at a time.

Program not available for CHAIN. (-10005)
You are attempting to chain to a program that is not available or perhaps does not exist. Check the name of the file in the
CHAIN statement. 

Program unit too large: name
A program unit in your program (usually the “Main program”) has exceeded the 64K intermediate code limit. Move some
code into external routines. 

Range or part of range is already LOCKed. (-7108)
LOCK and UNLOCK are not available in the initial release of Version 5.

Reading past end of file. (8011)
You’re trying to read more than exists in the file. This message can be given for any kind of file. Check carefully to see if
the file contains everything you think it should. You may find the MORE #1 and END #1 tests useful for reading files of
variable lengths. 

REPEAT$ count < 0. (4010)
You’re using the REPEAT$(s$,n) function, but n is less than zero. Check to make sure that you’ve typed the right vari-
able name. 

526 True BASIC Language System



RETURN without GOSUB. (10002)
You’ve just executed a RETURN instruction, but there has been no corresponding GOSUB instruction. These things are
rather difficult to diagnose and fix. Rewrite your program to use subroutines, and such problems cannot occur. 

Record LENGTH <= 0. (7051)
You have specified a maximum record length less than or equal to 0 in the RECSIZE option in the OPEN statement. 

Screen bounds must be 0 to 1. (-11003)
The bounds given on an OPEN SCREEN statement must lie in the range 0 to 1 (inclusive). No matter how big your
screen is, the left and bottom edges are defined to be 0; the right and top edges are defined to be 1. See Chapter 13 for a
description of how to open windows on the screen. 

Screen minimum >= maximum. (-11002)
The OPEN SCREEN statement takes four numbers defining the edges of the new window: left, right, bottom, top. The
right edge must be greater than the left edge, and the top edge must be greater than the bottom. Make sure you’ve typed
the edges in the right order. If you’re trying to get a reversed window, you can do this by reversing the edges in a SET
WINDOW statement. 

SIZE index out of range. (4004)
You’re trying to take Size(A,3), for instance, when the array A has fewer than three dimensions. Check the relevant DIM
statement to see how many dimensions the array has. The second argument must lie between 1 and this number. 

SQR of negative number. (3005)
You are trying to take the square root of a negative number. This is not possible. 

Statement outside of program.
The cursor points to a statement outside of your main program, and not included within any external routine. Check to
make sure you haven’t accidentally moved the END statement so that it is no longer at the end of your program. 

String given instead of number (nonfatal). (8103)
You’ve executed an INPUT statement which is trying to input a number. However, the reply given isn’t a number – it
only makes sense as a string. If you’re inputting from the keyboard, and want to avoid this message, you should convert
your input statement so it reads a string, and then use the VAL function to convert the result to a number. (You can
enclose the call to VAL within an error handler to suppress the error message.) If this exception occurs, you will be
requested to reenter the entire input line.

String too long. (1051)
You’ve tried to create a string longer than the maximum size allowed on your computer. 

String too long in assignment. (1106)
You’ve tried to use a string that is too long in a LET statement.

String too long in file INPUT. (1105)
You’ve tried to input from a file a string that is too long.

String too long in INPUT (nonfatal). (1054)
You’ve tried to input a string that is too long for the string variable or array. You will be required to enter the entire input
line.

String too long in MAT. (1052)
You’ve tried to use a string that is too long in a MAT operation.

String too long in READ. (1053)
You’ve generated a string that is too long while reading from a data statement.

527Appendix C: Explanation of Error Messages



Subscript out of bounds. (2001)
You’ve given an array subscript which lies outside the array’s bounds. Try printing the subscript and then using
LBOUND and UBOUND to find the array’s bounds. 

System error.
An error has occurred in the True BASIC system itself. Contact tech support.

TAB column less than 1 (nonfatal). (4005)
You’ve used the Tab function in a PRINT statement, but its argument is less than 1. TAB(1) will be executed instead . If
the TAB argument is greater than the current margin, it will be replaced by its value “modulo” the current margin. 

This must first appear in a DIM or DECLARE DEF.
The cursor points to something that is evidently an array or a function. But True BASIC can’t tell which it is. Be sure to
add a DIM or DECLARE DEF line before this line, so True BASIC will know what it is.

Timeout value < 0. (8402)
You have specified a timeout value < 0 in the TIMEOUT clause of an INPUT or similar statement.

Too few data in record. (8012)
You are attempting to READ or INPUT more elements than are present in a record from a DISPLAY or INTERNAL
SEQUENTIAL file. Make sure the READ or INPUT statement contains the same number of variables as there are ele-
ments in the record.

Too few input items (nonfatal). (8002)
You’ve executed an INPUT statement, and the input reply doesn’t contain as many items as the INPUT statement
requested. You will be requested to reenter the entire input line. If you want to spread out input items over several lines,
be sure to end all lines but the last with a comma. 

Too many channels open. (7102)
You have tried to open more than 25 channels — files or windows. True BASIC can only handle 25 channels being open
at any time. Try closing some excess channels. 

Too many channels open. (9007)
You’ve opened more files than the operating system allows. The maximum number that can be open at one time varies
between machines, but generally is at least as large as 25.

Too many channels open (PostScript). (-9207)
This is the same as Too many channels open (9007), but specifically for a PostScript file being opened with COPY_POST-
SCRIPT.

Too many data in record. (8013)
You are attempting to READ or INPUT fewer elements than are present in a record from a DISPLAY or INTERNAL
SEQUENTIAL file. Make sure the READ or INPUT statement contains the same number of variables as there are ele-
ments in the record, or use SKIP REST.

Too many input items (nonfatal). (8003)
You’ve executed an INPUT statement, and the input reply line contains more items than the INPUT statement
requested. You will be requested to reenter the entire input line. 

Too many shared channels in routine.
You can only have 1000 shared channels. 

Trouble using disk or printer. (9002)
True BASIC is having trouble using one of your disks or your printer. This message is given for various reasons on dif-
ferent computers. Check to make sure that the power is turned on, that a diskette is inserted in your disk drive, that your
printer has sufficient paper and that it’s not jammed, that the connecting cables are securely attached, and so forth. If
you cannot find the error, try running your computer’s diagnostic tests. 

528 True BASIC Language System



Trouble using disk or printer (PostScript). (-9202)
This is the same as Trouble using disk or printer (9002), but specifically for a PostScript file opened with COPY_POST-
SCRIPT. It could occur while journalling graphics to a PostScript file.

Type is wrong for name in routine.
You’ve tried calling a routine named name within another routine named routine. However, you got the arguments wrong
in this call – they don’t match the parameter list. You must give the same number of arguments as parameters, and they
must be given in the same order. Check for passing numbers to strings, or vice versa. Also make sure that you’re not try-
ing to use a function as a subroutine, or vice versa. 

UBOUND index out of range. (4009)
You’ve tried calling something like UBOUND(A,3), where A is an array with less than 3 dimensions. Check the DIM
statement for A to see how many dimensions it has, or if you might have used UBOUND without specifying a dim.

Undefined public variable name in routine.
You’re trying to use a public variable (in a DECLARE PUBLIC statement) that you haven’t defined in a PUBLIC state-
ment. Either add a PUBLIC statement for this variable in some appropriate routine, or change one of the DECLARE
PUBLIC statements to a PUBLIC statement. 

Undefined routine name in routine.
The routine named name has tried to use a function, subprogram, or picture named name. Unfortunately, this function,
subprogram, or picture is nowhere defined. Check to see that you spelled the name correctly, and that you included a
LIBRARY statement for the file which contains this routine.
True BASIC says “in MAIN program” if the error occurred in your main program.

Unknown value for OPEN option. (7100)
The option you gave after the ACCESS, CREATE, or ORGANIZATION part of the OPEN statement doesn’t exist.
Print the string you used, and check it against the list of available options listed with the OPEN statement in Chapters
12 and 18. Although you can write the option in any mixture of upper-and lowercase letters, you may not abbreviate
options or include excess spaces. 

Unknown variable.
You are using OPTION TYPO to check for spelling mistakes, and it has found a variable name that you haven’t declared
anywhere. If True BASIC has found a typing mistake, just correct the spelling. Otherwise, add a LOCAL statement that
lists this variable, or include the variable in its correct DECLARE PUBLIC or SHARE statement. 

User-defined coordinates too large for GET MOUSE (POINT). (-11009)
The coordinates you have specified for the current window, while legal, are too large for GET MOUSE or GET POINT
to perform the necessary arithmetic to return a value without causing an overflow. Try using a coordinate system with
smaller extremes.

USING exponent too large for field (nonfatal). (8204)
You’ve tried to output a number with a USING string and the exponential field (i.e., ̂ ^^) is not large enough. The par-
tially completed line will be printed with asterisks in place of the using field, the numeric value will be printed on the next
line, and printing will continue on the following line. You should extend the using field by adding one or more ̂ ’s.

USING value too large for field (nonfatal). (8203)
You’ve tried to output a number or string with a USING string and the field (i.e. ###) is not large enough. The partially
completed line will be printed, then the offending value will be printed on the next line, and the USING string continued
on the third line. You should extend the field by adding one or more #’s.

VAL string isn’t a proper number. (4001)
You’ve called the Val function, but the string you gave doesn’t properly represent a number. See Chapters 2 and 17 for
descriptions of how to write numbers for True BASIC. 

529Appendix C: Explanation of Error Messages



Window minimum = maximum. (-11001)
You’ve executed a SET WINDOW statement that sets the vertical or horizontal window maximum equal to the mini-
mum. True BASIC doesn’t allow this, as it wouldn’t let you see anything in that window. Remember that the order of
edges for the SET WINDOW command is left, right, bottom, top.

Wrong file type for TRACE. (7402)
You have opened a file to use with TRACE, but it is the wrong type. It must be a TEXT or DISPLAY SEQUENTIAL file.

Wrong number of arguments.
You’re calling a function, subprogram, or picture, but giving the wrong number of arguments. Look up the routine’s def-
inition in your program (if you’ve written it), or in this manual; then correct the call.

Wrong number of dimensions.
You’re trying to use an array, but have given the wrong number of dimensions. Check this use against the array’s DIM
statement, and make sure that both have the same number of subscripts. If you’re passing an array to a routine, check
the routine’s parameters. Remember that a two-dimensional array must be indicated as A(,) in the parameter list, a
three-dimensional array by A(,,) and so forth. 

Wrong type.
You’re trying to use a string where a number is needed, or a number where a string is needed. Check to make sure you’re
not trying to assign a number to a string variable, or vice versa. Remember, too, that string concatenation is written using
an ampersand (&) in True BASIC, and not a plus sign (+). 

Wrong type of file. (7104)
Each kind of True BASIC file has its type built into it. Thus, True BASIC can tell text files from record files from compiled
files. You have indicated, in your OPEN statement, that the file has a certain type, but it doesn’t. Correct your OPEN
statement. If you really mean to ignore the file’s correct type, open it as a byte file. 

Wrong type of file for LOCK (UNLOCK). (-7105)
LOCK and UNLOCK are not available in the initial release of Version 5.

You have two public variables called name.
You can’t have more than one public variable with the same name. If you mean to have two different variables, change
the name of one. Or if you want different parts of your program to refer to this same variable, change all but one of the
related PUBLIC statements to be a DECLARE PUBLIC statement.

You have two routines called name in routine.
In the routine named routine, you’ve defined two different routines named name. Since different things must have dif-
ferent names, you must change the name of one of them. Be sure to go through all calls to that routine, and change those
names too.
True BASIC says “in MAIN program” if the error occurred in your main program (before the end statement). 

Zero to negative power. (3003)
You are trying to compute 0^n, where n < 0. This is mathematically undefined, and so True BASIC gives an error. 

ZONEWIDTH out of range. (4007)
You’ve executed a SET ZONEWIDTH statement, trying to set the zonewidth less than 1, or greater than the margin.
Either fix the SET ZONEWIDTH statement, or use an ASK MARGIN statement to find out the current margin, and
make the line wider with a SET MARGIN statement.

530 True BASIC Language System



APPENDIX

D
PRINT USING Specifications

True BASIC normally prints numbers in a form convenient for most purposes. But on occasion you may prefer a
more elaborate form. For example, you may want to print financial quantities with two decimal places (for cents)
and, possibly, with commas inserted every three digits to the left of the decimal point. PRINT USING provides a
way to print numbers in this and almost any other form.

Here is an example of the PRINT USING statement.
PRINT USING format$: x, y, z

Format$ is a string of characters that contains the instructions to PRINT USING for “formatting” the printing
of x, y, and z. This string is called a format string. It may be a string variable (as shown above), a quoted string,
or a more general string expression.

PRINT USING also lets you print strings centered or right-justified, as well as left-justified. (The normal PRINT
statement prints both strings and numbers left-justified within each print zone; see Chapter 18, the PRINT
statement.)

The function USING$ duplicates the PRINT USING statement almost exactly but returns the result as a string
rather than printing it on the screen. For example, the following two statements yield the same output as the
preceding PRINT USING statement.

LET outstring$ = Using$(format$, x, y, z)
PRINT outstring$

The USING$ function allows you to modify or save the string outstring$ before printing it. You can also
use this function with WRITE and PLOT TEXT statements. (See Chapter 18, for the USING$ function.)

The following runtime errors can arise:

Exceptions: 8201 Badly formed USING string.
8202 No USING item for output.
8203 USING value too large for field. (nonfatal)
8204 USING exponent too large for field. (nonfatal)

Formatting Numerical Values
The basic idea of a format string is that the symbol “#” stands for a digit position. For example, let us compare the
output resulting from two similar PRINT statements, the first a normal PRINT statement and the second
employing USING.

PRINT x
PRINT USING “###”: x

In the following table, the symbol “|” is used to denote the left margin and does not actually appear on the screen.

531



x PRINT x PRINT USING “###”: x
- ------- --------------------
1 | 1 |  1
12 | 12 | 12
123 | 123 |123
1234 | 1234 |***

Without USING, the number is printed left-justified with a leading space for a possible minus sign; it occupies
only as much space as needed. With USING, the format string “###” specifies a field length of exactly three
characters. The number is printed right-justified in this field. If the field is not long enough to print the number
properly, asterisks are printed instead and the unformatted value (here, of x) is printed on the next line and print-
ing continues on the following line. If all you need to do is to print integer numbers in a column but with right-jus-
tification, then the preceding example will suffice.

Printing financial quantities so that the decimal points are aligned is important. Also, you may want to print two
decimal places (for the cents) even when they are “0”. The following example shows how to do this. (To print nega-
tive numbers, the format string must start with a minus sign.)

x PRINT x PRINT USING “-##.##”: x
- ------- -----------------------
1 | 1 |  1.00
1.2 | 1.2 |  1.20
-3.57 |-3.57 |- 3.57
1.238 | 1.238 |  1.24
123 | 123 |******
0 | 0 |   .00
-123 |-123 |******

Notice that two decimal places are always printed, even when they consist of zeroes. Also, the result is first rounded
to two decimals. If the number is negative, the minus sign occupies the leading digit position. If the number is too
long to be printed properly (possibly because of a minus sign), asterisks are printed instead, the unformatted value
is printed on the next line, and printing continues on the following line.

Financial quantities are often printed with a leading dollar sign ($), and with commas forming three-digit groups
to the left of the decimal point. The following example shows how to do this with PRINT USING.

x PRINT USING “$#,###,###.##”: x
- ------------------------------
0 |$         .00
1 |$        1.00
1234 |$    1,234.00
1234567.89 |$1,234,567.89
1e6 |$1,000,000.00
1e7 |*************

Notice that the dollar sign is always printed and is in the same position (first) in the field. Also, the separating
commas are printed only when needed.

You might sometimes want the dollar sign ($) to float to the right, so that it appears next to the number, avoiding
all those blank spaces between the dollar sign and the first digit in the preceding example. The following example
shows how to do this.

532 True BASIC Language System



x PRINT USING  “$$$$$$$#.##”: x
- -----------------------------
0 |      $ .00
1 |      $1.00
1234 |   $1234.00
1234567.89 |$1234567.89

Digit positions represented by “$” instead of “#” cannot surround or be next to commas.

In the previous two examples, no negative amounts can be printed since the format string does not start with or
contain a minus sign.

The format string can also allow leading zeroes to be printed, or to be replaced by asterisks (*). You might find the
latter useful if you are preparing a check-writing program.

x PRINT USING “$%,%%%,%%%.##”: x
- ------------------------------
0 |$0,000,000.00
1 |$0,000,001.00
1234 |$0,001,234.00
1234567.89 |$1,234,567.89

x PRINT USING “$*,***,***.##”: x
- ------------------------------
0 |$*********.00
1 |$********1.00
1234 |$****1,234.00
1234567.89 |$1,234,567.89

You can also format numbers using scientific notation. Because scientific notation has two parts, the decimal-
part and the exponent-part, the format string must also have two parts. The decimal-part follows the rules
already illustrated. The exponent-part consists of from three to five carets (^) that must immediately follow the
decimal-part. The following example shows how.

x PRINT USING  “+#.#####^^^^”: x
- ------------------------------
0 |+0.00000e+00
123.456 |+1.23456e+02
-.001324379 |-1.32438e-03
7e30 |+7.00000e+30
.5e100 |+5.00000e+99
5e100 |************

Notice that a leading plus sign (+) in the format string guarantees that the sign of the number will be printed, even
when the number is positive. Notice also that the last number cannot be formatted because the exponent part would
have been 100, which requires an exponent field of five carets. Notice also that if there are more carets than needed
for the exponent, leading zeroes are inserted. Finally, notice that trailing zeroes in the decimal part are printed.

Floating Characters
You’ll notice that one of the previous examples includes several “$”, but that only one of them is actually printed.
It is printed just to the left of the left-most non-zero digit, but always within the positions given by the sequence
of “$”. We say that the sequence of “$” defines a floating region and that the spot where the “$” is printed floats
within this region.

Besides the “$”, the plus sign (+) and the minus sign (-) can also define floating regions. The rules are:
1. You can use either zero, one, or two different floating characters (“+” and “-” cannot both appear, and

neither can commas.)

533Appendix D: PRINT USING Specifications



2. You can repeat the first (or only) floating character an arbitrary number of times, but not the second.
3. Zero to two different floating characters generate a sequence of zero to two characters called a header,

as follows:

The Floating Header

First Second Positive Negative
$ + “$+” “$-”
$ - “$ “ “$-”
$ none “$” error
+ $ “+$” “-$”
+ none “+” “-”
- $ “ $” “-$”
- none “  “ “-”

none none “” error

Notice that the header contains the same number of characters as the number of different floating
characters.

4. The zero to two character header will be printed as far to the right as possible within the floating
region.

5. The numerical value’s leading digits can overflow into the floating region, thereby “pushing” the
header to the left.

6. If the numerical value exceeds the total space provided, the entire space is filled with asterisks.

The following example illustrates some of these rules.

PRINT x PRINT USING “$$$$$$$-#,###.##”: x
------- ---------------------------------
| 0 | $ .00
| 1 | $ 1.00
|-1 | $- 1.00
| 4321.5 | $ 4,321.50
|-4321.5 | $-4,321.50
| 1.23456789e+7 | $ 12345,678.90
|-1.23456789e7 | $-12345,678.90
| 1000000000 | $ 1000000,000.00
|-1000000000 | $-1000000,000.00

Notice that the “$” is never printed outside the floating region. A place is allocated for the minus sign. The
leading digits of the numerical value can overflow into the floating region, which does not (and cannot) contain
commas. 

534 True BASIC Language System



Formatting String Values
Strings can also be formatted through PRINT USING or the function USING$, although there are fewer options
for strings than for numbers. Strings can be printed in the formatted field either left-justified, centered, or right-
justified. As with numbers, if the string is too long to fit, then asterisks are printed, the actual string is printed on
the next line, and printing continues on the following line. The following example shows several cases.

USING String to be Printed
string “Ok” “Hello” “Goodbye”
------ ---- ------ ---------
“<####” |Ok |Hello |*******
“#####” | Ok |Hello |*******
“>####” |   Ok |Hello |*******

Notice that if centering cannot be exact, the extra space is placed to the right.

Any numeric field can be used to format a string, in which case the string is centered. This is especially valuable
for printing headers for a numeric table. The following example shows how you can format headers using the same
format string we used earlier for numbers.

s$ PRINT USING “$#,###,###.##”: s$
------- ----------------
“Cash” |    Cash
“Liabilities” | Liabilities
“Accounts Receivable” |*************

Multiple Fields and Literals in Format Strings
A PRINT USING format string can contain several format items. For example, to print a table of sines and
cosines, we may want to use:

LET format$ = “-#.###  -#.######  -#.######”
PRINT USING format$: x, sin(x), cos(x)

The value of x will then be printed to three decimals, while the values of the sine and cosine will be printed to six
decimals. Notice also that spaces between the format items will give equal spaces between the columns in the
printed result.

If there are more format items than there are values (numbers or strings) to be printed, the rest of the format
string starting with the first unused format item is ignored. If there are fewer format items than values to be
printed, the format string is reused, but starting on the next line. Thus,

PRINT USING “  -#.#####”: 1.2, 2.3, 3.4

will yield:
1.20000
2.30000
3.40000

We have just seen that spaces between format items in a format string are printed. That is, if there are four spaces,
the four spaces are printed. The same is true for more general characters that may appear between format items.
The rule is simple: you can use any sequence of characters between format items except the special formatting
characters. The characters you use will then be printed.

The special formatting characters are:

#   %   *   <   >   ^   .  +   -   ,   $

535Appendix D: PRINT USING Specifications



The following example illustrates this use.

PRINT USING “#.## plus #.## equals #.##”: 1.2, 2.3, 1.2+2.3

will yield:

1.20 plus 2.30 equals 3.50

If there are fewer values than format items, the unused format items are ignored, but the last intervening literal
string is printed. Thus,

PRINT USING “#.## plus #.## equals #.##”: 1.2, 2.3

will yield

1.20 plus 2.30 equals 

If you need to have one of the special formatting characters appear in the output – for example, if you want to have
a final period, as in the last example – you can simply add a one-character field to the format string and add the
quoted-string “.” to the PRINT statement. Thus,

LET x = 1.2
LET y = 2.3
PRINT USING “#.## plus #.## equals #.## #”: x, y, x+y, “.”

will yield

1.20 plus 2.30 equals 3.50 .

ANSI -Standard Forms
True BASIC employs two forms of the PRINT USING and USING$ functions. The first is the version used since
version 1.0 of the Language System. This is the default in Version 5.

The other is a completely ANSI-standard version, which is slightly more restrictive. If you wish to use this version,
you may include the statement OPTION USING ANSI in your program before the first USING statement that
you wish to conform to the ANSI standard. 

To switch back to the default version, you may include the statement OPTION USING TRUE before the first
USING statement that you wish to conform to the True BASIC specifications.

536 True BASIC Language System



APPENDIX

DO Programs

Do Programs in TB Silver again operate as they did in earlier DOS and Macintosh versions. That is, Do
Programs are external subroutines with a certain calling sequence. They can operate on the source file in the
editing window that was active when the Do program was invoked. Or they can take actions independent of the
contents of the editing window.  (This simple model was not used for versions 5.0 and 5.1.)

Do Program Calling Sequence
The Do program must be written as an external subroutine with the first two relevant lines as follows:

EXTERNAL
SUB MyDoProgram (lines$(), options$)

and with and END SUB somewhat later.
The actual names don’t matter. In particular, the name of the subroutine is arbitrary. Do programs are accessed
by the name of the file which contains them, not by the subroutine name.
Do programs can be invoked from the Run menu, or through a typed command. If the latter, TB Silver looks in the
directory TBDo, unless you have established a different “alias” for {DO}. 
This can be done by typing the command:

Alias {do} c:\TBSilver\TBdo, C:\MyDir\Do

The Do command first examines the standard location for do programs; if not found, it examines additional
directories.
When the Do subroutine starts, its first argument, the string array list$(), will contain the lines of the file
currently displayed in the editing window that was active when the Do program was invoked. The string variable
options$ will contain anything provided by the Do program dialog box, or following a comma with a typed
command. An illustration of the latter is:

do mydoprogram, 1 2 3

will supply the string “1 2 3” to the variable options$. Note that a comma must be used to separate the name of
the do program file from the options.
You can modify the contents of the string array in the do program. When the do subroutine ends, the current
editing window will contain the possibly modified lines.
Preparing Do programs is easy. Examine the source code in the subdirectory Sources in the directory TBDo for
ideas.

An Example
Suppose you wish to convert the contents of an editing window to all uppercase letters, or to all lowercase letters.
You might write:

EXTERNAL

541

E



DO ChangeCase (lines$(), options$)

FOR i = 1 to ubound(lines$)
IF options$ = “upper” then

LET lines$(i) = Ucase$(lines$(i))
ELSE IF options$ = “lower” then

LET lines$(i) = lcase$(lines$(i))
END IF

NEXT i

END SUB

The user might invoke this do subroutine with either of
do dofile, upper
do dofile, lower

A more sophisticated do subroutine would first check to see that the options provided were legal and spelled
correctly.

542 True BASIC Language System



APPENDIX

Scope and Aliasing

A program deals with various objects, such as variables, channels, and data. Some of these (specifically variables,
arrays, functions, and data) are identified or referred to by their names. Channels are referred to by their channel
numbers. Data is accessible according to its location in the program.

A program may contain statements whose effect may be the entire program, or only a part of it. For example, the
margin and zonewidth of the default window are the same (until changed) throughout the entire program, while
a DIM statement applies only to the program-unit that contains it.

The portion of the program over which an object can be accessed, or a statement has its effect, is called the scope
of the object or statement. In this appendix we outline the scope of several parts of a True BASIC program. We also
briefly describe aliasing, in which the same object is identified by two or different names.

Scope
The following list summarizes the scope of program elements and statements.

variable program-unit
array program-unit
procedure parameter procedure
internal procedure containing program-unit
program-unit program
channel #0 program
channel #n, n>0 program-unit
GOSUB stack containing procedure, exception handler, or program-unit
RND sequence program
SET and ASK objects program
line numbers program-unit
DATA program-unit
DIM program-unit or module header
LOCAL containing procedure or program-unit or module header
SHARE module header and all module procedures, program unit
PUBLIC program (DECLARE PUBLIC needed outside the module or 

program-unit containing the PUBLIC statement)
DECLARE PUBLIC program-unit
DECLARE DEF program-unit
OPTION TYPO the rest of file
OPTION NOLET the rest of file
OPTION ANGLE the rest of program-unit, or the rest of the module (until overridden

by the next OPTION ANGLE)
OPTION BASE the rest of the program-unit, or the rest of the module (until

overridden by the next OPTION BASE)

543

F



The following objects have as their scope the entire program (that is, the main program and all associated mod-
ules and external procedures).

1. Program-unit. The name of a program-unit is known throughout, and the program-unit can be accessed
from any part of the program. (A program-unit is an external subroutine, defined function, or picture. A
DECLARE DEF statement is needed to access an external defined function.)

2. Channel #0. Channel #0 always refers to the default window, which is used for input, output, and graph-
ics.

3. RND sequence. The random number sequence provided by the RND function is the same for every pro-
gram, in the absence of a RANDOMIZE statement.

4. SET and ASK objects. All file and graphics SET objects are known throughout the program and remain
SET until changed. (File SET objects can be determined only by an ASK statement with the file channel
number. Current window SET objects can be determined by an ASK statement without a channel num-
ber.)

5. PUBLIC variables and arrays. All variables and arrays whose names appear in PUBLIC statements are
known throughout the program. (A DECLARE PUBLIC statement is needed if outside the module or
program-unit containing the PUBLIC declaration.)

The following objects have as their scope the containing program-unit.
1. Variables and arrays. Variables and arrays that appear in program-units are accessible throughout that

program-unit. (This is true whether or not the variables or arrays appear in LOCAL statements, or
whether the arrays are declared in LOCAL or DIM statements, as long as such LOCAL statements are
not contained within an internal procedure.)

2. Parameters in external procedures. The parameters in an external SUB, DEF, or PICTURE statement
have as their scope the associated external subroutine, defined function, or picture.

3. Internal procedure. An internal procedure contained within a program-unit can be accessed only from
that program-unit.

4. Channel #n, n>0. All channels, other than channel #0, are known to, and accessible from, only the program-
unit containing their OPEN statement, or the program-unit containing them as parameters.

5. Line numbers. Line numbers are available as targets of GOTO and similar statements only from within
the containing program-unit.

6. DATA sequence. The data-sequence of a program-unit is formed from the DATA statements in the
program-unit, whether or not the DATA statements are contained within internal procedures.

7. DECLARE DEF and DECLARE PUBLIC. The DECLARE DEF and DECLARE PUBLIC statements are
required in each program-unit that wishes to access public variables or arrays, or external defined functions.
Such statements must appear before the first use of the public variable or defined function.

8. SHARE statements. Variables, arrays, and channel numbers included in SHARE statements are acces-
sible throughout the containing program-unit or, if the SHARE statement occurs in a module-header,
throughout the module. Such variables and arrays retain their values between invocations of the pro-
gram-unit, if the program-unit is not a main program.

The following objects have as their scope the smaller of the containing internal procedure or program-unit. That
is, if they are found inside an internal procedure, they apply only to that procedure.

1. GOSUB stack. A separate “stack” of return addresses for use by GOSUB and RETURN statements is
maintained for each internal procedure, and detached exception handler, as well as for each program-
unit.

2. LOCAL statement. A LOCAL statement in an internal procedure applies only to the containing internal
procedure. (Since a DIM statement always applies to the containing program-unit, a local array must
always be declared in a LOCAL statement rather than a DIM statement.)

544 True BASIC Language System



3. Parameters in internal procedures. The parameters in an internal SUB, DEF, or PICTURE statement
have as their scope the associated internal subroutine, defined function, or picture. In addition, a variable
or array having the same name in the containing program-unit is not available.

The scope of OPTION statements, being slightly different, is given separately.
1. OPTION ANGLE. Same as for OPTION BASE below.
2. OPTION BASE. An OPTION BASE statement in a program-unit that is not in a module is in effect

from its location in a program-unit through the rest of the program-unit, or until a new OPTION
BASE statement is encountered. An OPTION BASE statement in a module is in effect through the rest
of the module, or until a new OPTION BASE statement is encountered, whether or not the OPTION
BASE statement occurred in the module-header or in one of the procedures of the module.

3. OPTION NOLET. Same as for OPTION TYPO.
4. OPTION TYPO. The OPTION TYPO statement is in effect from its location in a program-unit or module-

header through the rest of the file. The file may contain any number of external procedures and modules. It
does not apply to statements in the program-unit or module-header that occur earlier.

Aliases
Aliases are instances whereby the same object, such as a variable, has two or more names. If care is not taken
when using aliases, mysterious program behavior can result. Aliases can arise in the following ways.

1. The same variable or array appears in two or more positions in a CALL or DRAW statement, and the
parameter is called reference.

CALL Zilch (a, a)
END

SUB Zilch (b, c)
! Here, b and c both refer to a.
! Changing b changes a and thus also c,
! and vice versa.

END SUB

CALL Zilch ((a), a)
END
SUB Zilch (b, c)

! Here, b and c initially have the same value.
! However, changing b does not change c,
! or vice versa.

END SUB

2. The same channel expression appears in two or more positions in a CALL or DRAW statement.
CALL Zilch (#2, #2)
END
SUB Zilch (#3, #4)

! Here, #3 and #4 refer to the same channel.
END SUB

3. An array is called by reference in a CALL or DRAW statement, as is an element of that array.
CALL Zilch (B(), B(1))
END
SUB Zilch (A(), X)

! Here, A(1) and X refer to the same quantity.
! Changing one will change the other.

END SUB

545Appendix F : Scope and Aliasing



LET Y = Zilch(B(), B(1))
END

DEF Zilch (A(), X)
! Here, A(1) and X have the same initial value.
! However, no aliasing occurs because function
! parameters are always called “by value”.

END DEF

4. A variable or array appears in a CALL or DRAW statement referring to an internal procedure, the same
variable or array also being accessible to that procedure as a “global” variable or array. 

CALL Zilch (a, aa())
SUB Zilch (b, bb())

! Here, b and a refer to the same quantity,
! and aa() and bb() refer to the same array.

END SUB

END

5. A channel appears in a CALL or DRAW statement referring to an internal procedure, the same channel
also being accessible to that procedure as a “global” channel.

OPEN #1: ...
CALL Zilch (#1)
SUB Zilch (#2)

! Here, #1 and #2 refer to the same channel.
END SUB

END

CALL Zilch (#0)
SUB Zilch (#1)

LET x = 17
! The following PRINT statements are equivalent.
PRINT x .....
PRINT #0: x         ! #0 is the default screen.
PRINT #1: x         ! Here, #1 is the same as #0.

END SUB

END

In this last example, it does not matter whether the subroutine is internal or external.

546 True BASIC Language System



APPENDIX

True BASIC 
Limits and Specifications
True BASIC was created to work as identically as possible on every computer. The architecture of various CPU
chips, however, impose accuracy and size limitations on various operations. 

System Limits
Mac Win NT Win 3.1 Win 95 OS/2

Accuracy of numbers <———————— 16 digits for all  ————————>

Accuracy of Sin, Cos, Tan, Atn, Log, Exp <———————— 16 digits for all  ————————>

Smallest positive number Eps(0) <—————— 2.2250739e-308 for all   ——————>

Largest positive number (Maxnum) <—————— 1.7976931 e+308 for all  ——————>

Maximum string length * * 16-64 Mb * 448 Mb

Maximum number of files open <—————————— 25 for all  ——————————>

Maximum dimensions in an array <—————————— 255 for all  ——————————>

* size of memory available on system

General True BASIC Limits
Length of variable names 31 characters

Largest line number 999,999

Number of channels open at once 25

Maximum ZONEWIDTH Maxnum

Maximum MARGIN Maxnum

547

G



APPENDIX

Line Numbers

There are seven statements in True BASIC that refer to line numbers. They are: GOTO, IF GOSUB, RETURN,
ON GOTO, ON GOSUB, and RESTORE to a line-number. In addition, there are two input/output recovery
statements that can appear only in certain input-output statements. They are: IF MISSING THEN and IF
THERE THEN. The individual statements are discussed in Chapter 18; the valid forms are repeated here for con-
venience.

These statements can be used only with line-numbered programs. The rule is that a file containing one or more pro-
gram-units must either have line-numbers on all lines, or no line-numbers. Thus, a given program can have parts
which are line-numbered and parts which are not, provided the parts appear in different files.

goto:: GOTO line-number
if-then:: IF logex THEN line-number

IF logex THEN line-number ELSE line-number
gosub:: GOSUB line-number
return:: RETURN
on-goto:: ON rnumex GOTO line-number-list

ON rnumex GOTO line-number-list ELSE line-number
on-gosub:: ON rnumex GOSUB line-number-list

ON rnumex GOSUB line-number-list ELSE line-number
restore:: RESTORE line-number
line-number-list:: line-number  …, line-number
line-number:: integer
if-missing:: IF MISSING THEN action
if-there:: IF THERE THEN action
action:: EXIT DO

EXIT FOR
line-number

The keyword GOTO may be replaced by the keywords GO TO. The keyword GOSUB may be replaced by the key-
words GO SUB.

A simple-statement may be used in place of a line-number in the IF THEN statement and in the ELSE part of the
two ON statements, but not in a line-number-list. The simple-statements are listed in connection with the IF state-
ment in Chapter 18. One of the simple-statements is the GOTO statement. A line-number in an IF THEN state-
ment, in the ELSE part of an ON statement is equivalent to a GOTO statement with the same line-number.

Line-numbers must lie in the range 1 through 999999, inclusive. That is, they must not be 0 or negative, must not
be one million or greater, and must not contain characters other than digits.

The target line-numbers must be within the “scope” of the statement. That is, the target line-number must be within
the same program-unit.

549

H



In addition, the target line-number is restricted by additional rules, which are outlined below. A simple summary of
the rules is that you can’t jump into a control structure from any line outside it. And you can’t even jump out of a SUB,
DEF, or PICTURE from inside it. For other control structures, you may jump out of the structure.

Jumps and Procedures
If you are inside a procedure definition (subroutine, defined-function, or picture), you can’t jump to the first line of
the procedure (e.g., the SUB line) or to any line outside the procedure. You can jump to the last line, which is equiv-
alent to an EXIT statement. These rules apply to both internal and external procedures.

If you are outside an internal procedure definition, you can jump to the first line of that procedure definition but
not to other lines inside that procedure. In this case, the next statement to be executed will be the first one after
the END statement for that internal procedure definition.

Jumps and Loops
For both FOR and DO loops, if you are outside a loop, you are not allowed to jump into the loop. You can jump to the
first line of the loop (the FOR or DO statement), which isn’t considered to be “inside” the loop. It is also legal to jump
out of the loop from inside, including jumping to the first line, which will restart the loop.

Jumps and Decision Structures
If you are inside a part of a choice structure (IF THEN ELSE or SELECT CASE), you can’t jump into a different
section of the structure – from one CASE to another, or from the THEN clause to the ELSE part, etc. Also, you
cannot jump into the structure from any line outside it.

If you are in a WHEN structure, you cannot jump from one part to the other. Also, you cannot jump into either part
of the structure from any line outside it.

GOSUB RETURN Stacks
Each invocation of each procedure (internal or external) has its own private GOSUB RETURN stack, as does
each module-header. This stack is empty upon entry to the procedure.

550 True BASIC Language System



APPENDIX

Index of True BASIC Statements
Functions and Subroutines

The main part of this section lists all keywords, functions, and subroutines included either in the True BASIC Lan-
guage System itself or in one of the libraries. Following that list are sections on methods and attributes for the built-
in OBJECT subroutine: “Object Methods,” “Control Object Attributes,” “Graphic Object Attributes,” “Menu Object
Attributes,” “Window Object Attributes,” and “Events;” these are described in Chapter 19.

The following symbols are used for items other than True BASIC keywords (statements or parts of statements):
F A function
S A subroutine (use CALL)
AF An array function
AC An array constant

Library file names are also given for those functions, subroutines, and array functions and constants that are not
built into the Language System. For example, ACOSH is a function provided in the FNHLIB.TRC library.

ABS (n) F Ch 8, 18
returns absolute value of n

ACOS (n) F Ch 8, 18
returns arccosine of n

ACOSH (n) F MathLib Ch 23
returns hyperbolic arccosine of n

ACOT (x) F MathLib, Ch 23
returns the arc cotangent of x

ACOTH (n) F MathLib Ch 23
returns hyperbolic arccotangent of n

ACSC (x) F MathLib Ch 23
returns the arc cosecant of x

ACSCH (n) F MathLib Ch 23
returns hyperbolic arccosecant of n

ADDDATAGRAPH (x(), y(), pstyle, lstyle, col$) S SGLib Ch 23
draws another line graph of a data set over the current graph

ADDFGRAPH (style, col$) S SGFunc Ch 23
draws another line graph of the defined function F(x) over the current graph SGLib

ADDLSGRAPH (x(), y(), style, col$) S SGLib Ch 23
computes and draws the least-squares linear fit for the specified data set

ADD_POSTSCRIPT (add_line$) S Gold Ch 27
adds lines to a currently open PostScript file

555

I



ALPHANUM$ F StrLib Ch 23
returns set of all alphabetic and numeric characters

AND (a, b) F HexLib Ch 23
returns bit-by-bit logical AND of a and b

ANGLE (x, y) F Ch 8, 18
returns counter-clockwise angle between positive x-axis and point (x, y)

ASEC (x) F MathLib Ch 23
returns the arc secant of x

ASECH (n) F MathLib Ch 23
returns hyperbolic arcsecant of n

ASIN (n) F Ch 8, 18
returns arcsine of n

ASINH (n) F MathLib Ch 23
returns hyperbolic arcsine of n

ASK #n: ACCESS acc$ Ch 12, 18
reports access mode of file #n as INPUT, OUTPUT, or OUTIN

ASK BACK color Ch 13, 18
reports current background color number

ASK BACK color$ Ch 13, 18
reports current background color name

ASK COLOR color Ch 13, 18
reports current foreground color number

ASK COLOR color$ Ch 13,18
reports current foreground color name

ASK COLOR MIX (color) red, green, blue Ch 13, 18
reports current mix of red, green, and blue intensities in specified color

ASK CURSOR row, column Ch 18
reports current position of text cursor

ASK CURSOR status$ Ch 4, 18
reports current status of text cursor as ON or OFF

ASK #n: DATUM type$ Ch 12, 18
reports type of next item in stream file #n as NUMERIC, STRING, 
NONE, or UNKNOWN

ASK DIRECTORY directory$ Ch 12, 18
reports full pathname of current directory

ASK #n: ERASABLE ans$ Ch 18
reports whether file #n may be erased as YES or NO

ASK #n: FILESIZE size Ch 12, 18
reports size of file #n in bytes or records

ASK #n: FILETYPE type$ Ch 12, 18
reports what is associated with channel #n as FILE or DEVICE

ASK FREE MEMORY freemem Ch 18
reports approximate free memory in bytes

ASK MARGIN margin Ch 3, 18
reports position of margin in current logical window

556 True BASIC Language System



ASK #n: MARGIN margin Ch 12, 18
reports position of margin in file #n

ASK MAX COLOR colors Ch 13, 18
reports maximum color number

ASK MAX CURSOR rows, columns Ch 5, 13, 18
reports number of rows and columns of text in current logical window

ASK MODE mode$ Ch 18
reports current screen mode

ASK #n: NAME name$ Ch 12, 18
reports name of file #n

ASK #n: ORGANIZATION type$ Ch 12, 18
reports the organization of file #n as TEXT, STREAM, RANDOM, 
RECORD, BYTE, or WINDOW

ASK PIXELS hor, vert Ch 13, 14, 18
reports number of pixels in current logical window

ASK #n: POINTER location$ Ch 12, 18
reports position of pointer in file #n as BEGIN, END, or MIDDLE

ASK #n: RECORD recnum Ch 12, 18
reports number of current record in file #n

ASK #n: RECSIZE recsize Ch 12, 18
reports record size parameter of file #n

ASK #n: RECTYPE type$ Ch 12, 18
reports type of file associated with #n as DISPLAY or INTERNAL

ASK SCREEN lft, rgt, btm, top Ch 14, 18
reports position of current logical window within physical window

ASK #n: SETTER ans$ Ch 18
reports whether file pointer may be set to a specific record in file #n

ASK TEXT JUSTIFY hor$,vert$ Ch 13, 18
reports text justification as LEFT, RIGHT, or CENTER and TOP, 
BOTTOM, BASE, or HALF

ASK WINDOW lft, rgt, btm, top Ch 13, 14, 18
reports range of coordinates represented by current logical window

ASK ZONEWIDTH width Ch 3, 18
reports width of print zones in current logical window

ASK #n: ZONEWIDTH width Ch 12, 18
reports width of print zones in file #n

ASKANGLE (measure$) S SGLib Ch 23
reports angle interpretation for subsequent polar graphs as DEG or RAD

ASKBARTYPE (type$) S BGLib Ch 23
reports grouping of bars in subsequent charts as SIDE, STACK, or OVER

ASKGRAIN (grain) S SGLib Ch 23
reports grain to be used for subsequent function plots

ASKGRAPHTYPE (type$) S SGLib Ch 23
reports type of graph to be used for subsequent plots as XY, LOGX, 
LOGY, LOGXY, or POLAR

557Appendix I : Index of True BASIC Statements, Functions, and Subroutines



ASKGRID (style$) S BGLib Ch 23
reports current presence, direction, and type of grid for charts and graphs SGLib

ASKHLABEL (hlabel$) S BGLib Ch 23
reports horizontal label to be used for subsequent charts and graphs SGLib

ASKLAYOUT (dir$) S BGLib Ch 23
reports direction in which bars of subsequent charts will be oriented as
HORIZONTAL or VERTICAL

ASKLS (flag) S SGLib Ch 23
reports whether least-squares linear fits will be drawn for subsequent
data graphs as 1 for yes or 0 for no

ASKTEXT (title$, hlabel$, vlabel$) S BGLib Ch 23
reports title and labels to be used for subsequent charts and graphs SGLib

ASKTITLE (title$) S BGLib Ch 23
reports title to be used for subsequent charts and graphs SGLib

ASKVLABEL (vlabel$) S BGLib Ch 23
reports vertical label to be used for subsequent charts and graphs SGLib

ATANH (n) F MathLib Ch 23
returns hyberbolic arctangent of n

ATN (n) F Ch 8, 18
returns arctangent of n

BALANCEBARS (data(), units$(), colors$) S BGLib Ch 23
draws a balanced bar chart of the specified data

BARCHART (data1(,), data2(,), units$(), legends$(), colors$) S BGLib Ch 23
draws a bar chart of specified data

BEGIN_POSTSCRIPT (”mypsfile”,left,right,bottom,top) S Gold Ch 27
starts PostScript output to a file

BIN$ (n) F HexLib Ch 23
returns n in binary representation

BOX AREA lft, rgt, btm, top Ch 13, 18
fills specified rectangular region with current foreground color

BOX CIRCLE lft, rgt, btm, top Ch 13, 18
inscribes ellipse in rectangular region

BOX CLEAR lft, rgt, btm, top Ch 13, 18
clears specified rectangular region with current background color

BOX DISK lft, rgt, btm, top Ch 13, 18
inscribes filled ellipse in rectangular region

BOX ELLIPSE lft, rgt, btm, top Ch 13, 18
inscribes ellipse in rectangular region

BOX KEEP lft, rgt, btm, top IN image$ Ch 13, 18
stores contents of rectangular region in image$

BOX LINES lft, rgt, btm, top Ch 13, 18
draws outline of rectangular region

BOX SHOW image$ AT x, y Ch 13, 18
displays rectangular region stored in image$ with its lower left corner at point (x, y)

BREAK Ch 18
breaks program execution

558 True BASIC Language System



BREAKUP (phrase$, word$, delim$) S StrLib Ch 23
extracts next word from phrase as delineated by specified delimiter

CALL MySubroutine Ch 10, 18
invokes specified subroutine

CASE “n” Ch 5, 18
specifies one case of SELECT CASE structure

CAUSE ERROR errnum, errmsg$ Ch 16, 18
causes error number errnum with message errmsg$

CAUSE EXCEPTION errnum, errmsg$ Ch 16, 18
causes error number errnum with message errmsg$

CEIL (n) F Ch 8, 18
returns least integer greater than or equal to n

CENTER$ (text$, width, back$) F StrLib Ch 23
returns text$ centered within string of specified width

CHAIN “!cc -o pgm pgm.c -lc”, RETURN Ch 18
chains to shell or other program

CHARDIFF$ (a$, b$) F StrLib Ch 23
returns all characters appearing in a$ but not in b$

CHARINT$ (a$, b$) F StrLib Ch 23
returns all characters appearing in both a$ and b$

CHARS$ (from, to) F StrLib Ch 23
returns characters with ASCII codes in specified range, inclusive

CHARUNION$ (a$, b$) F StrLib Ch 23
returns all characters appearing in either a$ or b$

CHR$ (code) F Ch 8, 18
returns character whose ASCII code corresponds to code

CLEAR Ch 3, 13, 14, 18
clears the current logical window with the current background color

CLIPBOARD (operation$, type$, item$) S Ch 18
stores or retrieves specified item using environment’s clipboard

CLOSE #n Ch 3, 12, 18
closes channel #n

COMLIB (method, p1, p2, ps$) S Ch 18, 22
general purpose communications subroutine

COMOPEN (method, #1, port, speed, options$) S Ch 18, 22
opens a communications port

COM_BUF (type) F ComLib Ch 22
returns available buffer space

COM_CONTROL (opt$) S ComLib Ch 22
resets options and modem signals

COM_OPEN (#1, port, speed, opt$) S ComLib Ch 22
opens a communications port

COM_RECEIVE (buf$) S ComLib Ch 22
receives contents of input buffer

559Appendix I : Index of True BASIC Statements, Functions, and Subroutines



COM_RECEIVELINE (buf$) S ComLib Ch 22
receives input buffer up to first CR

COM_SEND (s$) S ComLib Ch 22
sends contents of s$ immediately

COM_SENDBREAK S ComLIb Ch 22
sends a break

COM_SENDCR (s$) S ComLib Ch 22
sends contents of s$ followed by a CR

COM_SENDLINE (s$) S ComLib Ch 22
sends contents of s$ followed by a CR/LF

COM_STATUS (type$) F ComLib Ch 22
returns the status of any of several types

COM_SWITCH (port) S ComLib Ch 22
switches to the port indicated

COM_WAITLINE (wtime, f, l$) S ComLib Ch 22
like COM_RECEIVELINE but with a timeout

COM_WAITPROMPT (p$, wtime, f, s$) S ComLib Ch 22
waits for a specified prompt, with timeout

CON AC Ch 9, 18
returns numeric array containing ones in every element

CONTINUE Ch 16, 18
continues with line following most recent error

CONTROL$ F StrLib Ch 23
returns set of all control characters

CONVERT (number$) F HexLib Ch 23
returns decimal value of hexadecimal, octal, binary, or decimal value

COS (n) F Ch 8, 18
returns cosine of n

COSH (n) F Ch 8, 18
returns hyperbolic cosine of n

COT (n) F Ch 8, 18
returns cotangent of n

COTH (n) F MathLib Ch 23
returns hyperbolic cotangent of n

CPOS (string$, searchset$) F Ch 8, 18
returns position of first occurrence of any character in searchset$
within string$

CPOS (string$, searchset$, startpos) F Ch 8, 18
returns position of first occurrence of any character in searchset$
within string$ starting at startpos

CPOSR (string$, searchset$) F Ch 8, 18
returns position of last occurrence of any character in searchset$
within string$

CPOSR (string$, searchset$, startpos) F Ch 8, 18
returns position of last occurrence of any character in searchset$
within string$ starting at startpos

560 True BASIC Language System



CPSORTN (values(), indices()) S SortLib Ch 23
performs customized pointer sort of values()

CPSORTS (values$(), indices()) S SortLib Ch 23
performs customized pointer sort of values$()

CSC (n) F Ch 8, 18
returns cosecant of n

CSCH (n) F MathLib Ch 23
returns hyperbolic cosecant of n

CSEARCHN (array(), number, index, found) S SortLib Ch 23
performs customized search for number within array()

CSEARCHS (array(), string$, index, found) S SortLib Ch 23
performs customized search for string$ within array$()

CSORTN (array()) S SortLib Ch 23
performs customized sort of array()

CSORTS (array$()) S SortLib Ch 23
performs customized sort of array$()

DATA 1, 2, three Ch 7, 18
contains program’s built-in data

DATAGRAPH (x(), y(), pstyle, lstyle, col$) S SGLib Ch 23
draws a line graph of a data set

DATE  F Ch 8, 18
returns current date in form YYDDD

DATE$ F Ch 8, 18
returns current date in form “YYYYMMDD”

DEBUG on Ch 18
turns debugging on

DECLARE DEF MyDef Ch 10, 18
declares specified function

DECLARE FUNCTION MyFunction Ch 10, 18
declares specified function

DECLARE NUMERIC mynumvar Ch 18
declares specified variable as numeric

DECLARE PUBLIC mypubvar Ch 11, 18
declares specified variable as public

DECLARE STRING mystringvar$*20 Ch 18
declares specified variable as string with maximum length as specified

DECLARE SUB MySub Ch 18
has no effect

DEF MyDef(argument1, argument2$) Ch 10, 18
begins defined function, single or multiple line

DEF SQL_CONNECT (myhost$, dbname$, myusername$, mypassword$) F Gold Ch 26
connects you to the ost server and database 

DEF TS_ACCEPT (tb_socket, family, port, addr$) S Gold Ch 25
returns 

DEF TS_GETHOSTBYNAME$ (name$) S Gold Ch 25
returns the name of  the host for which you want an address

561Appendix I : Index of True BASIC Statements, Functions, and Subroutines



DEF TS_RECEIVE$ (tb_socket, num_bytes) S Gold Ch 25
returns the number of bytes you specify as a data string

DEF TS_SOCKET (family, type, protocol) S Gold Ch 25
analogous to the socket() function

DEG (n) F Ch 8, 18
returns the number of degrees in n radians

DELCHAR$ (text$, oldchars$) F StrLib Ch 23
returns value of text$ with all characters appearing in oldchars$ removed

DELMIX$ (text$, old$) F StrLib Ch 23
returns value of text$ with all characters appearing in oldchars$
removed regardless of case

DELSTR$ (text$, old$) F StrLib Ch 23
returns value of text$ with occurrences of old$ removed

DET (matrix) F Ch 9, 18
returns determinant of specified matrix

DET      F Ch 9, 18
returns determinant of last matrix inverted

DIGITS$ F StrLib Ch 23
returns set of all digit characters

DIM array(10,10) Ch 9, 18
dimensions the specified array(s)

DIVIDE (dividend, divisor, quotient, remainder) S Ch 8, 18
divides dividend by divisor into quotient and remainder

DO        Ch 6, 18
indicates beginning of do loop

DOLLARS$ (amount) F StrLib Ch 23
returns amount nicely formatted as a dollar amount

DOLLARVAL (string$) F StrLib Ch 23
returns numeric value of string$ ignoring dollar signs, commas, asterisks, and spaces

DOT (a, b) F Ch 9, 18
returns dot product of two vectors

DRAW MyPicture Ch 13, 18
draws specified picture

ELSE Ch 5, 18
part of IF structure

ELSEIF Ch 5, 18
part of IF structure

END Ch 1, 18
indicates end of main program

END DEF Ch 10, 18
indicates end of defined function

END FUNCTION Ch 10, 18
indicates end of defined function

END HANDLER Ch 16, 18
indicates end of detached error handler

562 True BASIC Language System



END IF Ch 5, 18
indicates end of IF structure

END MODULE Ch 11, 18
indicates end of module

END PICTURE Ch 13, 18
indicates end of picture definition

END_POSTSCRIPT (n) S Gold Ch 27
closes the file and stops journalling. The n is non-functional; reserved for future use.

END SELECT Ch 5, 18
indicates end of SELECT structure

END SUB Ch 10, 18
indicates end of subroutine definition

END WHEN Ch 16, 18
indicates end of WHEN structure

ENGLISHNUM$ (n) F StrLib Ch 23
returns value of n represented in English

EPS (n) F Ch 8, 18
returns epsilon of n

ERASE #n Ch 12, 18
erases contents of file #n

EVAL (expression$) F StrLib Ch 23
returns value of constant-based expression

EXEC_ASKDIR (dirname$) S ExecLib Ch 12, 22
returns the name of the current directory

EXEC_CHDIR (newdir$) S ExecLib Ch 12, 22
changes the current directory

EXEC_CLIMBDIR (dir, template$, name$(), size(), dlm$(), tlm$(), type$()) S ExecLib Ch 12, 22
reports contents of current directory and its subdirectories

EXEC_DISKSPACE (used ,free) S ExecLib Ch 12, 22
returns the current hard disk use

EXEC_MKDIR (dirname$) S ExecLib Ch 12, 22
creates directory with specified name

EXEC_READDIR (template$, name$(), size(), dlm$(), tlm$(), type$(), vname$) S ExecLib Ch 12, 22
reports contents of current directory

EXEC_RENAME (oldname$, newname$) S ExecLib Ch 12, 22
renames file

EXEC_RMDIR (dirname$) S ExecLib Ch 12,22
deletes directory with specified name

EXEC_SETDATE (date$) S ExecLib Ch 12,22
sets the system date

EXEC_SETTIME (time$) S ExecLib Ch 12,22
sets the system time

EXIT DEF Ch 10, 18
exits enclosing defined function

563Appendix I : Index of True BASIC Statements, Functions, and Subroutines



EXIT DO Ch 6, 18
exits enclosing do loop

EXIT FOR Ch 6, 18
exits enclosing for loop

EXIT FUNCTION Ch 10, 18
exits enclosing defined function

EXIT HANDLER Ch 16, 18
exits enclosing error handler

EXIT PICTURE Ch 13, 18
exits enclosing picture

EXIT SUB Ch 10, 18
exits enclosing subroutine

EXLINE F Ch 16, 18
returns line number of most recent error

EXLINE$ F Ch 16, 18
returns line number lineage of most recent error

EXP (n) F Ch 8, 18
returns natural exponent of n

EXPLODE (phrase$, words$(), delims$) S StrLib Ch 23
parses phrase into array of words using specified delimiters

EXPLODEN (phrase$, nums(), delims$) S StrLib Ch 23
parses phrase into array of numbers using specified delimiters

EXTERNAL Ch 11, 18
defines subsequent procedure definitions as external

EXTEXT$ F Ch 16, 18
returns error message associated with most recent error

EXTYPE F Ch 16, 19
returns error number associated with most recent error

FGRAPH (startx, endx, style, colors$) S SGFunc Ch 23
draws line graph of externally defined function F(x) over specified domain SGLib

FILLARRAY (from$(), to$(), width) S StrLib Ch 23
“fills” to$() array with contents of from$() array to specified width

FILLFROM (#n, width, result$, work$) S StrLib Ch 23
returns single “filled” line from file #n

FLOOD x, y Ch 13, 18
floods closed region containing point (x, y)

FOR index = start TO finish STEP increment Ch 6, 18
starts for loop

FP (n)     F Ch 8, 18
returns fractional part of n

FUNCTION MyFunction(argument1, argument2$) Ch 10, 18
begins defined function, single or multiple line

GET KEY code Ch 4, 18
gets single keystroke from keyboard buffer or user

564 True BASIC Language System



GET MOUSE x, y, state Ch 13, 18
gets current position of mouse pointer and state of mouse button

GET POINT x, y Ch 13, 18
gets location on screen from user

GOSUB 1000 Ch 18, App I
jumps to specified line number after pushing current line number on return stack

GOTO 1000 Ch 18, App I
jumps to specified line number

HANDLER MyHandler Ch 16, 18
beginning of detached error handler definition

HEADER$ (left$, center$, right$, width, back$) F StrLib Ch 23
returns “header” of specified width containing specified text items

HEX$ (n) F HexLib Ch 23
returns n in signed hexadecimal notation

HEXW$ (n) F HexLib Ch 23
returns n in four-byte unsigned hexadecimal notation

HISTOGRAM (data(), colors$) S BGLib Ch 23
draws histogram of specified data

IBEAM (high(), low(), units$(), colors$) S BGLib Ch 23
draws “I-beam” chart of specified data

IDN        AF Ch 9, 18
returns identity matrix

IF              Ch 5, 18
beginning of IF statement or structure

IMAGE: “###.###” Ch 18, App I
defines format string for PRINT USING statement

INPUT number, string$ Ch 4, 18
gets user input, after displaying default prompt, and assigns it to specified variable(s)

INPUT #n: number, string$ Ch 12, 18
gets input from file and assigns it to specified variable(s)

INPUT PROMPT prompt$: number, string$ Ch 4, 18
gets user input, after displaying specified prompt, and assigns it to specified variable(s)

INT (n) F Ch 8, 18
returns greatest integer less than or equal to n

INTRIM$ (text$) F StrLib Ch 23
returns value of text$ with all series of spaces replaced with single spaces

INV (matrix) AF Ch 9, 18
returns inverse of specified square matrix

IP (n)        F Ch 8, 18
returns integer part of n

JUSTIFY$ (text$, width) F StrLib Ch 23
returns string containing text$ justified to specified width

JUSTIFYARRAY (from$(), to$(), width) S StrLib Ch 23
“fills” and justifies to$() array with contents of from$() array to specified width

565Appendix I : Index of True BASIC Statements, Functions, and Subroutines



JUSTIFYFROM (#n, width, result$, work$) S StrLib Ch 23
returns single “filled” and justified line from file #n

KEEPCHAR$ (text$, oldchars$) F StrLib Ch 23
returns value of text$ with all characters not appearing in oldchars$ removed

LBOUND (array) F Ch 9, 18
returns lower bound of one-dimensional array

LBOUND (matrix, dimension) F Ch 9, 18
returns lower bound of specified dimension of multi-dimensional matrix

LCASE$ (text$) F Ch 8, 18
returns value of text$ with all letters converted to lowercase

LEFT$ (text$, n) F StrLib Ch 23
returns leftmost n characters of text$

LEN (text$) F Ch 8, 18
returns length of text$ in bytes (or characters)

LET variable = expression F Ch 2, 18
assigns value of expression on right to variable on left

LETTERS$ F StrLib Ch 23
returns set of all alphabetic characters, uppercase and lowercase

LIBRARY “Module.tru” Ch 11, 18
names the file(s) containing procedures needed by program

LINE INPUT line$ Ch 4, 18
gets line of user input, after displaying default prompt, and assigns 
it to specified variable

LINE INPUT #n: line$ Ch 12, 18
gets line of input from file and assigns it to specified variable

LINE INPUT PROMPT prompt$: line$ Ch 12, 18
gets line of user input, after displaying specified prompt, 
and assigns it to specified variable

LJUST$ (text$, width, back$) F StrLib Ch 23
returns string of specified length containing value of text$ left-justified

LOCAL variable Ch 10, 11, 18
defines specified variable(s) as local to enclosing program-unit

LOG (n) F Ch 8, 18
returns natural logarithm of n

LOG10 (n) F Ch 8, 18
returns common logarithm (to base 10) of n

LOG2 (n) F Ch 8, 18
returns logarithm to base 2 of n

LOOP      Ch 6, 18
indicates end of do loop

LOWER$ F StrLib Ch 23
returns set of lowercase alphabetic characters

LTRIM$ (text$) F Ch 8, 18
returns value of text$ with all leading spaces removed

LVAL (number$) F StrLib Ch 23
returns numeric value represented by leading characters of number$

566 True BASIC Language System



MANYDATAGRAPH (x(,), y(,), connect, legends$(), colors$) S SGLib Ch 23
draws multiple line graphs of specified data sets

MANYFGRAPH (startx, endx, n, legends$(), colors$) S SGFunc Ch 23
draws multiple line graphs of an externally defined function F(x) SGLib

MAPCHAR$ (text$, oldchars$, newchars$) F StrLib Ch 23
returns value of text$ with all characters appearing in oldchars$
replaced with corresponding characters from newchars$

MAT array = arrayexpression Ch 9, 18
assigns value of array expression on right to array on left

MAT INPUT array Ch 9, 18
gets user input, after displaying default prompt, and assigns it to specified array

MAT INPUT #n: array Ch 9, 18
gets input,from file and assigns it to specified array

MAT INPUT PROMPT prompt$: array Ch 9, 18
gets user input, after displaying specified prompt, and assigns it to specified array

MAT LINE INPUT array$ Ch 9, 18
gets several lines of user input, after displaying default prompt, 
and assigns them to specified array

MAT LINE INPUT #n: array$ Ch 9, 18
gets several lines of input from file and assigns them to specified array

MAT LINE INPUT PROMPT prompt$: array$ Ch 9, 18
gets several lines of user input, after displaying specified prompt,
and assigns them to specified array

MAT PLOT AREA: matrix Ch 13, 18
draws filled region defined by points stored in rows of matrix

MAT PLOT LINES: matrix Ch 13, 18
draws series of line segments defined by points stored in rows of matrix

MAT PLOT POINTS: matrix Ch 13, 18
draws series of points stored in rows of matrix

MAT PRINT array Ch 9, 18
prints elements of array(s) to screen

MAT PRINT USING format$: array Ch 9, 18
prints elements of array(s) to screen using specified format

MAT PRINT #n: array Ch 12, 18
prints elements of array(s) to channel #n

MAT PRINT #n, USING format$: array Ch 12, 18
prints elements of array(s) to channel #n using specified format

MAT READ array Ch 9, 18
reads elements of array(s) from DATA statements

MAT READ #n: array Ch 12, 18
reads elements of array(s) from file #n

MAT REDIM array(newdims) Ch 9, 18
redimensions array(s) to specified dimensions

MAT WRITE #n: array Ch 12, 18
writes array(s) to file #n

567Appendix I : Index of True BASIC Statements, Functions, and Subroutines



MAX (a, b) F Ch 8, 18
returns maximum of a and b

MAXLEN (string$) F Ch 8, 18
returns maximum length of string$

MAXNUM F Ch 8, 18
returns largest numeric value possible

MAXSIZE (array) F Ch 8, 18
returns 2,147,483,648

MID$ (string$, start, chars) F StrLib Ch 23
returns specified number of characters from within string$ beginning at start

MIN (a, b) F Ch 8, 18
returns minimum of a and b

MOD (x, y) F Ch 8, 18
returns x modulo y

MODULE foo Ch 11, 18
beginning of module structure

MULTIBAR (data(,), units$(), legends$(), col$) S BGLib Ch 23
draws multi-bar chart of specified data sets

MULTIHIST (data(,), legends$(), col$) S BGLib Ch 23
draws multiple histograms of specified data sets in single frame

NCPOS (string$, searchset$) F Ch 8, 18
returns position of first occurrence of any character not 
in searchset$ within string$

NCPOS (string$, searchset$, startpos) F Ch 8, 18
returns position of first occurrence of any character not 
in searchset$ within string$ starting at startpos

NCPOSR (string$, searchset$) F Ch 8, 18
returns position of last occurrence of any character not 
in searchset$ within string$

NCPOSR (string$, searchset$, startpos) F Ch 8, 18
returns position of last occurrence of any character not 
in searchset$ within string$ starting at startpos

NEXT index Ch 6, 18
end of for loop

NEXTWORD (phrase$, word$, delims$) S StrLib Ch 23
gets next word from phrase, as delineated by any series 
of delimiter characters

NICEDATE$ (date$) F StrLib Ch 23
returns full date represented by date$, including month 
name, day, and year

NICETIME$ (time$) F StrLib Ch 23
returns time represented by time$ as hour and minute 
followed by a.m. or p.m.

NOSPACE$ (text$) F StrLib Ch 23
returns value of text$ with all spaces removed

568 True BASIC Language System



NOW$ F StrLib Ch 23
returns current as hour and minute followed by a.m. or p.m.

NPLUGCHAR$ (text$, chars$, template$) F StrLib Ch 23
returns value of text$ with characters not appearing in chars$
replaced by specified template

NREPCHAR$ (text$, oldchars$, new$) F StrLib
returns value of text$ with all characters not appearing 
in oldchars$ replaced with new$

NUL$     AC Ch 9, 18
returns array of null strings

NUM (IEEEstring$) F Ch 8, 18
returns numeric value represented by 8-byte IEEEstring$

NUM$ (number$) F Ch 8, 18
returns value of number represented as string in 8-byte IEEE format

OBJECT (method, id, attributes$, values$, values()) S Ch 19
invokes method for object; see methods and attributes 
listings at end of this Index

OCT$ (n) F HexLib Ch 23
returns n in octal representation

ON n GOSUB 10, 20, 30 Ch 18, App I
causes jump to n-th line number, after placing current line number on return stack

ON n GOTO 10, 20, 30 Ch 18, App I
causes jump to n-th line number

OPEN #1: NAME “foo”, CREATE newold, ACCESS outin, ORG text Ch 12, 18
opens channel to named file

OPEN #1: PRINTER Ch 12, 18
opens channel to printer

OPEN #1: SCREEN lft, rgt, btm, top Ch 13, 18
opens channel to logical window

OPTION ANGLE degrees Ch 8, 18
assumes angles measured in degrees for subsequent trigonometric functions

OPTION ANGLE radians Ch 8, 18
assumes angles measured in radians for subsequent trigonometric functions

OPTION ARITHMETIC native Ch 18
has no effect

OPTION ARITHMETIC standard Ch 18
has no effect

OPTION BASE 7 Ch 18
sets default lower bound for arrays

OPTION COLLATE native Ch 18
has no effect

OPTION COLLATE standard Ch 18
has no effect

OPTION NOLET Ch 1, 18
allows LET statements without LET keyword

569Appendix I : Index of True BASIC Statements, Functions, and Subroutines



OPTION TYPO Ch 10, 11, 18
forces all variables to be declared prior to use

OPTION USING true Ch 18
assumes True BASIC rules for subsequent format strings

OPTION USING ansi Ch 18
assumes ANSI standard rules for subsequent format strings

OR (a, b) F HexLib Ch 23
returns bit-by-bit logical OR of a and b

ORD (character$) F Ch 8, 18
returns ASCII code of specified character

PACKB (string$, startbit, bitlength, integer) S Ch 12, 18
packs value of integer into bitlength bits of string$
beginning at startbit-th bit

PAUSE seconds Ch 13, 18
pauses for specified duration

PI       Ch 8, 18
returns 3.14159...

PICTURE MyPicture Ch 13, 18
beginning of picture structure

PIECHART (data(), units$(), colors$, wedge, percent) S BGLib Ch 23
draws pie chart of specified data

PLAY music$ Ch 15, 18
plays musical tune defined by music$

PLOT x, y Ch 13, 18
plots specified point

PLOT x1, y1; x2, y2 Ch 13, 18
plots line segment connecting specified points

PLOT AREA: x1, y1; x2, y2; x3, y3 Ch 13, 18
plots filled area defined by line segments connecting specified points

PLOT LINES: x1,y1; y1,y2 Ch 13, 18
plots line segments connecting specified points

PLOT POINTS: x1, y1; x2, y2 Ch 13, 18
plots specified points

PLOT TEXT, AT x, y: string$ Ch 13, 18
plots value of string$ at specified point

PLUGCHAR$ (text$, chars$, template$) F StrLib Ch 23
returns value of text$ with characters appearing in chars$
replaced by specified template

PLUGMIX$ (text$, old$, template$) F StrLib Ch 23
returns value of text$ with occurrences of old$, in any mix of case, 
replaced by specified template

PLUGSTR$ (text$, old$, template$) F StrLib Ch 23
returns value of text$ with occurrences of old$
replaced by specified template

POS (string$, searchstr$) F Ch 8, 18
returns position of first occurrence of searchstr$ within string$

570 True BASIC Language System



POS (string$, searchstr$, startpos) F Ch 8, 18
returns position of first occurrence of searchstr$
within string$ starting at startpos

POSR (string$, searchstr$) F Ch 8, 18
returns position of last occurrence of searchstr$ within string$

POSR (string$, searchstr$, startpos) F Ch 8, 18
returns position of last occurrence of searchstr$ within string$
starting at startpos

PRINT expression Ch 3, 18
prints expression(s) to screen

PRINT USING format$: expression Ch 3, 18
prints expression(s) to screen using specified format

PRINT #n: expression Ch 12, 18
prints expression(s) to channel #n

PRINT #n, USING format$: expression Ch 12, 18
prints expression(s) to channel #n using specified format

PRIVATE MyProcedure Ch 11, 18
defines specified procedure(s) as private to containing module

PROGRAM MyProg (parameter$) Ch 18
identifies current program and its chain parameters

PSORTN (values(), indices()) S SortLib Ch 23
performs standard pointer sort of values()

PSORTS (values$(), indices()) S SortLib Ch 23
performs standard pointer sort of values$()

PUBLIC variable Ch 11, 18
defines specified variable(s) as public, or global, throughout 
containing program-unit or module

PUNCT$ F StrLib Ch 23
returns set of all punctuation characters

RAD (n) F Ch 8, 18
returns the number of radians in n degrees

RANDOMIZE Ch 8, 18
seeds random number generator

READ variable Ch 7, 18
reads specified variable(s) from DATA statements

READ #n: variable Ch 12, 18
reads specified variable(s) from file #n

READ #n, BYTES b: variable$ Ch 12, 18
reads b bytes from file #n to specified variable

READCPIXEL (x, y, r, g, b) S Ch 18
reads the RGB color values at  the user selected coordinate

READ_IMAGE (filetype$,boxkeepstring$, Filename$) Ch 14, 18
reads image from a file into a box keep string

READPIXEL (x, y) F Ch 18
returns the color number of the pixel at the user selected coordinate 

571Appendix I : Index of True BASIC Statements, Functions, and Subroutines



REM This is a comment Ch 1, 18
makes line comment which is ignored by compiler (may also use exclamation point (!))

REMAINDER (x, y) F Ch 8, 18
returns remainder resulting from division of x by y

REPCHAR$ (text$, oldchars$, new$) F StrLib Ch 23
returns value of text$ with all characters appearing in oldchars$ replaced with new$

REPEAT$ (string$, n) F Ch 8, 18
returns string containing n copies of string$

REPMIX$ (text$, old$, new$) F StrLib Ch 23
returns value of text$ with occurrences of old$, in any mix of case, replaced by new$

REPSTR$ (text$, old$, new$) F StrLib Ch 23
returns value of text$ with occurrences of old$ replaced by new$

RESET #n: BEGIN Ch 12, 18
sets pointer in file #n to BEGIN, END, NEXT, or SAME record

RESTORE Ch 18, App E
restores pointer in data pool to first item

RETRY Ch 16, 18
retries line generating most recent error

RETURN Ch 18
jumps to line number at top of return stack

REVERSE$ (text$) F StrLib Ch 23
returns value of text$ with order of characters reversed

REVERSEN (array()) S SortLib Ch 23
reverses order of elements in array()

REVERSES (array$()) S SortLib Ch 23
reverses order of elements in array$()

RIGHT$ (text$, n) F StrLib Ch 23
returns rightmost n characters of text$

RJUST$ (text$, width, back$) F StrLib Ch 23
returns string of specified length containing value of text$ right-justified

RND        F Ch 8, 18
returns psuedo-random number greater than or equal to 0 and less than 1

RNDSTR$ (chars$, length) F StrLib Ch 23
returns string of specified length consisting of characters randomly chosen from chars$

ROMAN$ (n) F StrLib Ch 23
returns Roman numeral representation of n

ROUND (n) F Ch 8, 18
returns n rounded to nearest integer

ROUND (n, places) F Ch 8, 18
returns n rounded to specified number of places

RTRIM$ (s$) F Ch 8, 18
returns value of text$ with all trailing spaces removed

RUNTIME F Ch 18
returns seconds of processor time used since start of execution 
(or –1 if not applicable)

572 True BASIC Language System



SEARCHN (array(), number, index, found) S SortLib Ch 23
searches sorted array for specified number, returning index and found flag

SEARCHS (array$(), string$, index, found) S SortLib Ch 23
searches sorted array for specified string, returning index and found flag

SEC (n) F Ch 8, 18
returns secant of n

SECH (a) F MathLib Ch 23
returns hyperbolic secant of n

SELECT CASE s$ Ch 5, 18
start of a select case structure

SET BACK color Ch 13, 18
sets background color using specified color number

SET BACK color$ Ch 13, 18
sets background color using specified color name

SET COLOR color Ch 13, 18
sets foreground color using specified color number

SET COLOR color$ Ch 13, 18
sets foreground color using specified color name

SET COLOR MIX (color) red, green, blue Ch 13, 18
sets mix of red, green, and blue intensities used to form color with specified number

SET CURSOR row, column Ch 3, 13, 18
sets position of text cursor

SET CURSOR status$ Ch 4, 18
sets status of text cursor as ON or OFF

SET DIRECTORY dirname$ Ch 12, 18
sets current directory

SET MARGIN margin Ch 3, 13, 18
sets position of margin in current logical window

SET #n: MARGIN margin Ch 12, 18
sets position of margin in file #n

SET MODE mode$ Ch 18
sets screen mode

SET #n: POINTER BEGIN Ch 12, 18
sets pointer in file #n to BEGIN, END, NEXT, or SAME record

SET #n: RECORD recnum Ch 12, 18
sets current record in file #n to record recnum

SET #n: RECSIZE recsize Ch 12, 18
sets record size parameter of empty file #n

SET TEXT JUSTIFY hor$,vert$ Ch 13, 18
sets text justification as LEFT, RIGHT, or CENTER 
and TOP, BOTTOM, BASE, or HALF

SET WINDOW lft, rgt, btm, top Ch 13, 14, 18
sets range of coordinates represented by current logical window

SET ZONEWIDTH width Ch 3, 18
sets width of print zones in current logical window

573Appendix I : Index of True BASIC Statements, Functions, and Subroutines



SET #n: ZONEWIDTH width Ch 12, 18
sets width of print zones in file #n

SETANGLE (measure$) S SGLib Ch 23
sets angle interpretation for subsequent polar graphs as DEG or RAD

SETBARTYPE (type$) S BGLib Ch 23
sets grouping of bars in subsequent charts as SIDE, STACK, or OVER

SETGRAIN (grain) S SGLib Ch 23
sets grain to be used for subsequent function plots

SETGRAPHTYPE (type$) S SGLib Ch 23
sets type of graph to be used for subsequent plots as XY, 
LOGX, LOGY, LOGXY, or POLAR

SETGRID (style$) S BGLib Ch 23
sets presence, direction, and type of grid to be used for SGLib
subsequent charts and graphs

SETHLABEL (hlabel$) S BGLib Ch 23
sets horizontal label to be used for subsequent charts and graphs SGLib

SETLAYOUT (dir$) S BGLib Ch 23
sets direction in which bars of subsequent charts will be 
oriented as HORIZONTAL or VERTICAL

SETLS (flag) S SGLib Ch 23
sets whether least-squares linear fits will be drawn for 
subsequent data graphs using 1 for yes or 0 for no

SETTEXT (title$, hlabel$, vlabel$) S BGLib Ch 23
sets title and labels to be used for subsequent charts and graphs SGLib

SETTITLE (title$) S BGLib Ch 23
sets title to be used for subsequent charts and graphs SGLib

SETVLABEL (vlabel$) S BGLib Ch 23
sets vertical label to be used for subsequent charts and graphs SGLib

SETYSCALE (lowy, highy) S SGLib Ch 23
sets vertical scale to be used for subsequent charts and graphs

SGN (n) F Ch 8, 18
returns sign of n as –1, 0, or 1

SHARE variable Ch 11, 18
defines specified variable(s) as shared throughout containing 
program-unit or module

SHORTDATE$ (date$) F StrLib Ch 23
returns date represented by date$ as day of month, three-letter 
abbreviation of month name, and last two digits of year

SIN (n) F Ch 8,.18
returns sine of n

SINH (n) F Ch 8, 18
returns hyperbolic sine of n

SIZE (array) F Ch 9 18
returns number of elements in specified array

SIZE (matrix, dimension) F Ch 9, 18
returns number of elements in specified dimension of specified matrix

574 True BASIC Language System



SORTN (array()) S SortLib Ch 23
sorts array() into ascending order

SORTPOINTS (x(), y()) S SGLib Ch 23
sorts parallel arrays x() and y() into ascending order by elements of x()

SORTPOINTS2 (x(,), y(,)) S SGLib Ch 23
sorts parallel rows of x(,) and y(,) into ascending order by elements
in rows of x(,)

SORTS (array$()) S SortLib Ch 23
sorts array$() into ascending order

SORT_OFF S SortLib Ch 23
restores normal sorting

SORT_OBSERVECASE S SortLib Ch 23
sorts with upper- lowercase different (default)

SORT_IGNORECASE S SortLib Ch 23
Treats upper- lowercase as the same 

SORT_NICENUMBERS_ON S SortLib Ch 23
initiates special nice number sorting

SORT_NICENUMBERS_OFF S SortLib Ch 23
restores normal ASCII sorting (default)

SORT_NOKEYS S SortLib Ch 23
restores entire string sorting (default)

SORT_ONE KEY  (from, to) S SortLib Ch 23
sorts on substring field

SORT_TWOKEYS  (f1, t1, f2, t2) S SortLib Ch 23
sorts on two substring fields

SOUND frequency, duration Ch 15, 18
sounds note with specified frequency and duration

SQL_CLOSE (context) S Gold Ch 26
ends a SQL query

SQL_GETALLRESULTS (context, result$(rows, cols)) S Gold Ch 26
returns results in a True BASIC array

SQL_GETRESULTS (context, startrow, rows, result$(rows, cols)) S Gold Ch 26
returns results from last query

SQL_GETHANDLES (context, handles$)  - OBDC only S Gold Ch 26
used for access to OBDC databases

SQL_MATCHFIELDS (context, table$, pattern$, tablelist$()) S Gold Ch 26
returns the field names and matching data types from a given table

SQL_MATCHTABLES (context, pattern$, tablelist$()) S Gold Ch 26
returns table names from database

SQL_QUERY (context, query$,( rows, cols)) S Gold Ch 26
returns results of query

SQR (n) F Ch 8, 18
returns square root of n

STOP Ch 18
stops program

575Appendix I : Index of True BASIC Statements, Functions, and Subroutines



STR$ (n) F Ch 8, 18
returns value of n converted to string value

STRWIDTH (id, string$) F Ch 18
returns length of string$ measured in pixels within specified physical window

SUB MySub (argument1, argument2$) Ch 10, 18
begins subroutine definition

SUB TS_BIND (tb_socket, family, port, addr$) S Gold Ch 25
combines information to make a standard address 

SUB TS_CLOSE (tb_socket) S Gold Ch 25
close function for TB_Socket routine

SUB TS_CONNECT (tb_socket, num_bytes) S Gold Ch 25
returns a string containing data

SUB TS_INIT S Gold Ch 25
used to initiate the use of the True BASIC socket routines

SUB TS_LISTEN (tb_socket, backlog) S Gold Ch 25
returns the maximum length of the queue of pending connections

SUB TS_SEND (tb_socket, s$) S Gold Ch 25
used to send data via the open socket

SUPERVAL (table$, expression$, value) S StrLib Ch 23
returns value of variable-based expression

SYS_EVENT (timer, type$, window, misc1, misc2) S Ch 18, 20
gets next system event from operating system’s event queue

SYSTEM (operation, result1$, result2$, result3$) S Ch 18
performs one of several operating system functions

TAB (column) F Ch 3, 18
repositions text cursor at specified column of current print line

TAB (row, column) F Ch 3, 18
repositions text cursor at specified column of specified row

TAN (n) F Ch 8, 18
returns tangent of n

TANH (n) F Ch 8, 18
returns hyperbolic tangent of n

TBD (e, t, type, title$, msg$, btn$, name$, text$, start, dflt, timeout, result) S Ch 18, 21
creates and displays modal dialog box, returning user’s response

TBDX (e, r, b, t, parm$,parm( ), type, title$, msg$, btn$, name$, text$, start, dflt, timeout, result)
creates and displays a custom dialog box, returning user’s response S Ch 18, 21

TC_CHECKBOX_CREATE (cid, text$, lft, rgt, btm, top) S TrueCtrl Ch 14, 22
creates a check box along with its associated text

TC_CHECKBOX_GET (cid, state) S TrueCtrl Ch 14, 22
returns the status of a check box

TC_CHECKBOX_SET (cid, state) S TrueCtrl Ch 14, 22
sets the status of a check box

TC_CLEANUP S TrueCtrl Ch 14, 22
deactivates event handling, required before termination

576 True BASIC Language System



TC_EDIT_CHECKFIELD (cid, errormess$) S TrueCtrl Ch 14, 22
checks the edit field contents against the edit field format

TC_EDIT_CREATE (cid, text$, lft, rgt, btm, top) S TrueCtrl Ch 14, 22
creates an editable field with initial text

TC_EDIT_GETTEXT (cid, text$) S TrueCtrl Ch 14, 22
returns the current text in an edit field

TC_EDIT_SETFORMAT (cid, format$) S TrueCtrl Ch 14, 22
sets the format for an edit field

TC_EDIT_SETTEXT (cid, newtext$) S TrueCtrl Ch 14, 22
sets the text for an edit field

TC_ENV_SET (attribute$, value$) S TrueCtrl Ch 14, 22
sets certain environment attributes; Unix only

TC_ERASE (id) S TrueCtrl Ch 14, 22
hides (makes invisible) an object or control; opposite of TC_SHOW

TC_EVENT (timer, event$, window, x1, x2) S TrueCtrl Ch 14, 22
returns the next event on the event queue

TC_FONTSAVAILABLE (fonts$()) S TrueCtrl Ch 14, 22
returns names of fonts available on the system

TC_FREE (id) S TrueCtrl Ch 14, 22
deletes (releases) an object or control; opposite of TC_XXX_CREATE

TC_GET (id, attributes$, value$, values()) S TrueCtrl Ch 14, 22
returns current value(s) of attributes

TC_GETRECT (id, xl, xr, yb, yt) S TrueCtrl Ch 14, 22
returns current coordinates in pixels of object or control

TC_GETSCREENSIZE (left, right, bottom, top) S TrueCtrl Ch 14, 22
returns the coordinates of the entire screen in pixels

TC_GETSYSINFO (attribute$, value$, values()) S TrueCtrl Ch 14, 22
returns certain system environment values

TC_GETTEXT (id, text$) S TrueCtrl Ch 22
returns current text of a control

TC_GRAPH_CREATE (gid, type$, lft, rgt, btm, top) S TrueCtrl Ch 14, 22
creates a graphical object

TC_GRAPH_GETIMAGETOBOX (cid, boxstring$) S TrueCtrl Ch14, 22
converts graphical image into a box keep string

TC_GRAPH_SCALE (gid, scalex, scaley) S TrueCtrl Ch 22
changes the size of a graphical object

TC_GRAPH_SETALINE (gid, start, end) S TrueCtrl Ch 14, 22
sets arrow heads at either end of an arrow line

TC_GRAPH_SETARC (gid, starta, enda) S TrueCtrl Ch 14, 22
sets the extent of an arc or pie segment

TC_GRAPH_SETBRUSH (gid, backcolor, color, pattern$) S TrueCtrl Ch 14, 22
sets the back color and brush properties for graphical object

TC_GRAPH_SETDRAWMODE (gid, mode$) S TrueCtrl Ch 14, 22
sets the logical drawing mode for a graphical object

577Appendix I : Index of True BASIC Statements, Functions, and Subroutines



TC_GRAPH_SETIMAGE (gid, filename$, adjustflag) S TrueCtrl Ch 22
sets and displays an image from a file

TC_GRAPH_SETIMAGEFROMBOX (cid, boxstring$) S TrueCtrl Ch 14, 22
sets a graphical image from a box keep string

TC_GRAPH_SETIMAGEFROMFILE (cid, filename$, filetype$, adjustflag) S TrueCtrl Ch 14, 22
sets a graphical image from a file (similar to TC_GRAPH_SETIMAGE)

TC_GRAPH_SETPEN (gid, width, color, style$, pattern$) S TrueCtrl Ch 14, 22
sets the pen properties for a graphical object

TC_GRAPH_SETPOLY (gid, points(,)) S TrueCtrl Ch 14, 22
sets the points for a polyline or polygon

TC_GRAPH_SETROUNDRECT (gid, owidth, oheight) S TrueCtrl Ch 14, 22
sets the curvature for a rounded rectangle

TC_GRAPH_SHIFT (gid, deltax, deltay) S TrueCtrl Ch 22
moves a graphical object

TC_GROUPBOX_CREATE (cid, title$, lft, rgt, btm, top) S TrueCtrl Ch 14, 22
creates a group box with title

TC_INIT S TrueCtrl Ch 14, 22
activates event handling, required by True Controls

TC_LISTBOX_CREATE (cid, mode$(), lft, rgt, btm, top) S TrueCtrl Ch 14, 22
creates a selection list box; specify entries with TC_SetList

TC_LISTBOX_GET (cid, selection()) S TrueCtrl Ch 14, 22
returns all currently selected element positions

TC_LISTBOX_SET (cid, selection) S TrueCtrl Ch 14, 22
selects a specified element in a list box (use TC_SetList to enter elements) 

TC_LISTBTN_CREATE (cid, text$(), lft, rgt, btm, top) S TrueCtrl Ch 14, 22
creates a list button with scrollable text

TC_LISTBTN_GET (cid, selection) S TrueCtrl Ch 14, 22
returns currently selected list element

TC_LISTBTN_SET (cid, selection) S TrueCtrl Ch 14, 22
selects currently selected list element

TC_LISTEDIT_CREATE (cid, text$(), lft, rgt, btm, top) S TrueCtrl Ch 14, 22
creates a list edit button with scrollable text

TC_LISTEDIT_GET (cid, text$) S TrueCtrl Ch 14, 22
returns current text in edit field

TC_LISTEDIT_SET (cid, text$) S TrueCtrl Ch 14, 22
selects current text in edit field

TC_MENU_ADDITEM (wid, menu, text$) S TrueCtrl Ch 14, 22
adds a menu item to the end of a menu

TC_MENU_ADDMENU (wid, menu$()) S TrueCtrl Ch 14, 22
adds new menu at end of current menu structure

TC_MENU_DELITEM (wid, menu, item) S TrueCtrl Ch 14, 22
deletes a specific menu item from a menu

TC_MENU_DELMENU (wid) S TrueCtrl Ch 14, 22
deletes last menu of existing menu structure

578 True BASIC Language System



TC_MENU_FREE (wid) S TrueCtrl Ch 14, 22
deletes or frees (releases) an entire menu structure

TC_MENU_GETCHECK (wid, menu, item, flag) S TrueCtrl Ch 22
returns state of check mark on a menu item

TC_MENU_GETENABLE (wid, menu, item, flag) S TrueCtrl Ch 14, 22
returns state of menu item (enabled or disabled)

TC_MENU_GETTEXT (wid, menu, item, text$) S TrueCtrl Ch 14, 22
returns text in specified menu position

TC_MENU_SET (wid, menu$(,)) S TrueCtrl Ch 14, 22
sets the menu structure for a physical window

TC_MENU_SETCHECK (wid, menu, item, flag) S TrueCtrl Ch 14, 22
sets or removes a menu check mark

TC_MENU_SETENABLE (wid, menu, item, flag) S TrueCtrl Ch 14, 22
enables or disables a menu item

TC_MENU_SETTEXT (wid, menu, item, newtext$) S TrueCtrl Ch 14, 22
resets the text of a menu item

TC_PIXTOUSER (px, py, ws, wy) S TrueCtrl Ch 14, 22
converts from pixel to world (user) coordinates

TC_PUSHBTN_CREATE (cid, text$, lft, rgt, btm, top) S TrueCtrl Ch 14, 22
creates a push button with text

TC_RADIOGROUP_CREATE (rbid, text$(), lft, rgt, btm, top) S TrueCtrl Ch 14, 22
creates a radio button group with text

TC_RADIOGROUP_ON (rgid, button) S TrueCtrl Ch 14, 22
returns which radio button is currently on

TC_RADIOGROUP_SET (rbid, button) S TrueCtrl Ch 14, 22
sets specified radio button to on

TC_RADIOGROUP_SETTEXT (rid, button, newtext$) S TrueCtrl Ch 22
sets the text of a radio group button

TC_SBAR_CREATE (cid, type$, lft, rgt, btm, top) S TrueCtrl Ch 14, 22
creates a scroll bar, vertical or horizontal

TC_SBAR_GETINCREMENTS (cid, single, page) S TrueCtrl Ch 14, 22
returns the current increments for a scroll bar

TC_SBAR_GETPOSITION (cid, position) S TrueCtrl Ch 14, 22
returns the current scroll bar slider position

TC_SBAR_GETRANGE (cid, srange, erange, prop) S TrueCtrl Ch 14, 22
returns the current range and slider parameters for a scroll bar

TC_SBAR_SETINCREMENTS (cid, single, page) S TrueCtrl Ch 14, 22
sets the increments for a scroll bar

TC_SBAR_SETPOSITION (cid, position) S TrueCtrl Ch 14, 22
sets the scroll bar slider position

TC_SBAR_SETRANGE(cid, srange, erange, prop) S TrueCtrl Ch 14, 22
sets the range and slider parameters for a scroll bar

TC_SELECT (id) S TrueCtrl Ch 22
selects a selectable control

579Appendix I : Index of True BASIC Statements, Functions, and Subroutines



TC_SENSITIZE (id, flag) S TrueCtrl Ch 22
determines whether a control responds to mouse clicks

TC_SET (id, attributes$, value$, values()) S TrueCtrl Ch 14, 22
sets the value(s) of certain attributes

TC_SETLIST (id, text$()) S TrueCtrl Ch 14, 22
sets the text list of a list button, list edit button, or list box

TC_SETRECT (id, newxl, newxr, newyb, newyt) S TrueCtrl Ch 14, 22
resets the coordinates of an object or control

TC_SETRECTPIXELS (id, xl, xr, yb, yt) S TrueCtrl Ch 22
resets the location of an object or control using pixels

TC_SETRECTUSERS (id, xl, xr, yb, yt) S TrueCtrl Ch 22
resets the location of an object or control using user coordinates

TC_SETTEXT (id, text$) S TrueCtrl Ch 22
sets the text of any control that allows setting its text

TC_SETTEXTJUSTIFY (id, justify$) S TrueCtrl Ch 14, 22
resets the text justify parameter for a control

TC_SETUNITSTOPIXELS S TrueCtrl Ch 22
sets the units flag to pixels

TC_SETUNITSTOUSERS S TrueCtrl Ch 22
sets the units flag to user coordinates

TC_SHOW (id) S TrueCtrl Ch 14, 22
shows (makes visible) an object or control; opposite of TC_ERASE

TC_SHOW_DEFAULT (defaultflag) S TrueCtrl Ch 14, 22
sets the flag for a control or graphical object to be shown upon creation

TC_STEXT_CREATE (cid, text$, lft, rgt, btm, top) S TrueCtrl Ch 14, 22
creates a static text field

TC_TXED_APPEND (cid, text$, revealflag) S TrueCtrl Ch 22
appends a line of text at the end of a text edit control

TC_TXED_COPY (cid) S TrueCtrl Ch 14, 22
copies selected text to the clipboard

TC_TXED_CREATE (cid, options$, lft, rgt, btm, top) S TrueCtrl Ch 14, 22
creates a text edit control, with options$

TC_TXED_CUT (cid) S TrueCtrl Ch 14, 22
cuts selected text to the clipboard

TC_TXED_FIND (cid, case, word, key$, p, l1, c1, l2, c2, found) S TrueCtrl Ch 14, 22
finds key word in the text, returns its position

TC_TXED_GETCURSOR (cid, p, l, c) S TrueCtrl Ch 22
returns the current cursor position of a text edit control

TC_TXED_GETSELECTION (cid, p1, l1, c1, p2, l2, c2) S TrueCtrl Ch 14, 22
returns the extent of selected text in a text edit control

TC_TXED_GETTEXT (cid, text$) S TrueCtrl Ch 14, 22
returns the current text of a text edit control

TC_TXED_PASTE (cid) S TrueCtrl Ch 14, 22
inserts clipboard contents to current cursor position or replaces selected text

580 True BASIC Language System



TC_TXED_READTEXTFROMARRAY (txid, a$()) S TrueCtrl Ch 14, 22
sets the entire text from a string array

TC_TXED_READTEXTFROMFILE (txid, filename$) S TrueCtrl Ch 14, 22
sets the entire text from a file (similar to TC_TXED_SETTEXT)

TC_TXED_RESUME (cid) S TrueCtrl Ch 14, 22
resumes a suspended text edit control

TC_TXED_SETCOLOR (cid, forecolor, backcolor, bordercolor) S TrueCtrl Ch 14, 22
sets the colors for a text edit control

TC_TXED_SETCURSOR (cid, p, l, c) S TrueCtrl Ch 22
sets the cursor position of a text edit control

TC_TXED_SETCUTCOPYPASTE (cid, xmenu, xitem, cmenu, citem, pmenu, pitem) S TrueCtrl Ch 14, 22
specifies the menu equivalents for cut, copy, and paste

TC_TXED_SETFONT (cid, fontname$, fontsize, fontsytle$) S TrueCtrl Ch 14, 22
sets the font properties for a text edit control

TC_TXED_SETMARGIN (txid, margin) S TrueCtrl Ch 22
sets the margin of wrapped text

TC_TXED_SETSELECTION (cid, p1, l1, c1, p2, l2, c2) S TrueCtrl Ch 14, 22
seelects a region of text in a text edit control

TC_TXED_SETTEXT (cid, text$) S TrueCtrl Ch 14, 22
sets the entire text of a text edit control

TC_TXED_SETTRAPCHAR (cid, char, action) S TrueCtrl Ch 14, 22
sets the characters to be trapped by a text edit control

TC_TXED_SUSPEND (txid) S TrueCtrl Ch 22
suspends a text edit control; see also TC_TXED_RESUME

TC_TXED_WRITETEXTTOARRAY (txid, a$()) S TrueCtrl Ch 14, 22
writes the entire text to a string array

TC_TXED_WRITETEXTTOFILE (txid, filename$) S TrueCtrl Ch 14, 22
writes the entire text to a file (similar to TC_TXED_GETTEXT)

TC_USERTOPIX (wx, wy, px, py) S TrueCtrl Ch 14, 22
converts from world (user) to pixel coordinates

TC_WIN_ACTIVE (wid) S TrueCtrl Ch 14, 22
makes a phsyical window active (moves it to the front)

TC_WIN_CHILDCREATE (wid, options$, parent, lft, rgt, btm, top) S TrueCtrl Ch 22
creates a physical window that is the child window of another

TC_WIN_CREATE (wid, options$, lft, rgt, btm, top) S TrueCtrl Ch 14, 22
creates a phsyical window, with options

TC_WIN_GETTITLE (wid, title$) S TrueCtrl Ch 14, 22
returns the current title of a phsyical window

TC_WIN_MOUSEMOVE (wid, flag) S TrueCtrl Ch 22
activates or inhibits mouse-move events in a physical window

TC_WIN_NOHIDE (wid, flag) S TrueCtrl Ch 22
can be used to override automatic erasure if close box is clicked

TC_WIN_PAGESETUP (wid) S TrueCtrl Ch 22
displays page setup dialog box

581Appendix I : Index of True BASIC Statements, Functions, and Subroutines



TC_WIN_PRINT (wid) S TrueCtrl Ch 22
prints contents of current window to current printer

TC_WIN_REALIZEPALETTE (win) S TrueCtrl Ch 22
“realizes” the True BASIC palette to the system palette

TC_WIN_SETBRUSH (wid, backcolor, color, pattern$) S TrueCtrl Ch 14, 22
sets the back color, brush properties for a phsyical window

TC_WIN_SETCURSOR (wid, cursor$) S TrueCtrl Ch 14, 22
sets the cursor style for a phsyical window

TC_WIN_SETDRAWMODE (wid, mode$) S TrueCtrl Ch 14, 22
sets the logical drawing mode for a phsyical window

TC_WIN_SETFONT (wid, fontname$, fontsize, fontsytle$) S TrueCtrl Ch 14, 22
sets the font properties for a phsyical window

TC_WIN_SETPEN (wid, width, color, style$, pattern$) S TrueCtrl Ch 14, 22
sets the pen properties for a phsyical window

TC_WIN_SETTITLE (wid, title$) S TrueCtrl Ch 14, 22
sets the title of a phsyical window

TC_WIN_SWITCH (wid) S TrueCtrl Ch 14, 22
makes a phsyical window both active (in front) and target for ouput

TC_WIN_SWITCHCURRENT S TrueCtrl Ch 22
switches to the full logical window of the current physical window

TC_WIN_TARGET (wid) S TrueCtrl Ch 14, 22
directs output to a phsyical window

TC_WIN_UPDATE (wid, left, right, bottom, left) S TrueCtrl Ch 22
updates contents of physical window or portion thereof

TC_WIN_VALID (wid) S TrueCtrl Ch 14, 22
causes error if phsyical window is not valid

TC_WINHSBAR_GETINCREMENTS (wid, single, page) S TrueCtrl Ch 22
returns the current values of the increments for an attached horizontal scroll bar

TC_WINHSBAR_GETPOSITION (wid, position) S TrueCtrl Ch 22
returnsthe current location of an attached horizontal scroll bar slider
in terms of the scrollbar parameters srange, erange, and prop

TC_WINHSBAR_GETRANGE (wid, srange, erange, prop) S TrueCtrl Ch 22
returns the current values of the scrollbar parameters 
for an attached horizontal scroll bar

TC_WINHSBAR_SETINCREMENTS (wid, single, page) S TrueCtrl Ch 22
sets the scrollbar increments for an attached horizontal scroll bar

TC_WINHSBAR_SETPOSITION (wid, position) S TrueCtrl Ch 22
sets the position of the slider (the thumb) of an attached horizontal scroll 
bar in terms of the scrollbar parameters srange, erange, and prop

TC_WINHSBAR_SETRANGE (wid, srange, erange, prop) S TrueCtrl Ch 22
sets the scrollbar parameters for extreme positions and proportional size
(if allowed) of the slider for an attached horizontal scroll bar

TC_WINVSBAR_GETINCREMENTS (wid, single, page) S TrueCtrl Ch 22
returns the current values of the increments 
for an attached vertical scroll bar

582 True BASIC Language System



TC_WINVSBAR_GETPOSITION (wid, position) S TrueCtrl Ch 22
returns the current location of an attached vertical scroll bar slider
in terms of the scrollbar parameters srange, erange, and prop

TC_WINVSBAR_GETRANGE (wid, srange, erange, prop) S TrueCtrl Ch 22
returns the current values of the scrollbar parameters 
for an attached vertical scroll bar

TC_WINVSBAR_SETINCREMENTS (wid, single, page) S TrueCtrl Ch 22
sets the scrollbar increments for an attached vertical scroll bar

TC_WINVSBAR_SETPOSITION (wid, position) S TrueCtrl Ch 22
sets the position of the slider (the thumb) of an attached vertical scroll bar
in terms of the scrollbar parameters srange, erange, and prop

TC_WINVSBAR_SETRANGE (wid, srange, erange, prop) S TrueCtrl Ch 22
sets the scrollbar parameters for extreme positions and proportional size
(if allowed) of the slider for an attached vertical scroll bar

TD_GETFILE (extension$, filename$, changedir) S TrueDial Ch 14, 22
displays a standard open file dialog box

TD_ASKDELIMITER (delim$) S TrueDial Ch 22
returns the delimiter used as a line break

TD_GETTIMEOUT (timeout) S TrueDial Ch 14, 22
returns the current timeout for dialog boxes

TD_INPUT (message, button$, text$, default, result) S TrueDial Ch 14, 22
displays a single-line input dialog box

TD_INPUTM (title$, message$, button$, labels$(), text$(), highlight, default, result)
displays a multiple-line input dialog box S TrueDial Ch 14, 22

TD_LINEINPUT (message$, text$) S TrueDial Ch 14, 22
displays a line input dialog box

TD_LIST (message$, button$, list$(), choice, default, result) S TrueDial Ch 14, 22
displays a selection list box

TD_MESSAGE (title$, message$, button$, default, result) S TrueDial Ch 14, 22
displays a simple message dialog box with a title

TD_SAVEFILE (extension$, filename$) S TrueDial Ch 14, 22
displays a standard save file dialog box

TD_SETDELIMITER (delim$) S TrueDial Ch 22
sets the delimiter used as a line break

TD_SETLOCATION (x loc, y loc) S TrueDial Ch 22
sets upper-left corner for type 1 and 4 dialog boxes in pixels

TD_SETTIMEOUT (timeout) S TrueDial Ch 14, 22
sets the timeout for all subsequent dialog boxes

TD_WARN (message$, button$, default, result) S TrueDial Ch 14, 22
displays a simple message dialog box (without a title)

TD_YN (message$, default, result) S TrueDial Ch 14, 22
displays a simple Yes-No dialog box

TD_YNC (message$, default, result) S TrueDial Ch 14, 22
displays a simple Yes-No-Cancel dialaog box

TIME       F Ch 8, 18
returns current time as number of seconds since midnight

TIME$        F Ch 8, 18
returns current time in form “HH:MM:SS”

583Appendix I : Index of True BASIC Statements, Functions, and Subroutines



TODAY$ F StrLib Ch 23
returns current date consisting of weekday, month name, day of month, and year

TRACE on Ch 18
turns trace mode on

TRIM$ (text$) F Ch 8, 18
returns value of text$ with all leading and trailing spaces removed

TRN (matrix) AF Ch 9, 18
returns transpose of matrix

TRUNCATE (value, n) F Ch 8, 18
returns value of value truncated to n places

UBOUND (array) F Ch 9, 18
returns upper bound of one-dimensional array

UBOUND (matrix, dimension) F Ch 9, 18
returns upper bound of specified dimension of multi-dimensional matrix

UCASE$ (text$) F Ch 9, 18
returns value of text$ with all letters converted to uppercase

UNIQ$ (text$) F StrLib Ch 23
returns set of all characters contained in text$

UNPACKB (string$, startbit, bitlength) F Ch 12, 18
returns integer value stored within specified bits of string$

UNSAVE filename$ Ch 12, 18
deletes specified file from current directory

UPPER$ F StrLib Ch 23
returns set of uppercase alphabetic characters

USE          Ch 16, 18
separates protected portion from handler portion in WHEN structure

USING$ (format$, value) F Ch 8, 18
returns specified value(s) formatted according to specified format string

VAL (number$) F Ch 8, 18
returns numerical value of contents of number$

WEEKDAY (adate$) F StrLib Ch 23
returns number of weekday on which specified date falls

WEEKDAY$ (adate$) F StrLib Ch 23
returns name of weekday on which specified date falls

WHEN ERROR IN Ch 16, 18
beginning of error handler with attached handler portion

WHEN ERROR USE MyHandler Ch 16, 18
beginning of error handler with detached handler portion

WINDOW #n Ch 13, 14, 18
switches to logical  window associated with #n

WRITE #n: variable Ch 12, 18
writes specified variable(s) to internal file #n

WRITE_IMAGE (filetype$, boxkeepstring#, filename$) Ch 12, 18
writes to an image file from a box keep string

XOR (a, b) F HexLib Ch 23
returns bit-by-bit logical XOR of a and b

ZER (a) AC Ch 9, 18
returns array of zeros

584 True BASIC Language System



Object Methods (see Chapter 19 for full explanations)

CALL Object (method, id, attributes$, values$, values())

OBJM_COPY
creates copy of specified object
ID of copy returned in values(1)

OBJM_CREATE
creates new object; must be one of following types:

OBJT_CONTROL control
OBJT_GRAPHIC graphic image
OBJT_GROUP group of radio buttons
OBJT_MENU menu or menu item
OBJT_WINDOW physical window

returns ID of created object in id
OBJM_ERASE

hides specified object
OBJM_FREE

destroys specified object and frees memory it occupied
OBJM_GET

gets specified attributes of specified object
OBJM_PAGESETUP

displays page setup dialog box for PRINT method parameters
OBJM_PRINT (applies to windows only)

prints contents of specified window to printer
OBJM_SCROLL

scrolls contents of window
OBJM_SELECT (applies to windows only)

selects specified physical window
passes type of selection in values(1):

1 make window current (target)
2 make window active (moves to front)
3 make window current (target) and active

OBJM_SET
sets specified attributes of specified object

OBJM_SHOW
displays specified object

OBJM_SYSINFO
reports useful, system-wide information; reports or sets operating system parameters

OBJM_TXE_ADD_PAR (applies to text edit controls only)
adds text in values$ as new paragraph following paragraph specified in values(1)

OBJM_TXE_APPEND_PAR (applies to text edit controls only)
appends text in values$ to end of paragraph specified in values(1)

OBJM_TXE_DEL_PAR (applies to text edit controls only)
deletes paragraph specified in values(1)

OBJM_TXE_HSCROLL (applies to text edit controls only)
scrolls contents of text edit control horizontally by pixels specified in values(1)

OBJM_TXE_RESUME (applies to text edit controls only)
resumes processing by specified text edit control

585Appendix I : Control Object Attributes



OBJM_TXE_SUSPEND (applies to text edit controls only)
suspends processing by specified text edit control

OBJM_TXE_VSCROLL (applies to text edit controls only)
scrolls contents of text edit control vertically by pixels specified in values(1)

OBJM_UPDATE (applies to windows only)
updates contents of specified physical window
passes region to update as left, right, bottom, and top edges in values(2)...values(5)
specifies units used to interpret these coordinates by values(1):

0 pixel coordinates
1 user coordinates

Control Object Attributes (see Chapter 19 for full explanations)
ACTIVE

determines whether text editor is active or inactive
0 inactive
1 active (default)

BACK COLOR
determines color of background within text editor; default is white (-2)

BORDER
determines whether text editor is displayed with border

0 no border (default)
1 border

BORDER COLOR
determines color of border surrounding text editor; default is black (-1)

BOTTOM RELATIVE
determines whether bottom edge of control is defined relative to bottom edge of window

0 absolute (default)
1 relative

CHAR LIMIT
determines total number of characters user may enter into text editor; default is 65535

CONTROL TYPE
determines type of control

CTLT_PUSHBUTTON push button
CTLT_RADIOBUTTON radio button
CTLT_CHECKBOX check box
CTLT_HSCROLL horizontal scroll bar
CTLT_VSCROLL vertical scroll bar
CTLT_EDIT edit text field
CTLT_TEXT static text field
CTLT_LBOX list box
CTLT_LISTBUTTON list button
CTLT_LISTEDIT list edit text field
CTLT_GROUPBOX group box
CTLT_TXED text editor
CTLT_ICON icon type (may be ignored)

DEFAULT
determines appearance of active button

1 special outline
0 normal

586 True BASIC Language System



END RANGE
determines end of range represented by scroll bar

EXIT CHAR
specifies characters that can deselect and exit field

FONT METRICS
reports leading, ascender, descender, xsize, ysize, and bearing of text editor’s font in pixels
may not be set

FONT NAME
determines font used in text editor. Portable font names are HELVETICA, FIXED (default), TIMES, and
SYSTEM. Other names may be available in specific operating environments

FONT SIZE
determines size of font used in text editor
specified in points (1 point = 1/72 inch); default is 10 points

FONT STYLE
determines style of font used in text editor
allowable styles are PLAIN (default), BOLD, ITALIC, and BOLDITALIC

FORE COLOR
determines color of text within text editor; default is black

FORMAT
determines the format associated with a particular edit field

HSCROLL
provides storage for ID of horizontal scroll bar associated with text editor
ignored by True BASIC

INSERTION
determines position of insertion point within text editor
specified as paragraph, line, and character passed in values()

KEY EVENTS
determines whether text editor generates TXE_KEYPRESS events

0 no TXE_KEYPRESS events (default)
1 generate TXE_KEYPRESS events

LEFT RELATIVE
determines whether left edge of control is defined relative to left edge of window

0 absolute (default)
1 relative

LINE
reports text of specified line within text editor’s contents
passes number of paragraph and line effected in values()
passes text of line in values$

LINES IN PAR
reports number of lines in specified paragraph of text editor’s contents
returns number of paragraph in values(1)
returns number of lines in paragraph in values(2)

LIST
determines item in list box, list button, or list edit text field
items passed as flat array

MARGIN
determines margin, in pixels, of text editor

MAX WIDTH
reports length, in pixels, of longest line in text editor’s contents

587Appendix I : Control Object Attributes



MOUSE EVENTS
determines whether text editor generates TXE_MOUSE events

0 no TXE_MOUSE events (default)
1 generate TXE_MOUSE events

NAME
name of control; ignored by True BASIC

NUM CHARS
reports number of characters in text editor’s contents

NUM LINES
reports number of lines in text editor’s contents 

NUM PARS
reports number of paragraphs in text editor’s contents 

ON
returns the ID (in values(1)) and ordinal number (in values(2)) of the radio button that is on, if any

ORIGIN
reports position of upper, left-hand corner of text visible in text editor
returned as paragraph, relative line, absolute line, and pixel offset in values()

PAGE INCREMENT
provides storage for page distance to scroll for scroll bar; ignored by True BASIC

POSITION
determines or returns position of scroll bar’s slider. Must be in appropriate range

PROPORTION
determines the proportional size of the scroll bar slider, if possible

READONLY
determines whether text editor allows editing

0 allow editing (default)
1 read only

RECTANGLE
determines size and position of control
passed as four numeric values representing positions of left, right, bottom, and top edges

RELATIVE
determines whether all edges of control are defined relative to edges of window

0 absolute (default)
1 relative

RIGHT RELATIVE
determines whether right edge of control is defined relative to right edge of window

0 absolute (default)
1 relative

SELECTION
reports or sets item(s) currently selected in list box or list button in values(); may not be set for list button

or
determines currently selected text within text editor; passed as starting and ending paragraphs, lines, and
characters in values()

SELECTION MODE
determines how user may select items in list box

LBXM_SINGLE one item at a time
LBXM_MULTIPLE one or more items at a time
LBXM_READONLY no items; view only

588 True BASIC Language System



SENSITIVE
determines whether control is sensitive or insensitive

0 insensitive
1 sensitive (default)

SINGLE INCREMENT
provides storage for arrow distance to scroll for scroll bar; ignored by True BASIC

START RANGE
determines start of range represented by scroll bar

STATE
determines visual state of radio button or check box

0 off (default)
1 on

TEXT
determines text within buttons, text or edit fields, or text editor

TEXT JUSTIFY
determines justification of text within button or static text field

0 left-aligned
1 centered (default)
2 right-aligned

TEXTEDIT
provides storage for ID of text edit control associated with scroll bar
ignored by True BASIC

TITLE
determines title of group box

TOP RELATIVE
determines whether top edge of control is defined relative to top edge of window

0 absolute (default)
1 relative

TRAP CHAR
specifies keys to be trapped by text editor
number of keys to be trapped passed first in values()
each key to be trapped passed as key code and trap code as follows:

1 suspend text editor on keystroke
2 do not suspend; let text editor handle keystroke
3 suspend text editor only if text is selected

UNITS
determines coordinate system used for positioning control

0 pixel coordinates (default)
1 user coordinates

VISIBLE
reports whether control is currently visible; may not be set

1 visible
0 hidden

VSCROLL
provides storage for ID of vertical scroll bar associated with text editor
ignored by True BASIC

WRAP
determines whether text editor wraps paragraphs into lines

0 do not wrap paragraphs (default)
1 wrap paragraphs

589Appendix I : Graphic Object Attributes



Graphic Object Attributes
BACKGROUND COLOR

determines the background color to be used inside a graphics object; default is white (-2)
BOTTOM RELATIVE

determines whether bottom edge of image is defined relative to bottom edge of window
0 absolute (default)
1 relative

BRUSH COLOR
determines number of color used for image’s brush; default is black (-1)

BRUSH PATTERN
determines pattern of image’s pen

PBP_HOLLOW no visible pattern
PBP_SOLID solid pattern (default)
PBP_HORZ pattern of horizontal lines
PBP_VERT pattern vertical lines
PBP_FDIAG pattern of “forward” diagonal lines
PBP_BDIAG pattern of “backward” diagonal lines
PBP_CROSS pattern of crossing horizontal and vertical lines
PBP_DIAGCROSS pattern of crossing diagonal lines

DRAWMODE
determines drawing mode of image’s pen and brush

DM_COPY ignores current contents of window (default)
DM_OR bitwise OR between bit planes
DM_XOR bitwise XOR between bit planes
DM_CLEAR clears current contents to color 0
DM_NOT_COPY logical negation of COPY
DM_NOT_OR logical negation of OR
DM_NOT_XOR logical negation of XOR
DM_NOT_CLEAR logical negation of CLEAR

END ARROW
determines if arrow head is at ending point of arrow line

0 no arrow at ending point (default)
1 arrow at ending point

FILENAME
specifies name of file containing graphical image

FORCE PALETTE
specifies whether to use existing palette (0), or to use palette of the image (1)

GRAPHIC TYPE
determines type of image

GRFT_ALINE line segment with arrow head(s)
GRFT_ARC arc
GRFT_CIRCLE ellipse
GRFT_IMAGE import a graphical image
GRFT_LINE line segment
GRFT_PIE pie
GRFT_POLYGON closed polygon
GRFT_POLYLINE open polygon
GRFT_RECTANGLE rectangle
GRFT_ROUNDRECT rounded rectangle

IMAGE HEIGHT
returns the height of a graphical image

590 True BASIC Language System



IMAGE WIDTH
returns the width of a graphical image

LEFT RELATIVE
determines whether left edge of image is defined relative to left edge of window

0 absolute (default)
1 relative

NAME
name of image; ignored by True BASIC

OVAL HEIGHT
determines height of oval defining roundness of rounded rectangle’s corners
interpreted as pixel or user coordinates as determined by UNITS attribute

OVAL WIDTH
determines width of oval defining roundness of rounded rectangle’s corners
interpreted as pixel or user coordinates as determined by UNITS attribute

PEN COLOR
determines number of color used for image’s pen
default is black (-1)

PEN PATTERN
determines pattern of image’s pen

PBP_HOLLOW no visible pattern
PBP_SOLID solid pattern (default)
PBP_RUBBER grayish, or dappled, pattern

PEN STYLE
determines style of image’s pen

PENS_SOLID solid line (default)
PENS_DOT dotted line
PENS_DASH dashed line

POINTS
determines number and locations of vertices of polygon
number of points passed first, then x-y pairs defining points

RECTANGLE
determines size and position of image
passed as four numeric values representing positions of left, right, bottom, and top edges

RELATIVE
determines whether all edges of image are defined relative to edges of window

0 absolute (default)
1 relative

RIGHT RELATIVE
determines whether right edge of image is defined relative to right edge of window

0 absolute (default)
1 relative

START ARROW
determines if arrow head is at starting point of arrow line

0 no arrow at starting point (default)
1 arrow at starting point

START X
x-coordinate of point marking start of arc or pie

START Y
y-coordinate of point marking start of arc or pie

591Appendix I : Graphic Object Attributes



STOP X
x-coordinate of point marking end of arc or pie

STOP Y
y-coordinate of point marking end of arc or pie

TOP RELATIVE
determines whether top edge of image is defined relative to top edge of window

0 absolute (default)
1 relative

UNITS
determines coordinate system used for positioning image

0 pixel coordinates (default)
1 user coordinates

VISIBLE
reports whether image is currently visible; may not be set

1 visible
0 hidden

WIDTH
determines width of image’s pen in pixels
default is 1

Menu Object Attributes
CHECKABLE

reserves space to left of item for check mark (in some environments)
0 no space reserved
1 space reserved (default)

CHECKED
determines whether menu item is preceded by check mark

0 no check mark (default)
1 check mark

MENU TYPE
MENT_BAR element is a new menu
MENT_ITMEelement is a new item in existing menu

ENABLED
determines whether menu or menu item will be enabled or disabled

0 disabled
1 enabled (default)

MKEY
determines keyboard equivalent for menu or menu item
passed as numeric key code

SEPARATOR
determines whether menu item will be displayed as separator

0 standard menu item (default)
1 separator

TEXT
determines text displayed as menu title or item

592 True BASIC Language System



Window Object Attributes
BACKGROUND COLOR

determines number of color used for window’s background; default is white (-2)
BRUSH COLOR

determines number of color used for window’s brush; default is black (-1)
BRUSH PATTERN

determines pattern of window’s pen
PBP_HOLLOW no visible pattern 
PBP_SOLID solid pattern (default)
PBP_HORZ pattern of horizontal lines
PBP_VERT pattern vertical lines
PBP_FDIAG pattern of “forward” diagonal lines
PBP_BDIAG pattern of “backward” diagonal lines
PBP_CROSS pattern of crossing horizontal and vertical lines
PBP_DIAGCROSS pattern of crossing diagonal lines

CLOSE BOX
determines whether window contains close box

0 no close box (default)
1 close box

CURSOR
determines the type of cursor in use, or to be used

DRAWMODE
determines drawing mode of image’s pen and brush

DM_COPY ignores current contents of window (default)
DM_OR bitwise OR between bit planes
DM_XOR bitwise XOR between bit planes
DM_CLEAR clears current contents to color 0
DM_NOT_COPY logical negation of COPY
DM_NOT_OR logical negation of OR
DM_NOT_XOR logical negation of XOR
DM_NOT_CLEAR logical negation of CLEAR

END RANGE HORIZONTAL
determines end of range represented by horizontal scroll bar

END RANGE VERTICAL
determines end of range represented by vertical scroll bar

FOCUS ORDER
determines the focus order of all controls in a window

FONT METRICS
reports leading, ascender, descender, xsize, ysize, and bearing of window’s current font in pixels
may not be set

FONT NAME
determines font used in window
portable font names are HELVETICA, FIXED (default), TIMES, and SYSTEM
other names may be available in specific operating environments

FONT SIZE
determines size of font used in window
specified in points (1 point = 1/72 inch); default is 10 points

593Appendix I : Window Object Attributes



FONT STYLE
determines style of font used in window
allowable styles are PLAIN (default), BOLD, ITALIC, and BOLDITALIC

HSCROLL 
determines whether window contains attached horizontal scroll bar

0 no attached horizontal scroll bar (default)
1 attached horizontal scroll bar

ICONIZABLE
determines whether window may be iconized

0 not iconizable (default)
1 iconizable

IMMUNE
determines whether window is immune

0 not immune
1 immune (default)

MOUSE MOVE
controls whether MOUSE MOVE events are returned by Sys_Event

0 no events returned (default)
1 events returned

NAME
name of window; ignored by True BASIC

PAGE HORIZONTAL
provides storage for page distance for horizontal scroll bar; ignored by True BASIC

PAGE VERTICAL
provides storage for page distance for vertical scroll bar; ignored by True BASIC

PEN COLOR
determines number of color used for window’s pen
default is black (-1)

PEN PATTERN
determines pattern of window’s pen

PBP_HOLLOW no visible pattern
PBP_SOLID solid pattern (default)
PBP_RUBBER grayish, or dappled, pattern

PEN STYLE
determines style of window’s pen

PENS_SOLID solid line (default)
PENS_DOT dotted line
PENS_DASH dashed line

POSITION HORIZONTAL
determines position of horizontal scroll bar’s slider
must be in appropriate range

POSITION VERTICAL
determines position of vertical scroll bar’s slider
must be in appropriate range

PROPORTION HORIZONTAL
determines the proportional size of the scroll bar slider, if possible

594 True BASIC Language System



PROPORTION VERTICAL
determines the proportional size of the scroll bar slider, if possible

RECTANGLE
determines size and position of window
passed as four numeric values representing positions of left, right, bottom, and top edges

RESIZE BOX
determines whether window contains resize box

0 no resize box (default)
1 resize box

SINGLE HORIZONTAL
provides storage for arrow distance for horizontal scroll bar; ignored by True BASIC

SINGLE VERTICAL
provides storage for arrow distance for vertical scroll bar; ignored by True BASIC

SOLID MIX
determines whether colors within window may be patterns (Windows versions only)

0 allow patterns (default)
1 solid colors only

START RANGE HORIZONTAL
determines start of range represented by horizontal scroll bar

START RANGE VERTICAL
determines start of range represented by vertical scroll bar

TEXTEDIT
reports ID of attached text edit control, if there is one

TITLE
determines text of window’s title

TYPE
determines type of window

WINT_DOC 1 standard document window
WINT_PLAIN 2 plain window; single line border
WINT_DOUBLE 3 plain window; double line border
WINT_NOBORDER 7 no border

VISIBLE
determines or reports whether window is visible; may only be set during creation

1 visible
0 hidden

VSCROLL 
determines whether window contains attached vertical scroll bar

0 no attached vertical scroll bar (default)
1 attached vertical scroll bar

WIDTH
determines width of window’s pen in pixels
default is 1

595Appendix I : Window Object Attributes



Events
CALL Sys_Event (timer, event$, window, x1, x2)

“” (NULL Event)
no event in event queue

CONTROL DESELECTED
control in window with indicated ID has been released or has lost input focus
control ID returned in x2

CONTROL DOUBLE
item in list control within window with indicated ID has been double-clicked
list control ID will be returned in x2

CONTROL SELECT
control in window with indicated ID has been clicked or has gained input focus
control ID returned in x2

CONTROL SINGLE
item in list control within window with indicated ID has been clicked once
list control ID will be returned in x2

DOUBLE
left (or only) mouse button has been double-clicked in window with indicated ID
x-coordinate, in user coordinates, returned in x1; y-coordinate in x2

DOUBLE MIDDLE
middle mouse button has been double-clicked in window with indicated ID
x-coordinate, in user coordinates, returned in x1; y-coordinate in x2

DOUBLE RIGHT
right mouse button has been double-clicked in window with indicated ID
x-coordinate, in user coordinates, returned in x1; y-coordinate in x2

DOWN
arrow at bottom of scroll bar in window with indicated ID has been clicked
scroll bar ID will be returned in x2; value of 0 returned if scroll bar attached

END HSCROLL
slider in a horizontal scroll bar is no longer being moved or selected by the mouse

END VSCROLL
slider in a vertical scroll bar is no longer being moved or selected by the mouse

EXTEND
left (or only) mouse button has been shift-clicked in window with indicated ID
x-coordinate, in user coordinates, returned in x1; y-coordinate in x2

EXTEND MIDDLE
middle mouse button has been shift-clicked in window with indicated ID
x-coordinate, in user coordinates, returned in x1; y-coordinate in x2

EXTEND RIGHT
right mouse button has been shift-clicked in window with indicated ID
x-coordinate, in user coordinates, returned in x1; y-coordinate in x2

HIDE
window with indicated ID has been closed by user

HSCROLL
slider in horizontal scroll bar in window with indicated ID has been dragged
scroll bar ID will be returned in x2; value of 0 returned if scroll bar attached

596 True BASIC Language System



KEYPRESS
key has been pressed in window with indicated ID
numeric key code returned in x1

LEFT
arrow at left end of scroll bar in window with indicated ID has been clicked
scroll bar ID will be returned in x2; value of 0 returned if scroll bar attached

MENU
menu item in window with indicated ID has been selected
menu item ID will be returned in x2

PAGEDOWN
area below slider in scroll bar in window with indicated ID has been clicked
scroll bar ID will be returned in x2; value of 0 returned if scroll bar attached

PAGELEFT
area left of slider in scroll bar in window with indicated ID has been clicked
scroll bar ID will be returned in x2; value of 0 returned if scroll bar attached

PAGERIGHT
area right of slider in scroll bar in window with indicated ID has been clicked
scroll bar ID will be returned in x2; value of 0 returned if scroll bar attached

PAGEUP
area above slider in scroll bar in window with indicated ID has been clicked
scroll bar ID will be returned in x2; value of 0 returned if scroll bar attached

REFRESH
contents of window with indicated ID need to be redrawn
will be handled automatically for immune windows

RIGHT
arrow at right end of scroll bar in window with indicated ID has been clicked
scroll bar ID will be returned in x2; value of 0 returned if scroll bar attached

SELECT
window with indicated ID has gained input focus or has been opened

SINGLE
left (or only) mouse button has been clicked once in window with indicated ID
x-coordinate, in user coordinates, returned in x1; y-coordinate in x2

SINGLE MIDDLE
middle mouse button has been clicked once in window with indicated ID
x-coordinate, in user coordinates, returned in x1; y-coordinate in x2

SINGLE RIGHT
right mouse button has been clicked once in window with indicated ID
x-coordinate, in user coordinates, returned in x1; y-coordinate in x2

SIZE
window with indicated ID has been resized or opened

TXE HSCROLL
user is scrolling text horizontally by holding down mouse near the left or right of the text edit control

TXE KEYPRESS
key has been pressed within text editor in window with indicated ID
numeric key code returned in x1
text editor ID will be returned in x2
only generated when text editor’s KEY EVENTS or TRAP CHAR attributes set

597Appendix I : Events Attributes



598 True BASIC Language System

TXE MOUSE
mouse has been clicked within text editor in window with indicated ID
text editor ID will be returned in x2
only generated when text editor’s MOUSE EVENTS attributes set

TXE VSCROLL
user is scrolling text vertically by holding down mouse near the top or bottom of the text edit control

UP
arrow at top of scroll bar in window with indicated ID has been clicked
scroll bar ID will be returned in x2; value of 0 returned if scroll bar attached

VSCROLL
slider in vertical scroll bar in window with indicated ID has been dragged
scroll bar ID will be returned in x2; value of 0 returned if scroll bar attached



APPENDIX

Debugging and Correcting Errors

There are three kinds of mistakes you might make when writing a program:  (1) improperly used True BASIC
statements, (2) errors that occur when a program runs, and (3) “bugs” that prevent your program from working as
you intended.   True BASIC can help you find many of these errors, and you can learn some tricks to help you find
others.

Illegal Statements
One of the easiest things that True BASIC can find for you is a statement or structure you have used incorrectly.
When you attempt to run a program with an illegal statement, True BASIC opens an error window and displays
an error message that gives the line and character numbers at which the error was detected. If you double-click
on one of the error messages, True BASIC will place the cursor at the offending spot in your program.  You can
then correct that error and run the program again.  Repeat if there are more than one error in the error window.

Consider the following program "WRONG":
PIRNT  “You are about to toss a coin”
IF rnd<.5 PRINT “Heads; win” else PRINT “Tails; lose” 

When you run this program, True BASIC opens an "Errors" window with contents like this:

The first error shows that an "illegal statement" was encountered at line 1, character 1. A missing "then" keyword
was detected in line 2, character 11. Finally, it was seen that there is no "end" statement.
If you now double-click on the first line, True BASIC places the editing window cursor at line 1, character 1, or just
in front of the word PIRNT. You can now correct this word by double-clicking on it and then retyping it correctly,
PRINT.

Repeat with the second and third lines in the "Errors" window.

PRINT  “You are about to toss a coin”
IF rnd<.5 then PRINT “Heads; win” else PRINT “Tails; lose”
END 

599

J



Appendix C lists and briefly explains the error messages you are likely to see as you write programs using the
statements introduced in this book.  If you are not sure of the corrections you need to make, reread the appropriate
sections of this Guide. 

If you use Do Format to indent your programs, you can often catch problems in multi-line structures such as IF-
THEN-ELSE decisions or FOR-NEXT loops.

Errors During Program Runs — Exceptions
A program can sometimes cause errors when it is run (executed).  For example, the statement

LET answer = a/b 

is a “legal” statement.  But if b equals 0 when this statement is carried out, the program would stop and you would
get a “Division by zero” error.  Errors that happen during program runs are called exceptions.  The list of error
messages in Appendix C includes exceptions.

True BASIC has a structure and four built-in functions that you can include in your programs to intercept this
type of error and provide a remedy that can enable the program to keep running.  The WHEN structure and the
EXLINE, EXLINE$, EXTEXT$, and EXTYPE functions are explained in Chapter 16.

Correcting Bugs in Your Programs
True BASIC cannot detect the third type of programming error.  Your program may be “legal” and contain no
“exceptions”, but it still gives the “wrong” answers.  Somehow, you’ve not written the program correctly to
accomplish what you wanted to do.

True BASIC can’t tell what you want your program to do, so it can’t tell you where you’ve gone wrong, but there
are some tools you can use to debug your programs.  

• One of the first things to do is use DO FORMAT to make the program more readable.  
• Next, get a printed listing of your program and read it carefully.  
• As you read, check your variable names.  Have you spelled them correctly and consistently throughout

the program?  The OPTION TYPO and LOCAL statements described below can help you catch spelling
errors in variable names.

OPTION TYPO and LOCAL. You can put an OPTION TYPO statement at the beginning of your program to
request True BASIC to check all variables in that program.  For this to work, all variable names must be declared
in a LOCAL statement or appear as parameters in a SUB, DEF, FUNCTION, or PICTURE statement.  (All arrays
must be declared in DIM or LOCAL statements.)  True BASIC gives an “Unknown variable” error for any
undeclared variable that it sees.  You have to do some extra typing to list all variables in a LOCAL statement, but
it can save debugging time by finding misspelled variables.  Chapter 10 tells more about the LOCAL statement.  

• If you are not sure where your errors are, but suspect parts of the program, insert some extra PRINT
statements to see what values your variables have at various points in your program.

• Go into debug mode and insert breakpoints into your program.

Breakpoints. You can insert breakpoints into your program.  When you run the program, True BASIC halts
at each breakpoint and displays a list of variable names and their current values.  Most of the time you can actually
change the value of one or more of these variables.  Type the CONTINUE command or select the menu item
Continue to resume the program run.  The first step is to turn debugging on by selecting Debug Mode in the
Settings menu.

600 True BASIC Language System



To insert a breakpoint, move the cursor to the desired line and select Break in the Run menu, or type Break on
the command line. You can insert as many breakpoints as you like. To remove a breakpoint, select the line and
again type Break on the command line.

Now run your program. When True BASIC reaches a breakpoint, it opens a Variable window that displays all the
variables in your program and their current values. You can actually change the values of some of them, but this
must be done carefully! To continue running the program, select Continue in the Variable window menu, or type
Continue on the command line. If you want to stop your program, select Stop from the Variable window menu.

If you accidentally close the Variable window, you can reopen it by selecting it from the Windows menu of
Editing window.

Debugging - A Case Study
Let’s take a very simple problem, adding up the numbers from 1 to some positive whole number which we will call
n.  A program to do this might be:

! Sum of numbers from 1 to n
INPUT n
FOR i = 1 to n

LET sum = sum + i
NEXT i
PRINT sum
END

When you run this program and enter 5, it will print 15 (the correct answer.)  When you run the program again
and enter 3, it will print 6 (again, the correct answer.)

Since you want to use this program more than once, you might have the brilliant idea of including it in a loop, so
you can enter several numbers without having to Run the program from scratch each time.  Here is one possible
solution (notice that you have added an IF statement to allow the program to stop!)

601Appendix J : Debugging and Correcting Errors



! Sum of numbers from 1 to n
DO

INPUT n
IF n = 0 then EXIT DO
FOR i = 1 to n

LET sum = sum + i
NEXT i
PRINT sum

LOOP
END

When you run this program and enter 5, it prints 15 as it should.  But when you now enter 3, it prints not 6, but
21, which is a wrong answer.

You might be able to see the
problem, and the solution,
immediately.  But let’s see how we
can use Debugging Mode,
Breakpoints, and the Variable
Window to help us.

Make sure Debug Mode is checked in the Settings menu.  Now place the cursor in front
of the line ‘LET sum = sum + 1’, which is the workhorse line in the program. Next,
choose Breakpoint from the Run Menu. Now choose Run from the Run menu.  The
program will stop almost immediately at the breakpoint.  

The Variable Window will look like this. Everything
looks okay.  Continue the program by selecting Con-
tinue from the Run of the Variable Window, or by
typing ‘continue’ in the command line, until it prints
the result 15, in the Output Window.

Now, enter 3 when the ‘?’ appears.  Notice the current status of the Variable Window. 

Once you see this, you may figure out the solution; In
this case add this line to your program:

LET sum = 0

just after the IF statement and just in front of the
FOR statement. The program will now run correctly.

602 True BASIC Language System



True BASIC always initialized numeric variables to 0.  But if you reuse a variable in your program, you’ll have to
set it to 0 yourself!

603Appendix J : Debugging and Correcting Errors



APPENDIX

Features for Advanced Programmers

LOADED WORKSPACES
True BASIC provides a LOAD command that allows you to extend the True BASIC language. You may load any
library or module and the procedures of the library or module will, in effect, be added to the language. This
allows both strengthening the language and customizing for a particular use. To accomplish this:.

• Write the procedures in True BASIC.
• Save them in a LIBRARY file.
• Use the LOAD command to bring that library into the language.
• Use STORE/RESTORE to save and restore workspaces that you have loaded, 

on demand, or as part of your Language System STARTUP.TRU file.

At this point, your functions, subroutines, and pictures behave exactly as if they were built into True BASIC.

See Chapter 11 for more information on writing your own libraries and modules.

Loading
Loading is a means of customizing the language to your particular needs. The following example illustrates how
loading works and how useful it can be. Suppose you have a library called STRLIB.TRU, which contains a num-
ber of useful string routines. One of these routines produces a nicely formatted date:

DEF Nicedate$(d$)
WHEN error in

FOR i = 1 to Val(d$[5:6])
READ month$
DATA January,February,March,April,May,June,July,
DATA August,September,October,November,December

NEXT i

LET day$ = d$[7:8]
IF day$[1:1] = "0" then LET day$[1:1] = ""
LET Nicedate$ = month$ & " " & day$ & ", " & d$[1:4]

USE
CAUSE ERROR 1,"Bad date given to Nicedate$: " & d$

END WHEN
END DEF

While the built-in function Date$ produces a date of the form “19881026”, NiceDate$ (date$) produces
“October 26, 1988”. One way of using this is to include a LIBRARY statement in the main program as well as
DECLARE DEF NiceDate$. But there is a simpler and more efficient method.

605

K



You may type the command:

LOAD STRLIB.TRU

which loads all the routines of STRLIB into memory, and, in effect, makes them part of the True BASIC lan-
guage. Any program may then contain a statement:

PRINT NiceDate$(date$)

without requiring a LIBRARY or DECLARE DEF statement. One may even type the above as a direct-mode
command and have the date printed.

Avoiding declarations is, of course, a convenience. But loading provides a much greater benefit. Programs that
use large libraries must wait until those libraries are brought into memory and all the appropriate linkages are
performed. If, instead, the libraries were loaded, they stay in memory and the linkages are already performed.
Thus the main program will begin to run much sooner.

As another example, suppose that you load the library MATHLIB.TRU from the TBLIBS directory. True BASIC
now knows all the trigonometric functions, not just the ones built into the language. In addition to SIN, COS, TAN,
and ATN, you may now use SECH and ASEC (hyperbolic secant and arcsecant) just as if they had been built-in.

If you have a compiled version of the library available, it will load faster. But once it is loaded, it makes no differ-
ence which version you used for loading, since loading compiles your library if necessary.  

Loading a Module
Like any other library, a module may be loaded into memory with a LOAD command. All the routines in the
module are rapidly available to any program, without the need for LIBRARY or DECLARE DEF statements. If
the module defines a data structure, loading it makes the data structure “part of the language.”

If one or more modules have been loaded, the order of initialization is: loaded modules are initialized first, then
those being used from libraries, and then any in your current file. While modules in libraries are initialized only
if they are to be used, all loaded modules are initialized. 

Thought must be given as to what to include in the initialization of a module if the module is likely to be loaded.
While automatic initialization of modules has great advantages, it can be confusing if a loaded module clears the
screen or performs a graphics task as part of initialization. Since the module will be initialized before every run,
the graphics task would be carried out even if the main program has nothing to do with graphics.

More on Loading
A library or module can be loaded only if there are no “loose ends” left. Doing this is easy because several libraries
may be loaded with a single LOAD command:

LOAD STRLIB.TRC, MATHLIB.TRC

As long as all calls to subroutines and references to functions are resolved among the collection of libraries, the
load will succeed.

Loaded libraries may be removed from memory by a FORGET command. This frees up the memory for a new
LOAD or for any other use. If a second LOAD command is issued, without a FORGET, the new libraries and mod-
ules are added to those already loaded.

In contrast with LIBRARIES, you are not allowed to have duplicate procedure names in the library files you
name in the LOAD statement. The reason is that all procedures in the libraries named in a LOAD statement are
loaded; with libraries named in LIBRARY statements, only the needed procedures are loaded – once the first of a
duplicate procedure is found, no notice is taken of the second.

606 True BASIC Language System



Frequently used LOAD and RESTORE commands may be saved in a script file. Or they may be in the startup
file, which is already a script file and is automatically executed when True BASIC is first invoked.

Once your personal workspaces are defined and created, two commands, entered from the Command Window, are
used:

STORE
The STORE command is used to store the current workspace, created with previous RESTORE or LOAD
statements, to a disk file. This disk file can later be used in the RESTORE command. The format of the
command is:

STORE mywspace

If you do not specify a file name, True BASIC will display the message “Trouble using disk or printer”. If
you specify a file name which already exists, True BASIC will ask you if you wish to overwrite it.

The STORE command saves the workspace as is, including all restored workspaces, loaded libraries, links
between libraries, and assembly language subroutines. These will all be restored as is by issuing the command
RESTORE with the same filename. The files created by the STORE command are much easier and faster to
load than individual files using the LOAD command.

RESTORE
The RESTORE command restores a workspace from the specified workspace file created using the STORE
command (see the STORE command above). The format of the command is:

RESTORE mywspace

If you do not specify a filename, True BASIC will display the message “Trouble using disk or printer”. If
you specify the name of a file which is not a workspace, True BASIC will abort the RESTORE and issue an
error message, “xyz is not a stored file”.

The RESTORE command first erases any existing workspace in memory created with LOAD or RESTORE
commands and replaces it with the workspace in the file specifed.

This is a much faster method of loading a workspace than using the LOAD command. The libraries and sub-
routines which were used to create the workspace which was stored need not be available for the RESTORE
command.

PROGRAMMER’S WORKBENCH
The True BASIC WorkBench provides tools to assist in the development of large programs, and to perform other
common tasks that may otherwise require leaving the True BASIC Language System or writing small utility
programs.

Its tools fall into five categories:

Source Code Control System

Search and Find

Other Programming Aids

Operations on the Current File

Utilities

607Appendix K : Programmer’s Workbench



Most of the tools are modeled on similar ones found in the Unix operating system. Since such facilities are abun-
dant there, the TB WorkBench is not available for Unix versions of True BASIC. Another reason is that they are
invoked by the True BASIC DO command, which is available only on personal computers. All commands are
described by so-called man pages, which are also available on line.

—————————————————————————————————————————
[ ! ] WARNING:  The use of these tools requires, in most cases, a thorough

understanding of the file and pathname conventions on your operating
system and the concept of aliases in True BASIC, as well as a willingness
to learn the command syntax, and to accept very brief error messages.

—————————————————————————————————————————
To use these tools you must also understand the use of DO commands within the True BASIC environment. Each
command should be entered as the the name of a DO program.

Source Code Control System
The SCCS tools include create, get, delta, checksum, header, and unget.

The True BASIC Source Code Control System (SCCS) allows keeping different versions of a large body of source
code without keeping full copies of each version. Only the “deltas”, or changes since the last update, are retained.
The logic and general structure is based on the Unix SCCS utility.

To set up your SCCS, create a directory in which you wish to store the source code. This directory need not be the
same for all projects, as each of your project directories will contain a pointer to the SCCS directory for that project.

—————————————————————————————————————————
[ ! ] WARNING:  The  SCCS directories are not protected (read only), and

should not be used in shared environments.
—————————————————————————————————————————
The fundamental tools are: create, get, delta.

Subsidiary tools are: checksum, header, and unget.

For each source code file in your working directory that you wish to control, make that file your “current” file, and
use the create tool. It allows you to set the SCCS directory name, and to specify the new release number. The
name of the SCCS directory is stored as the only entry in a small text file named “sccsprfx” in your project’s work-
ing directory.

Use the get tool to get a copy of a particular source code file for examination or modification. If you wish a ver-
sion that is not the latest version, you can specify the version number. If you wish to make changes to the file for
a later delta operation, you must so specify with an option on the get.

After making and testing changes, you can create a new version by using the delta tool. Only the changes (dele-
tions and additions) are kept; the source code that is not changed is left alone. There are no options on the delta
command.

There are several subsidiary operations that you can perform. The checksum tool recomputes the checksum of
an SCCS file and compares it with the stored checksum. You may be able to detect file damage in this way. The
use of this tool does not change the checksum in the stored SCCS file.

The header tool will print the header information for the files named. You can thereby review the history of the
versions, with dates and reasons.

The unget tool can be used to negate a previous “get with edit permission” command, thus prohibiting a subse-
quent delta.

608 True BASIC Language System



Search and Find
The Search and Find tools include find, findsub, plan, and xref.

The True BASIC Language System includes a “find” command that can locate any string of characters in the
“current” file. The WorkBench find tool can search for a string of characters in several files, all files in a certain
directory, and can even examine all subdirectories. (Similar to the Unix grep command, find does not include
regular string expressions, but does climb directories.) Find allows searching for whole words, and allows
searching with or without regard to case (upper- and lowercase.) Displayed are the lines containing a match of
the search string, the ordinal number of each line in the file, and the file name. Lines longer than the display
screen are folded. Search strings that contain spaces or other special characters must be quoted.

Related to the find tool are two others: findsub and plan. Findsub locates all procedure definitions in the files
named. A procedure is a True BASIC subroutine, function or def, or picture. The search can be limited to just one
of the three types, or any two of the three types, or all three. Like find, findsub can examine any or all files in
the specified directory, and possibly all subdirectories.

The plan tool examines each file named and produces a list of the locations of all procedure declarations and defi-
nitions. Also included are those procedures that appear in PRIVATE statements, and the last use of the proce-
dure in the file. It is useful, for example, for identifying procedures declared or defined but never used in that file.

Finally, the xref tool produces a traditional cross-reference of all the keywords and variable names in a file.

Other Programming Aids
Other Programming Aids include the diff, format, tbpp, make, show and dhex tools.

The diff tool compares two text files, or the current file against another text file, and reports all lines that are
different.

The format tool “formats” the True BASIC source code in the current file. Similar to the command DO FOR-
MAT of the regular True BASIC Language System, this tool provides additional capabilities. It permits specify-
ing the indentation column for on-line comments, and allows bypassing capitalization of certain key words.

The tbpp tool invokes a preprocessor similar to the Unix cpp or m4. It permits including or excluding blocks of
code based on whether certain words are defined or not, or on other simple conditions. It also provides for
“include files,” something not provided by the True BASIC Language System.

The make tool checks the dates and times of the most recent changes to the files specified in the makefile, and
constructs a script for bringing the dependent files up to date. The usual use is to make sure that compiled ver-
sions bear a date and time stamp that is more recent than that of the corresponding source file, but other uses are
possible. (Since a DO program cannot issue True BASIC commands, make produces a script file which can later
be invoked by the SCRIPT command. Thus, the make tool is simpler and less powerful than the Unix make, but
nonetheless may be useful for very large projects.)

The show tool allows displaying a text file in the output window, starting at the line you specify.

The dhex tool provides a traditional interactive hex dump of any file.

Operations on the Current File
The WorkBench provides several useful operations on the current file. The format tool was mentioned previously.

The sort tool sorts the current file. The default is sorting the lines of the file using the ASCII code sequence. One
option permits sorting in dictionary order, where “a” follows “A” but precedes “B.” Another permits using a par-
ticular substring (like the fifth through the tenth character) as the sort key. The sort is not stable; that is, the
original order of ties is not necessarily maintained.

609Appendix K : Programmer’s Workbench



The column tool arranges the words in the current file into a single column, or produces a single column
arrangement of the file names in a directory.

The mkscr tool allows constructing a script file from a simple columnar list of words in the current file. (The
abbreviaton “mkscr” stands for “make script”.) As an example, to list all the files in your current directory, use
these four commands:

do column,-d
do mkscr,”old ?; list”
save doit
script doit

The keep tool retains all lines in the current file that contain the key string you specify.

The omit tool throws away all lines in the current file that contain the key string you specify.

Utilities
Three other tools are included.

The man tool lists the man page or pages for the tool or tools you specify. To list all the topics for which man
pages are available, use

do man, topics

The mkdir tool creates a new directory, a function that is not included in the regular True BASIC Language
System.

The dir tool lists the files in a particular directory in a particular directory along with their sizes, and dates and
times last modified.

Output
Output on all commands is normally directed to the screen in pages. Pressing any key advances to the next page.
Pressing the ESC-key terminates the tool. 

Output can be directed to a file instead by using a single “>” followed by an output file name at the end of the DO
command. Output can be directed to the screen and to a file or the printer by using a double “>>” at the end of
the command line. This second option is a regular True BASIC feature and is available for all True BASIC typed
commands. For example,

do find, zilch . > outfile

will send the output from the find command to the file named “outfile.” New information will be appended at the
end. (To start with an empty file, you must first unsave it or remove its contents.)

do find, zilch . >> outfile

will send the output both to the screen and to the file named. Again, new information will be appended. (The use
of the double “>>” is a True BASIC Language System convention on personal computers. It merely sends all
information that appears on the screen to the file named.)

do find, zilch . > outfile1 >> outfile2

will send the output from the find tool to “outfile1,” but practically nothing to “outfile2,” since the information
has been sent to the “outfile1” rather than to the screen. Of course,

do find, zilch .

will send the information to the screen only.

610 True BASIC Language System



Aborting a Tool
Aborting a tool before its activity has been completed can be done by selecting STOP in the File menu of the
Command Window. To abort during screen output, use the ESCAPE-key.

Public Names
If you load the workbench routines into your workspace, certain workbench subroutines are publicly available.

You should avoid using their names for other purposes. All the other workbench subroutines are private. These
subroutines are the actual  tools.

WB_checksum WB_findsub WB_mkscr
WB_column WB_format WB_omit
WB_create WB_get WB_plan
WB_delta WB_header WB_show
WB_dhex WB_keep WB_sort
WB_diff WB_make WB_tbpp
WB_dir WB_man WB_unget
WB_find WB_mkdir WB_xref

These subroutines are support utilities:

WB_AskInputFileType WB_Error WB_MakeLegalDir
WB_CheckDir WB_GetEOL$ WB_More
WB_Decode WB_KeyMouse

Using the Tools
All of the tools are invoked with the True BASIC Language System DO command.  Many DO commands are
designed to operate on the “current” file in the editing window; an example is DO FORMAT.  But DO commands
are more general in that they can invoke a complete program without leaving the editor.  Many of the Work-
Bench tools perform tasks not related to the current file, such as making a new directory (DO MKDIR).

The True BASIC Language System (referred to as TBLS) looks for the DO command code in one of several direc-
tories or folders, which are specified with the TBLS ALIAS command.  In addition, the WorkBench requires two
additional aliases, one for its compiled code and one for the online manual.

Setting up the workbench tools for use requires (a) the proper aliases, and (b) loading the workbench utilities
into your workspace.  (Actually, loading is not necessary, but it saves time and is recommended.)

Remember, on both Windows systems and the MacOS, True BASIC is insensitive to case, UPPER- versus lower-
case.  The same is true for the Workbench commands.  Thus, the following two commands are the same:

do finds,-c searchstring wbfinds

DO FINDS,-C SearchString WBfinds

The option “-c” guarantees that the search string will match any string in the file that contains the same letter
sequence, regardless of case.

611Appendix K : Programmer’s Workbench



WW Installing in the Windows Environment
In True BASIC’s home directory there is a subdirectory wrkbench.  Enter it and bring up the file loadalia.  You’ll
need to change the entries to correspond to the name of True BASIC’s home directory and its location on you
disk.  For example, it might be

alias {do},    C:\TB\WrkBench\Tools\, ""
alias {WB_c},  C:\TB\WrkBench\C\
alias {WB_man},C:\TB\WrkBench\Man\

Suppose the home directory of True BASIC is
D:\TRUBASIC

You’ll want to change the loadalia file to look like this:
alias {do},    D:\TRUBASIC\WrkBench\Tools\, ""
alias {WB_c},  D:\TRUBASIC\WrkBench\C\
alias {WB_man},D:\TRUBASIC\WrkBench\Man\

(You can also add these new aliases to the STARTUP.TRU file in the home directory of True BASIC.)

Next, type
script loadall

This plays a dual role of exercising the new aliases, and also loading the workbench as a workspace.

You can now save this workspace for later use by typing
store myws

using a file name of your choice.

Next, you can create a new script file named, for example, myload
forget
scr loadalia
restore myws

and save it.

Finally, add the following lines to the STARTUP.TRU file in the home directory:
cd wrkbench
scr myload

Now, whenever you start True BASIC, your workbench workspace will be loaded and all aliases will be
established.

612 True BASIC Language System



MM Installing on the MacOS
The process is essentially the same.  The only major difference is the file name convention.

In True BASIC’s home directory there is a subdirectory wrkbench.  Enter it and bring up the file loadalias.
You’ll need to change the entries to correspond to the name of True BASIC’s home directory and its location on
you disk.  For example, it might be

alias {do},    HD:TB:WrkBench:Tools:, ""
alias {WB_c},  HD:TB:WrkBench:C:
alias {WB_man},HD:TB:WrkBench:Man:

Suppose the home directory of True BASIC is
MyHD:True BASIC:

You’ll want to change the loadalia file to look like this:
alias {do},    MyHD:True BASIC:WrkBench:Tools:, ""
alias {WB_c},  MyHD:True BASIC:WrkBench:C:
alias {WB_man},MyHD:True BASIC:WrkBench:Man:

(You can also add these new aliases to the STARTUP.TRU file in the home directory of True BASIC.)

Next, type
script loadall

This plays a dual role of exercising the new aliases, and also loading the workbench as a workspace.

You can now save this workspace for later use by typing
store myws

using a file name of your choice.

Next, you can create a new script file named, for example, myload
forget
scr loadalia
restore myws

and save it.

Finally, add the following lines to the STARTUP.TRU file in the home directory:
cd :wrkbench
scr myload

Now, whenever you start True BASIC, your workbench workspace will be loaded and all aliases will be established.

Additional Details
If you prefer to have a smaller loaded workspace in order to, say, leave more room in main memory for your pro-
gram, you can remove the unneeded file names from the file LOADALL.TRU (loadall).  For example, if you do
not plan to use the SCCS routines, you do not need to have WBSCCS.TRC loaded.  The dependency of the tools
on the WBXXXX.TRC files is as follows:

WBUTILIT.TRC all tools except the man tool
WBSCCS.TRC checksum, create, delta, get, header, unget
WBCOLUMN.TRC column
WBDHEX.TRC dhex

613Appendix K : Programmer’s Workbench



WBDIFF.TRC diff
WBDIR.TRC dir
WBFINDS.TRC find, findsub, plan, show
WBFORMAT.TRC format
WBKEEP.TRC keep, omit
WBMAKE.TRC make
WBMKDIR.TRC mkdir
WBSORT.TRC sort
WBTBPP.TRC tbpp
WBXREF.TRC xref

The mkscr tool is located in the WBUTILIT.TRC file.  The man tool is self-contained.

If you have loaded all the tools, then the WB_C alias is no longer needed.  If you never plan to use the man tool,
then the WB_MAN alias is not needed.

The tools are designed so they can be used without being preloaded.  Just make sure that the WB_C alias is
properly set.  The advantage of not preloading is that it saves main memory.  The disadvantage is that the
startup time for some of the tools will be noticeably long.

See the README.TRU (ReadMe) file in the main workbench directory (folder) for more information and
changes since the date of this documentation.

checksum
NAME checksum — compares the checksums of SCCS files

USAGE do checksum, filename..filename

DOES Reads the checksum of an SCCS file, recomputes the checksum, and prints both.

OPTIONS None.

EXAMPLE Check and report the checksums in the named SCCS files:
do checksum, main subs utilities

RELATED TOOLS create, delta

column
NAME column — produces a single-column directory list

USAGE do column [,[-d[DIR]] [-f] [-tTemp]

DOES Arranges “words” into a single column, using spaces as the delimiters.
Useful for constructing a single-column list of file names, for example.

OPTIONS

-dDIR If present, then forms a single column of the filenames in the specified
directory, denoted by DIR,using the complete path names.

-d If -d without DIR is present, then forms a single column of the filenames in the
current directory, using the short names. If -d is absent, then forms a single column
of the words in the current file. In all cases, the result replaces the current file.

-f If present, forms a column of filenames only (omitting directories on DOS systems.

614 True BASIC Language System



-tTEMP If present, uses TEMP as a template for selecting file names.  If missing, includes all file 
names. An asterisk in TEMP matches any character or characters. Thus, to match file
names ending with “.tru”, use “-t*.tru”.  To match file names that start with “WB”, 
use “-tWB*”.

LIMITATIONS Make sure the edit (current file) window does not contain a “(compiled file)”. 
Will not include folder names on the Macintosh; thus, the -f option produces no result on
the Macintosh.

EXAMPLE To list all True BASIC text files in the current directory on DOS systems:
do column, -d -f -t.tru
do mkscr, “old ?; list”
save doit; script doit

create
NAME create — creates an SCCS file from a source file

USAGE do create, [-dDIR] [-rSID] filename

DOES Creates an SCCS file from a source file.

OPTIONS
-dDIR If present, sets the SCCS directory to DIR, and changes the SCCS directory name saved

in the canonical file “sccsprfx” in the current directory.  If absent, retains the SCCS
directory name from the file  “sccsprfx.”

-rSID If present, sets the new release number to SID.  If absent, the new release number is 1.1.

LIMITATIONS Enter the user name as a single word or a quoted string; otherwise all characters 
after a non-leading blank will be ignored.

EXAMPLE To create a new SCCS entry with a new SCCS directory:
do create, -dSCCSDIR newfile

The name of the new SCCS directory, ‘SCCSDIR’, may contain a full pathname and
must conform to the directory naming convention of your operating system.

To create a new SCCS entry with a specified release number:

do create, -r2.1 newfile
RELATED TOOLS checksum, delta, get, header, unget

delta
NAME delta — modifies an SCCS file from a current file

USAGE do delta, filename

DOES Modifies an SCCS file from a current file.  The file must have been obtained by a
get command with the -e option.

OPTIONS None.

LIMITATIONS None.

EXAMPLE To do a delta:
do delta, filename

615Appendix K : Programmer’s Workbench



RELATED TOOLS Get, unget

dhex
NAME dhex — provides hex dumps

USAGE do dhex, filename

DOES Provides a hex dump of any portion of the file. The user will be asked for an address
range in decimal, which should be provided in the form

first-byte, last-byte

The first byte in the file is numbered 0.

OPTIONS None.

LIMITATIONS None.

diff
NAME diff — identifies differences between text files

USAGE do diff, file1 [file2]

DOES Determines the differences between two files, one of which can be the current file.

OPTIONS If file2 is absent, compares the current file with file1.  If file2 is present, compares file1
with file2.

LIMITATIONS Works only with text files consisting of lines that end with EOLs.  
(May not work if last line does not end with an EOL.)

EXAMPLES To compare the current file with the file oldf, output going to the screen:
do diff, oldf

To compare file1 with file2, output going only to the file outfile:
do diff, file1 file2 > outfile

To compare the current file with file xyz, output going to both the screen and the printer:
do diff, xyz >>

dir
NAME dir — prints directory information

USAGE do dir [,[-dDIR] [-tTEMP]]

DOES Prints a directory showing file names, sizes, date last modified, and time last modified.

OPTIONS      
-dDIR If present, then prints information for the directory DIR.  If missing, prints information

for the current directory.

-tTEMP If present, uses TEMP as a template for selecting file names.

If missing, includes all file names. An asterisk in TEMP matches any character or 
characters.  Thus, to match file names ending with “.tru”, use “-t*.tru”.  To match file 
names that start with “WB”, use “-tWB*”.

616 True BASIC Language System



LIMITATIONS Will not show folders on the Macintosh.

EXAMPLES To list the current directory:
do dir

To list the directory HD:foo
do dir, -dHD:foo

To list only files whose names begin with “x” in the current directory:
do dir, -tx*

find
NAME find — searches for a string in a file(s) or directory

USAGE do find, [-c] [-w] [-d] searchstr [files] [dir]

DOES Searches one or more files, or a directory, for a search string.  Prints the file name, the
line number, and the line itself that contains the string.

OPTIONS
-c If present, ignores case (lower vs. upper) in determining matches.  

If absent, treats lower and upper case as different.

-w If present, searches for the “whole word”; that is, does not report a match if the search
string is contained within a larger string.  If absent, ignore words.

-d If present, searches the directory named, if any, and all subdirectories, etc.  If absent,
searches only the directory named, if any.

searchstr The search string.  If it contains spaces or quotes, it itself must be quoted.  That is, to
search for the string

he said “Hello”

use as the search string
“he said ““Hello”””

files The name(s) of a file(s) to be searched. The file will be examined in the directory named, 
if any.  If no file is named, searches all files in the directory named.

dir Names the directory to be searched.  The current directory is denoted with a "."  (without

the quotes). Directories are named using the  standard pathname conventions for the system.

LIMITATIONS There must be at least one file or one directory named.  To search all files in the current
directory, use no file names, but use "." for the directory name.

NOTES On the MacOS, the current folder is denoted with a single".".  Subdirectories start with
a ":".   A trailing ":"must also be included. Superdirectories are denoted with "::", 
with an additional ":" for each additional level.  A pathname starting with a disk
name must be preceded by a ".", to distinguish it from an ordinary file name.
Thus, if the directory structure is:

disk:main:task:source

and the current directory is “task”, then each of the directories can be named as follows:

617Appendix K:  Programmer’s Workbench



disk    :::    or    .disk:
main    ::     or    .disk:main:
task      .
source  :source:

On Windows systems, the current directory is denoted with a single ".".  Subdirectories
are denoted with a "..", with an additional "\.." for each additional level. A pathname 
starting with a disk name must start with a "." to distinguish it from an ordinary file
name. Thus, if the directory structure is:

c:\main\task\source

and the durrent directory is “task”, then each of the directories can be named as follows:
disk    ..\..   or   .C:
main    ..      or   .C\main
task
source  .\source

RELATED TOOLS findsub

findsub
NAME findsub — searches for sub (function, def, picture) lines in a file(s) or directory

USAGE do findsub, [-s] [-f] [-p] [-d] [files] [dir]

DOES Searches one or more files, or a directory, for a search string. Prints the file name, the

line number, and the line itself that contains the sub (function, def, picture) statement.

OPTIONS

-s If present, searches for subroutine definitions.

-f If present, searches for function or def definitions.

-p If present, searches for picture definitions.
Note: if all three are absent, searches for all three types of  subroutines.  i.e., all three
missing is the same as all three present.

-d If present, searches the directory named, if any, and all subdirectories,
etc.  If absent, searches only the directory named, if any.

files The name(s) of a file(s) to be searched. The file will be examined in
the directory named, if any.  If no file is named, searches all files in the directory named.

dir Names the directory to be searched.  The current directory is denoted with a "." (without
the quotes).  Directories are named using the standard pathname conventions for the
system.  

LIMITATIONS There must be at least one file or one directory named.  To search all files in the current
directory, use no file names, but use "." for the directory name.

NOTES See find, for a discussion of DIR conventions.

RELATED TOOLS find

618 True BASIC Language System



format
NAME format — indents and capitalizes a source file

USAGE do format [, [-n] [-idd]]

DOES Indents the current file to show the structure. Capitalizes certain leading key words. 
If the first line contains a "!", the comment is replaced with the current date.

OPTIONS
-n Does not capitalize key words, but leaves them in their original form.

-idd Sets the standard indentation for online comments to dd.  If this option is absent, 
uses dd = 35.

LIMITATIONS Uses a standard indentation, which can be changed by changing the data near the
start of the subroutine. 

get
NAME get — gets an SCCS file

USAGE do get, [-rSID] [-e] filename

DOES Gets an SCCS file and both makes it the current file and saves it in the current directory.

OPTIONS
-rSID If present, gets the version that matches SID. If SID does not match, defaults to the 

latest SID.  If absent, defaults to the latest SID.

-e If present, gets the SCCS file with edit (delta) permission.  It creates a  “p.” file in the 
SCCS directory containing key information about the update.  This file must be present
to permit a later delta.  This file may be removed by the unget command.

LIMITATIONS If the -e and -r options are both present, the SID must match the most recent SID in the 
file.  In other words, branching of versions is not allowed. With the -e option, enter a
single word as the user name; all characters after a non-leading blank will be ignored.

RELATED TOOLS create, delta, unget

header
NAME header — displays the header(s) on SCCS file(s)

USAGE do header, files

DOES Prints the header(s) of one or more SCCS file(s). Use the local names of the files, not the
full SCCS name; i.e., no “.s”.

OPTIONS None.

LIMITATIONS None.

RELATED TOOLS create, get, delta

keep
NAME keep — keeps certain lines in the current file

USAGE do keep, [-c] search$

619Appendix K : Programmer’s Workbench



DOES Keep all lines in the current file that contain the search string.

OPTIONS   
-c If present, matches case (lower vs. upper) in determining matches.  If absent, treats

lower and upper case as the same.

LIMITATIONS None.

make
NAME make — prepares a script file for make

USAGE do make [, file]

DOES Imitates the Unix make command by replacing the current file with a script file 
containing the necessary commands. Also saves the file with the canonical name ‘makeit’.
Carry out the script file by typing ‘script makeit’, or by first saving it with another name
and then using the script command.

OPTIONS If the file is present, uses it as the make file.  If absent, assumes the make file is named
“makefile.”

RULES Each line in the make file ‘makefile’ is a command to the make system.

There are several types of lines:
define
dependency
system commands
comment lines

Define lines have the following form:
identifier   =   definition

As an example, if your source files are all in a directory :source:, then you can provide an
abbreviation with

s         =  :source:

filelist =  Main Strings Numbers Booleans

Subsequently, use “{s}” (not quoted) in any  pathname to refer to the directory containing
the source files.

Dependency lines (typically) have the following form:
compiled-files   <=   source-files

A single file may be named in each, or a list of files.
Abbreviations of the {} type may be used.  As an example,
{c}${filelist}*  <=  {s}${?}-s

assumes the source files in the directory referred to by {s} have the names in the list
followed by "-s", and that the files in the directory referred to by {c} have the names in the
list following by "*".  Date and time stamps are checked.  If updating is necessary, 
the subsequent indented commands are added to the script file with each "?" in the script 

620 True BASIC Language System



file replaced by one of the names from the list of names. If recompilation is not necessary,
the subsequent indented commands are ignored.  If the compiled file is not present, it will
be created.  If the source file is not present, an error occurs. The dollar-sign ($) is required
to indicate that the following  definition is a list rather than a single item.
Subsequent indented commands can contain identifiers in braces,  but question marks "?" 
should not be in braces.

Dependency lines need not involve source and compiled files.  They can involve any files
for which the date and time stamps are critical.
System command lines that are left-justified are added to the script file AS IS, and
terminate any dependency of later-occurring indented command lines on a previous
dependency line.

Comment lines are lines whose first nonblank character is a “!”. 
They are ignored completely.

Non-comment lines whose last nonblank character is a “&” are continued onto the 
next line.

LIMITATIONS Cannot output to a file, since it makes and saves a script file.

If the edit (current file) window contains "(compiled file)", the "makeit" file will be saved
but not displayed in the edit window.

EXAMPLE The following make file has been used to recompile the workbench tools on the MacOS,
and is included in the Workbench folder. (A similar file is in the Windows Workbench
directory).

! We establish our compiled and source directories

c       = :c:
t       = :tools:
s       = :s:
cfilelist  = column dhex diff dir finds format make mkdir

& sccs sort TBpp utilit xref

tfilelist  = checksum column create delta dhex diff dir
find & findsub format get header make man
mkdir mkscr & plan sort tbpp unget xref

! Here is our dependency, and the resulting conditional command

{c}WB${cfilelist}* <= {s}WB${?}
cd {s}; old WB?; do tbpp,Mac; compile; ren WB?*; cd :{c};
saverep; cd ::

{t}${tfilelist} <= {s}${?}-s
cd {s}; old ?-s; do tbpp,Mac; compile; ren ?; cd :{t}; 
saverep; cd ::

621Appendix K : Programmer’s Workbench



man
NAME man — prints manual pages

USAGE do man, command..command

PURPOSE Prints the manual page for the command specified.

OPTIONS None.

LIMITATIONS Man pages exist for these commands only:
checksum, column, create, delta, dhex, diff, dir, find, findsub, format, get, header, 
make, man, mkdir, mkscr, output, plan, show, sort, tbpp, topics, unget, xref.

mkdir
NAME mkdir — creates new directories

USAGE do mkdir, directory..directory

DOES Creates one or more new directories in the current directory.

OPTIONS None.

LIMITATIONS Does not work in non-hierarchical directories.  Only one level of directory is allowed. 
Directory names must be legal.

mkscr
NAME mkscr — builds a script file from a list

USAGE do mkscr, pattern

DOES Replaces the current file with a file in which each line consists of the pattern with the
original line in the current file replacing each question-mark “?” in the pattern.

OPTIONS None.

LIMITATIONS If the pattern contains semicolons or “>>”, or if leading and trailing spaces are required,
then the entire pattern string must be enclosed in quote-marks. 
Cannot direct output to a file.

EXAMPLES Assume that a line in the current file contains “master.”  Then
do mkscr,”old ?-s; compile; rep ?*”

will change that line to
“old master-s; compile; rep master*

Used in conjunction with the column command, this tool can construct a script file to 
list all files in the current directory.

do column, -d
do mkscr, “old ?; list”
save doit; script doit

622 True BASIC Language System



omit
NAME omit – omits certain lines in the current file

USAGE do omit, [-c] searchstr

DOES Omit all lines in the current file that DO NOT contain the search string.

OPTIONS  
-c If present, matches case (lower vs. upper) in determining matches.

If absent, treats lower and upper case as the same.

LIMITATIONS None.

output
NAME output — THIS IS NOT A TOOL

USEAGE Serves only as a man page.

DOES Nothing.

NOTES As with all workbench commands, the output will normally be directed to the screen.

Other options:
> outfile

Output goes only to the designated file.
>> outfile

Output goes to the designated file as well as to the screen.
>>           

Output goes to the attached printer as well as to the screen.
> outfile >> 

Output goes to the designated file.  Only the “Done with xxx” message goes to the
printer.

>> outfile1 > outfile2
Not useful.  The “>>” sends all output to the screen and to the file  “outfile1 >
outfile2”, which may or may not be a legal file name.

plan
NAME plan — locates routines in a file

USAGE do plan, filenames [dir]

DOES For each file, prepares a table showing all declarations, definitions, uses, and 
appearance in PRIVATE statements of subroutines, functions, and pictures.

OPTIONS If dir is present, examines all the files in the directory named that match one of the
filenames. If there are no filenames, examines all the files in the directory.  If dir is not
present, examines all the files in the current directory

LIMITATIONS Will fail to identify all but the first uses of a defined function on the same line. 
Organizes procedures as encountered, not alphabetically.

NOTES See find, for a discussion of DIR conventions.

BUGS May fail to identify a name ending at a buffer boundary. May not exclude certain
keywords in comments.

623Appendix K : Programmer’s Workbench



EXAMPLES To construct a plan for a single file:
do plan, mainfile

To construct a plan for all files in the current directory, and direct output to a file only:
do plan, . > outfile

show
NAME show — shows a text file, starting at the line designated

USAGE do show, [-lnnn] file

DOES Displays the text file in the output screen.  Starts the display at the line designated. 
Use the ESC key to terminate the display.

OPTIONS

-lnnn If present, starts the display at line nnn.
If absent, starts the display at line 1.

LIMITATIONS None.

EXAMPLE Use findsub to locate the file and starting line of the desired subroutine definition.
Suppose the file is “subs” and the starting line is 120.  Then use:

do show,-l120 subs

RELATED TOOLS Findsub

sort
NAME sort — sorts the current file

USAGE do sort, [-d] [-sSSEXP]

DOES Sorts the current file.

OPTIONS

-d If present, uses the pseudo-dictionary order; i.e., AaBbCd...  If absent, sorts according
to the ASCII character sequence; i.e., ABC...abc...

-sSSEXP If present, sorts using the substring given by the SSEXP.  If absent, sorts the  entire
string.  SSEXP must be of the form:

[f:t]

where f is the integer giving the “from” character, and t is the integer giving the “to” 
character.  No spaces are allowed.

tbpp
NAME tbpp — invokes the True BASIC preprocessor

USAGE do tbpp [, word .. word]

DOES Invokes the True BASIC Preprocessor on the current file.  The preprocessor commands
are based on the Unix cpp commands, and are also similar in function to several of the
m4 commands. Words can be predefined in the command line, as well as with the
#define command.

624 True BASIC Language System



Commands are:

#include filename
Includes the contents of filename into the current file at that point. 
Filename may be unquoted or quoted.

#define word [value]
Defines the word, and if value is present, assigns that value to it. Words can be any
contiguous sequence of letters and digits, and are converted to lowercase. Values are
treated as strings without spaces, and are converted to lowercase.

#undef word
Removes the word from the defined list.

#if expression
Includes the subsequent lines of the current file if the expression is true.  
Omits the lines if the expression is false.  Expressions can be of the form:

word rel-op value
where word is an identifier that has been previously defined in a
#define, and value is a string that either relates or not to the value, if
any, of the defined word.  Rel-op is one of: <, <=, >, >=, =, <>.

#ifdef word
Includes the subsequent lines of the current file if word is defined. 
Omits the lines if it is not.

#ifndef word
Includes the subsequent lines of the current file if word is not defined.
Omits the lines if it is.

#elif expression
Includes the subsequent lines of the current file if the expression is true, and if no
previous lines in the same if-block have been included. Omits the lines otherwise.

#else
Includes the subsequent lines of the current file if no previous lines in
the same if-block have been included.  Omits the lines otherwise.

#endif
Ends the if-block

NOTES If-blocks may be nested. Include files can include other files.

OPTIONS Cannot direct output to a file, since tbpp works only with the current file.

LIMITATIONS The “#” must be in the first character position of the line.  (Note: Do format automatically
moves the # to the left margin if it is the initial nonblank character on a line.)
Words "defined" in the command line have the null string as their value.

unget
NAME unget — removes the editing permission on an SCCS file
USAGE do unget, files
DOES Removes the editing permission on the SCCS file(s) corresponding to each of the files by

removing the “.p” file in the SCCS directory.

625Appendix K : Programmer’s Workbench



OPTIONS None.

RELATED TOOLS Get, delta

xref
NAME xref — constructs a cross reference table

USE do xref [, [-s] [files]

DOES Produces a cross reference table for all the numbers, keywords, variable names, etc., in
the current file, or one or more saved files. Ignores REM statements, online comments, 
and quoted strings.  Output is normally directed to the printer.

OPTIONS
-s If present, uses a special sort so that “2” comes before “100”; this sort is slower. If missing

uses an ASCII sort in which “2” comes after “100.”

files If present, constructs a cross-reference for one or more files.  If missing, produces a
cross-reference for the current file.

LIMITATIONS None.

EXAMPLE To do a cross-reference of a file and direct the output to another file (which is a good idea
since the output is lengthy):

do xref, filename > outfile

626 True BASIC Language System



Index 

627

ABS function, 219
Absolute value (See ABS function)
ACCESS clause (See Open-clause)
Accuracy (See Numbers)
ACOS function, 55, 217, 219-220, 273,

408-412, 428, 452, 511, 515, 553, 555
ACOSH function, 408-410, 412-413,

415, 418, 555
ACOT function, 408-411, 555
ACOTH function, 408-410, 412-413,

415, 418, 555
ACSC function, 408-411, 555
ACSCH function, 408-410, 412-413, 415,

418, 555
Addition (See Arithmetic operators)
ADDDATAGRAPH subroutine, 470-

471, 476, 478, 480, 487, 493, 500,
502, 504-505, 507-508, 555

ADDFGRAPH subroutine, 470, 473-
478, 488, 494, 500-502, 555

ADDLSGRAPH subroutine, 470, 474-
475, 480, 505, 507, 555

ADD_POSTSCRIPT subroutine, 219
Aliases

ALIAS command, 541
using, xxv, 545, 554

ALPHANUM$ function, 370, 420, 424,
426, 438-439, 444, 446, 454, 555

Alt keys,31, 164, 537
Ampersand (See Concatenation)
AND (See Logical operators)
ANGLE function, 55, 219
Animation, 131, 138, 143-144
Applications

creating,538
launching, 116, 128-130, 229, 296-297,

351, 392-393, 563
name,314

Arccosine function (See ACOS function)
Arcsine function (See ASIN function)
Arctangent function (See ATN function)
Arguments

arrays as, 68, 73-74, 76-78, 86-87, 90,

92-93, 165, 214, 218, 228, 247-248,
254, 260, 294, 296, 300, 317, 522,
524, 527, 541

channel numbers as, 90, 112-113, 296,
518

expressions as, 52, 55-56, 86, 89, 91,
112, 218, 228, 230, 296, 353-354,
428, 575

to functions, 51-59, 68, 73, 75, 85-92,
95, 118, 199, 208, 210, 218-219, 227,
232-233, 237, 239, 241, 244, 247-
248, 254, 260, 286, 294, 300, 408-
413, 415-418, 422-424, 426-428, 433,
441-442, 448, 451-452, 454-455, 509,
515, 523, 528, 530, 551, 561, 564

numbers as, 31, 51-58, 73, 76-78, 85-
86, 90, 96, 104, 112, 167, 178, 208,
214, 218-219, 228, 237, 244, 247-
248, 254, 260, 265-267, 280, 289,
294-296, 300, 302, 307, 317, 338,
351, 353-354, 361, 398, 408-413,
426-428, 439, 451-452, 511, 515,
518, 522, 527, 529-530

and parameters, 51-52, 86-92, 95-96,
227-229, 247-248, 281, 296, 317, 529

strings as, 31, 52, 56, 58-59, 76-78, 86,
89, 95-96, 129, 160, 178, 180, 186,
218, 230, 232-233, 247-248, 267-268,
278, 315, 317, 353-354, 395, 413,
416-417, 422-424, 426-428, 432-433,
436, 439, 442, 448, 451, 454, 511,
541, 553, 575

to subroutines, 75-76, 78, 85, 88-92,
96-97, 106, 113, 214, 218, 227-228,
237, 239, 295, 317, 352, 361, 391,
432, 436, 482, 484, 489-490, 495-
497, 501, 541, 575

Arithmetic operators
addition (+), 2-4, 8-9, 12-13, 70-71, 77-

78, 91-92, 99-101, 108-109, 115-116,
119-121, 131-132, 153-154, 156-157,
159, 163-164, 166-168, 184-185, 187-
188, 191, 197, 199, 207-209, 217-
218, 252-253, 256-257, 259-260, 305,
307, 309, 314-315, 329-330, 336-338,

351-353, 383-385, 388-389, 407-408,
473-474, 503-504, 507-509, 521-522,
549-554

division (/),8-9, 16, 28-29, 53-54, 86,
91, 135, 166, 197, 201, 208-209, 218,
237-238, 284, 415, 511, 519, 571

exponentiation (^), 8-9, 208-209, 294
multiplication (*), 8-9, 32, 62, 70-74,

148-149, 166, 194, 208-209, 239,
259-260, 428, 522

subtraction (-), 8-9, 70-71, 73, 166,
208-209, 242, 259-260

Arrays
as arguments, 73-74, 76-78, 87, 90, 92,

214, 218, 254, 260, 294, 296, 522,
524, 527, 541

arithmetic, 70
assignments,12, 27, 62, 67-71, 217,

231, 250, 255, 258-262, 264, 269,
305, 429-430, 551, 553, 566-567

dimensioning, 61-64, 66-73, 87, 98,
102-103, 162, 214-215, 228, 231,
237, 247-248, 250, 254, 257, 259-
260, 263-265, 267, 269, 282, 293-
294, 301, 305, 495, 497, 522, 525,
527, 529-530, 547, 551, 562, 565,
567, 574, 583

elements of, 61-74, 76-79, 87-88, 90,
93, 96, 123, 208-211, 215, 227-228,
236, 239, 246, 255, 259-265, 294,
333, 366, 429-430, 456-469, 482-483,
490-493, 495, 497, 499, 507-508,
520, 543, 545, 560, 567, 572, 574

inputing, 12, 51, 63-69, 74-75, 98, 117-
119, 129-130, 207, 215, 218, 250,
258, 260-262, 403, 459-460, 466-467,
469, 524, 526, 552-553, 566-567

functions, 51, 68, 237, 254, 259, 300,
555

as parameters, 87, 90-92, 237, 522,
530, 543

printing, 27, 49, 63-66, 69, 71-77, 79,
81, 118, 130, 213, 258, 263, 280, 408-
413, 415, 418, 430, 461-462, 465-
466, 468-469, 552, 567



redimensioning, 66-70, 75, 77, 214-
215, 218, 231, 237, 250, 258, 260-
264, 269, 273, 305, 515, 520, 551

shape of, 64, 73, 75
shared, 101-102, 105, 247-248, 267,

282, 293, 520, 544
variables, 61, 69, 90, 94, 96, 99, 102,

207-211, 227-228, 236, 246, 255,
257, 267, 273, 282, 527, 543, 545-
546

ASCII characters
codes, 30, 32, 59, 184-185, 187, 212,

230, 301, 323, 330-331, 334, 338,
353, 384, 420, 422-424, 426, 437-
438, 446, 454, 509, 559, 569

order of,35, 40, 185, 212, 420, 422-
424, 426, 437-438, 446, 454, 456,
574

set of, 30, 35, 59, 206-207, 274, 331,
423, 446, 509

ASEC function, 408-412, 556
ASECH function, 408-410, 412-413,

415, 418, 556
ASIN function, 55, 217, 219-220, 273,

408-411, 428, 452, 511, 515, 553-56
ASINH function, 408-410, 412-413,

415, 418, 556
ASK statements

ACCESS statement, 116, 220-221,
556

BACK statement, 141, 220, 222, 556
BACKGROUND COLOR statement

(See ASK BACK statement)
COLOR MIX statement, 143, 220,

222, 556
COLOR, 141, 143, 220, 222, 556
CURSOR, 17, 33, 220, 222, 298, 556
DATUM, 120, 220, 222, 554
DIRECTORY, 115, 128, 221-222, 296,

556
ERASABLE, 221, 223, 554, 556
FILESIZE, 116, 123-124, 126-127,

145, 221, 223, 291, 430, 520, 556
FILETYPE, 221, 223, 554, 556
FREE MEMORY, 221, 223, 556
MARGIN, 17, 118, 128, 138, 221, 223,

530, 556
MAX COLOR, 141-142, 221, 223, 288,

557
MAX CURSOR, 18, 139, 221, 223,

518, 557
MODE, 221, 223, 557
NAME, 115, 221, 223, 557
ORG, 115-116, 221, 224, 524, 553, 557
ORGANIZATION (See ASK ORG

statement)

PIXELS, 135, 221, 224, 557
POINTER, 114, 221, 224, 557
RECORD, 115, 122, 221, 224, 557
RECSIZE, 121, 124, 221, 224, 520,

525, 557
RECTYPE, 116, 221, 224, 554, 557
SCREEN, 133, 221, 225, 557
SETTER, 221, 225, 554, 557
TEXT JUSTIFY, 140, 221, 225, 557
WINDOW, 134, 144, 146, 156, 159,

221, 225-226, 557
ZONEWIDTH, 17, 118, 128, 138, 221,

225, 530, 557
ASKANGLE subroutine, 476, 500
ASKBARTYPE subroutine, 477, 501
ASKGRAIN subroutine, 477, 501
ASKGRAPHTYPE subroutine, 476,

478, 502
ASKGRID subroutine, 478, 503
ASKHLABEL subroutine, 479, 503
ASKLAYOUT subroutine, 479, 504
ASKLS subroutine, 480, 505
ASKTEXT subroutine, 479-481, 505
ASKTITLE subroutine, 481, 506
ASKVLABEL subroutine, 481, 506
Aspect ratio, 135, 226
Assembly language
Assignment statements, 3, 8, 11-12, 51,

67, 207, 217, 231, 250, 255, 258,
260, 269, 273, 300, 305, 551, 553

Asterisk operator (See Arithmetic oper-
ators)

ATANH function, 413
ATN function, 219, 225, 409

Background color
current, 140-143, 222, 226, 288, 362,

375, 471, 475, 556, 558-559
determining, 141, 220, 222, 556
setting, 141-142, 222, 287-288, 362,

375-376, 572
Backspace key,370
BALANCEBARS subroutine, 482
BARCHART subroutine, 483-484, 495
BEGIN_POSTSCRIPT, 225, 526
BIN$ function, 413
Binary files (See Files)
Binding your program (See also Bound

programs)
binding process,101

Bitwise operations
AND, 60, 108, 145, 245, 275, 363, 374,

376, 396-397, 399, 407-408, 411,
556, 569, 583

OR, 127, 145, 320, 362, 376, 396, 408,

417-418, 569, 589, 592
XOR, 320, 362, 376, 408, 418, 583,

589, 592
Blank lines, 4-6, 15
BNF, 205-206
Boolean expressions (See Expressions)
BOTTOM RELATIVE, 324, 328, 585,

589
Bound programs (See also Binding your

program)
chaining to, 116, 128-130, 229, 296-

297, 351, 392-393, 516, 553, 563
command line arguments,281

Bounder (See Binding your program)
Bowlegs, 87, 90, 102-103, 214, 218, 228,

236, 429-431, 434, 452, 456-458,
460-468, 470, 474, 482-483, 485,
488-489, 491, 495-496, 498, 507-508

BOX KEEP string format (See Image
string formats)

BOX statements
AREA, 140, 143, 156, 226, 231, 558
CIRCLE, 143-144, 226, 558
CLEAR, 143-144, 146, 226, 231, 288,

558
DISK, 143-144, 226, 558
ELLIPSE, 143, 226, 558
KEEP, 126, 144, 146, 180-182, 226-

227, 230, 284, 305, 308, 313, 324,
327, 372, 374, 576-577, 583

LINES, 143-144, 226-227, 323, 355
SHOW, 126, 144-146, 180-182, 225-

227, 558
Break key, 395, 400
BREAK statement, 218, 227, 235, 300,

512, 516
Breakpoints

BREAK command, 516
continuing after, 516
creating,345, 348, 516, 538-539, 582
executing, 558
finding, 538

BREAKUP subroutine, 420-421, 441
BRUSH COLOR, 319, 325, 362, 375-

376, 589, 592
BRUSH PATTERN, 183, 320, 325, 335,

362, 375-376, 513, 589, 592
BYE command, 0
Byte file (See Files)

CALL statement, 54, 75-76, 85, 88-90,
94, 96, 112-113, 201, 227-228, 239,
296, 303, 345-348, 523

CALL Object, 269, 307, 310-312, 315-
317, 319, 325-326, 584

CALL Sys_Event, 297, 337, 595

628 True BASIC Language System



Caret operator (See Arithmetic opera-
tors)

CASE statement, 39-40, 228, 287, 517,
524

CAUSE statement, 197-198, 201-202,
228

CAUSE ERROR statement, 198, 200-
201, 203, 228, 245, 303, 402, 408-
410, 412-413, 559

CAUSE EXCEPTION statement, 219-
220, 228, 245, 250, 559

CD command, 128
CEIL function, 54, 229, 254
CENTER$ function, 421-422
CGA (See Color graphics adapter)
CHAIN statement, 229, 281, 522, 524,

526, 553
Chaining programs, 88, 218, 229-230,

244-245, 250, 511-513, 516, 519,
522, 524, 526, 553, 559, 571

Channel numbers
closing, 24-25, 97, 112-114, 127, 133,

231, 398, 404, 517-518, 528, 559
with files, 23, 25, 33, 66, 90, 107, 109-

110, 112-117, 119, 124, 127, 133,
220, 223-224, 231, 243, 253, 257,
261-265, 267, 271-272, 280-281,
285, 287, 289, 293, 298, 300, 304-
305, 398, 432, 435-436, 512, 518,
524, 528, 544, 554, 556, 569

handle of, 528
with printers, 23-24, 107, 113, 116,

127, 133, 271, 528, 569
reusing, 24, 113, 133, 231
with serial ports, 397
shared, 101-102, 107, 113, 267, 293,

528, 544
with windows, 23, 33, 107, 110, 113,

116, 132-133, 146, 158-159, 220-
221, 223-224, 231, 243, 267, 272,
280, 287, 290, 293, 304, 513, 518,
528, 544, 569

Characters
ASCII value of (See ORD and CHR$

functions)
number in a string (See LEN func-

tion)
set of (See ASCII characters)

CHARDIFF$ function, 422
CHARINT$ function, 423
CHARS$ function, 423
CHARUNION$ function, 424
CHECKABLE, 310, 323, 335, 367, 513,

591
CHECKED,43, 151, 162-163, 166-168,

213, 310, 323, 329, 368-370, 399-

400, 403, 591
CHR$ function, 31-32, 59, 106, 125,

217, 230, 274, 331, 394-395, 425,
430, 448, 465, 467, 509, 511, 518,
551, 559

CLEAR statement, 16, 24, 140, 142-
144, 226, 230, 372

Clicking,159, 162, 173, 183, 297, 337-
342, 355, 370, 579, 596-597

Clipboard,186, 217, 230-231, 386, 513,
559, 579

CLIPBOARD subroutine, 230
Clipping, 132, 137, 139, 149, 156, 160,

226, 248-249, 277, 318, 359
Clock, 60, 107-108, 147, 299, 442-443,

453
CLOSE BOX,155, 157, 161, 317-319,

339, 358, 360, 580, 592
CLOSE statement, 24, 113, 127, 133,

231, 397-398, 518
Colors

background (See Background color)
customizing (See SET COLOR MIX

statement)
in editor, 185, 332, 585-586
foreground (See Foreground color)
names, 140-141, 143, 222, 288, 471,

473-475, 482, 484, 486-488, 490,
492-493, 495, 497, 499, 525, 556,
572

numbers, 141-143, 182-183, 222-223,
288, 319-320, 325, 362, 385, 471,
474-475, 482, 484, 486-488, 490,
492-493, 495, 497, 499, 556-557,
572

number available, 220
with Toolkits, 482-483, 486-490, 492-

493, 495, 497-499
simulated, 135, 182-183, 245, 288,

319, 325, 361-362, 375-376, 576-
577, 581, 589-590, 592-594

COMLIB subroutine, 231, 403
COMOPEN subroutine, 231, 403
COM_SEND subroutine, 399-400
Comma (See Print separators)
Command keys, 164, 537
Command line arguments (See Bound

programs)
Command window,538-540
Commands (See also individual com-

mands)
combining, 164
typed, xvi
using,541

Comments,2, 4-6, 284
Communications ports (See Ports)

Compiling programs
COMPILE command, 516, 518, 524
compiled files,110, 124, 271
compiled libraries, 99-101, 153, 188,

255, 395, 407
compiled program,99, 101, 110-111,

124, 229, 516, 518, 525
CON array constant, 69-70, 231
Concatenation, 10-11, 58, 209-210, 522,

530, 553
Conjunction, 36, 145, 211
Constants

array and matrix, 69-70, 207-209,
217, 231, 250, 259, 269, 273, 305,
429, 521, 526, 555

logical, 211
numeric, 7-9, 47-48, 52, 59, 62-63, 73,

205-209, 218, 231, 250, 287, 305,
309, 370, 427-430, 439, 452, 468,
511, 518, 521, 523, 526, 551

string, 2, 4-5, 7, 10-11, 13, 21, 47-48,
59, 89, 111, 205-207, 209-210, 234,
260, 269, 273, 420, 426-428, 438-
439, 446, 454, 468, 523, 531, 551

CONTINUE statement, 199, 231, 250,
303

CONTROL DESELECTED, 152, 166-
168, 171, 175, 188, 331, 339-340,
342-343, 380, 595

CONTROL DOUBLE, 173-174, 188,
341, 343, 595

CONTROL SELECT, 166-168, 188,
312, 341-343, 355, 380, 595

CONTROL SINGLE, 173-174, 188, 341,
343, 595

CONTROL TYPE, 309, 327, 585
CONTROL$ function, 424
CONVERT function, 414
Coprocessor

accuracy, 218, 242, 266
Copying text (See Text)
COS function, 232
Cosecant function (See CSC function)
COSH function, 55, 85-86, 217, 232,

408-410, 412-413, 415, 418, 428,
452, 553, 560

Cosine function (See COS function)
COT function, 55, 217, 232, 273, 408,

428, 452, 553, 560
Cotangent function (See COT function)
COTH function, 408-410, 412-413, 415,

418, 560
CPOS function, 56-57, 59, 92, 217, 232-

233, 268-269, 278-279, 560
CPOSR function, 56-57, 217, 233, 268-

269, 278-279, 560

629Index



CPSORTN subroutine, 456-457, 461
CPSORTS subroutine, 457-458, 462
CREATE clause (See Open-clause)
Cross-referencing (See XREF utility)
CSC function, 55, 217, 233, 273, 408,

428, 452, 553, 561
CSCH function, 415
CSEARCHN subroutine, 458-459
CSEARCHS subroutine, 460
CSORTN subroutine, 459, 461
CSORTS subroutine, 82, 460, 462
CTLT_CHECKBOX, 310, 327, 585
CTLT_EDIT, 310, 327, 585
CTLT_GROUPBOX, 310, 327, 585
CTLT_HSCROLL, 310, 327, 585
CTLT_ICON, 310, 327, 585
CTLT_LBOX, 310, 327, 585
CTLT_LISTBUTTON, 310, 327, 585
CTLT_LISTEDIT, 310, 327, 585
CTLT_PUSHBUTTON, 310, 327, 585
CTLT_RADIOBUTTON, 310, 327, 585
CTLT_TEXT, 310, 327, 585
CTLT_TXED, 310, 327, 585
CTLT_VSCROLL, 310, 327, 585
Cursor

changing shape, 17, 33, 160
moving with keys,30-32, 249, 370,

389, 521, 540
moving with mouse,370
positioning within program, 17-18,

24-25, 32-33, 118, 138, 160, 222,
280-281, 287, 289, 298, 321, 361,
387, 518, 573, 580-581

turning on and off,13, 17-18, 27, 30,
32-33, 222, 249, 289, 298, 540, 556,
573

Cutting text (See Text)

Data
numeric, 9

DATA statement, 47, 49, 207, 234, 264,
274, 283, 285, 520, 526-527

Data structure, 61, 102, 104-105
DATAGRAPH subroutine, 471, 474,

485-486, 491, 508
DATE function, 60, 129, 234, 441-442,

451, 455
DATE$ function, 60, 129, 234, 441-442,

451, 455
Date, setting, 282, 561, 563
Debugging, 599-605

with breakpoints (See Breakpoints)
cross-referencing (See XREF utility)
DEBUG statement, 234-235, 300,

538, 561

and OPTION TYPO,97-98, 101-102,
257, 267, 272, 274, 521, 529, 543,
545, 569

tracing (See TRACE utility)
Decision structures, 32, 35, 37, 39, 42-

44, 86, 155, 160, 166, 550
DECLARE statements

DEF, 86, 94-96, 100, 102-104, 235,
408, 544

FUNCTION, 235, 256
NUMERIC, 235, 553
PUBLIC, 102-104, 235-236, 267, 274,

282, 293, 296, 529-530, 544
STRING, 121, 210, 236, 266, 553
SUB, 236

DEF statement (See FUNCTION state-
ment)

DEF structure (See FUNCTION struc-
ture)

DEFAULT button, 166, 345-346, 348,
391

Defined functions (See Functions)
DEG function, 55, 217, 237, 282, 428,

452, 476, 500, 557, 561, 573
DELCHAR$ function, 420, 424-426,

437, 440, 444-445, 447, 561
Deleting

characters,35, 308, 424, 436, 540
files,114, 127-129, 297, 302, 312, 520,

563, 583
text (See Text)

DELMIX$ function, 420, 425-426, 445,
561

DELSTR$ function, 420, 425-426, 446-
448, 561

DET function, 73-75, 217, 237, 239,
254, 260, 511, 518, 526, 562

Detached handler (See Error handlers)
Determinant, 73-75, 237, 254, 518, 562
DIGITS$ function, 44
DIM array, 78, 459-462, 465-469, 562
DIM statement, 61-63, 67, 70-71, 87,

90, 98, 102, 235-237, 257, 267, 282,
293, 515, 523, 527, 529-530, 543-
544

Directories
in aliases (See Aliases)
changing,101, 115, 128-130, 191-192,

289, 296, 346-347, 390, 392, 563
creating,109, 128, 154, 175, 296, 392,

563
current,25, 100, 109, 111, 115, 128-

129, 221-222, 229, 287, 289, 296-
297, 346-347, 390, 392-393, 513,
556, 563, 573, 583

deleting, 128, 392, 563, 583

in file names,25, 100, 109, 111, 115,
191, 296, 347, 390, 392-393, 407

listing contents, 175, 191-192, 393
searching contents of, 129, 191
subdirectories,109, 128-130, 150, 393,

407, 541, 563
Disjunction, 35-36, 211
Disk drives

current, 100, 226, 558, 563
in file names,100, 525
startup disk, 0

Disks and diskettes
formatting, 269, 384
reading, 394
tracks, 518
writing, 272, 512, 518, 520

DIVIDE subroutine, 54, 105, 237-238
Division (See Arithmetic operators)
DLL files, 0
DM_CLEAR, 320, 589, 592
DM_COPY, 320, 589, 592
DM_NOT_CLEAR, 320, 589, 592
DM_NOT_COPY, 320, 589, 592
DM_NOT_OR, 320, 589, 592
DM_NOT_XOR, 320, 589, 592
DM_OR, 320, 589, 592
DM_XOR, 320, 589, 592
DO...LOOP structure, 33, 41-43, 57, 59,

96, 166-167, 238-239, 243, 258, 304,
401, 550, 562-563, 566

DO statement, 42-44, 49, 232, 238, 243,
521, 550

DO utilities (See also individual utili-
ties)

DO command, 516, 541
DO programs,541

DOLLARS$ function, 426
DOLLARVAL function, 427
DOS

interrupts, 297, 337, 394
version, 541, 551

DOT function, 74, 239, 526
Dot product, 71, 73-74, 239, 259, 562
DOUBLE ???,117, 119, 163, 173-174,

187-188, 205, 234, 314, 317, 338,
341-343, 358, 594-595

DOUBLE MIDDLE, 187, 338, 342, 595
DOUBLE RIGHT, 187, 338, 342, 595
Double-clicking,173
DOWN arrow,174, 176, 314, 322, 330,

339-340, 595
Dragging,183, 308
DRAW MyPicture, 562
DRAW statement, 146-147, 239-240,

275, 277, 374, 523, 545-546

630 True BASIC Language System



DRAWMODE subroutine, 320, 325,
363, 589, 592

Editing
Edit menu,537-539
keep and include, 0
select all,538
source window,518, 540-541, 597

Editing Window,518, 540-541
Editor Window, 0
EGA (See Enhanced graphics array)
ELSE statement, 3, 38, 40, 241, 287
ELSEIF statement, 38, 241
Empty parentheses, 87, 90
Empty PLOT statement (See PLOT

statement)
Empty string (See Null string)
End key, 0
END logical expression, 37, 43, 48, 114
End of data, 264, 284, 512
End of file, 114, 253, 257, 261-262, 264,

284, 512, 526
END statement,2-3, 47, 92-93, 95-96,

98-99, 241, 245, 256, 456, 473, 487,
493, 523, 527, 530, 550

END statements
DEF, 86, 241
FUNCTION, 241, 244
HANDLER, 242, 250
IF, 37-38, 242
MODULE, 242
PICTURE, 146, 242, 244
SELECT, 39-40, 242
SUB, 89, 242, 244, 296
WHEN, 198, 202, 242, 303

END_POSTSCRIPT subroutine, 241
ENGLISHNUM$ function, 427-428
Enhanced graphics array, 290
Enter key (See Return key)
EPS function, 55, 242
ERASE statement, 25, 113-114, 118,

121, 223, 242-243, 272, 312, 516
Error handlers

detached, 202, 249, 303, 544, 554,
562, 564, 583

entering, 198, 200-201, 203, 228, 245,
303, 402, 408-410, 412-413, 559

and error functions, 197, 200
exiting, 201-202, 232, 243-244, 250,

285, 303-304, 563
using, 112, 197-198, 201

Error Window,197, 538-539
Errors

absolute, 218
functions, 197, 200
intercepting (See Error handlers)

messages,3, 12, 22, 28, 73, 101, 170,
197-198, 200-203, 218, 228, 245,
252, 303, 513, 515, 517, 519-521,
523-525, 527, 529, 539, 564

overflow, 9, 201, 209, 218, 232-233,
237-239, 244, 253, 260-261, 264,
286, 294, 298, 300, 303, 408-413,
415, 418, 427, 511, 526, 529, 534,
552

relative, 218
runtime, 0-5, 7-10, 12, 15-16, 18, 22,

24, 27-31, 35-36, 54-55, 60-64, 98-
101, 111-132, 170-180, 197-203,
217-218, 228-231, 244-245, 276-277,
281-287, 294-295, 303-304, 336-337,
352-355, 392-402, 434-443, 450-455,
470-475, 503-506, 511-531, 538-539,
559-560, 562-564, 571-572

syntax, 209, 229, 513
system, 513, 528
window,197, 539

EVAL function, 428
Exception messages (See Error mes-

sages)
Exclamation point (See Comments)
EXE files (See Executable files)
Exec subroutine, 116, 128-130, 296-

297, 351, 392-393, 563
EXEC_CHDIR subroutine, 128
EXEC_DISKSPACE subroutine, 392
EXEC_MKDIR subroutine, 128
EXEC_RMDIR subroutine, 128
EXEC_SETDATE  subroutine, 392
EXEC_SETTIME subroutine, 393
Executable files (See also Bound pro-

grams)
creating (See Binding your program)
launching (See Exec subroutine &

Exec_return subroutine)
EXIT statements

DEF, 87, 243
DO, 43-44, 49, 238, 243, 521
FOR, 42-43, 243-244, 246
FUNCTION, 243-244
HANDLER, 201-202, 244, 250, 303
PICTURE, 146, 244
SUB, 146, 203, 244, 296

EXLINE function, 200, 244
EXLINE$ function, 200, 244
EXP function, 244
EXPLODE subroutine, 429-430
EXPLODEN subroutine, 119, 429-430
Exponent-part, 206, 533
Exponential notation, 8, 15, 20, 295,

427, 439, 533
Exponentiation (See Arithmetic operators)

Expressions
as arguments, 52, 55-56, 86, 89, 91,

112, 218, 228, 230, 296, 353-354,
428, 575

array redimensioning, 218, 261
boolean, 35
channel, 220, 223-225, 287, 298, 545
evaluation of, 9, 11, 36, 39, 209-211,

213, 218, 259, 428, 452
logical, 32, 35-38, 43, 48, 114, 208,

211, 213, 220, 223, 287
matrix, 74
numeric, 7, 9, 14, 23, 35, 39, 52, 55,

62, 73, 86, 110, 132, 157, 206-209,
212, 218, 260, 302, 428, 452, 523

order of evaluation, 9, 11, 209-211,
247-248

rounded numeric, 218
string, 7, 10-12, 14, 18, 23, 35, 39-40,

59, 111-112, 141, 157, 207-212, 218,
227, 230, 260, 269, 302, 307, 353-
354, 358-359, 429, 453, 523, 531,
553, 570

substring, 10-12, 56, 58, 209-210, 220,
255, 259, 437, 440, 449, 553

EXTEND ???,18, 169, 187, 245, 255,
280, 338, 342, 386, 407, 529, 596

EXTEND MIDDLE, 187, 338, 342, 596
EXTEND RIGHT, 187, 338, 342, 596
Extended memory (See Memory)
External procedures, 85, 88, 91-92, 94,

97, 99-101, 105, 113, 215, 241, 267,
281-282, 407, 544-545, 550

EXTERNAL statement, 99, 245
EXTEXT$ function,200-202, 207, 217-

218, 228, 244-245, 304, 511-513,
564

EXTYPE function,200-203, 207, 217-
218, 228, 244-245, 273, 304, 511-
513, 515, 564

Factorial function, 87
FGRAPH subroutine, 473, 487
File menu,537, 539
File selectors (See Files)
Files

attribute byte, 113, 242, 309, 327
binary, 396
byte, 60, 110-112, 115-116, 119-120,

124-127, 144-145, 181, 223-224,
264-265, 271, 283-285, 291-292,
304, 403, 425, 430, 436, 448, 512,
522-524, 530

channels (See Channel numbers)
closing,102, 113, 231, 397
compiled,98-99, 101, 110, 124, 229,

631Index



271, 516, 518, 524-525, 530
creating,3, 5, 45, 93, 95, 101, 109-112,

116, 119-120, 122-125, 127-128,
131, 159, 161, 178-179, 190-191,
197-198, 237, 271, 347, 356, 447-
448, 450-451, 517, 520

date last modified, 116, 129, 297
deleting, 113-114, 120, 128, 130, 218,

250, 297, 302, 312, 517, 537, 583
editing,516
erasing,25, 113-114, 118, 121, 145,

221, 223, 242-243, 312, 512, 516-
517, 554, 563

extensions,100, 191, 297, 346-347,
390-392, 525, 582

handle of, 197-198, 202, 524
internal (See also Internal format),

109-110, 116, 119-120, 124, 126,
224, 253, 257, 261-262, 512, 516-
517, 528, 583

input, 213, 253, 257, 261-262, 511,
520, 526-527, 554

lengths, 110, 116, 120, 123-127, 145,
221, 223, 290-292, 430, 520, 556

libraries,75, 97, 99-101, 103, 146, 150,
215, 245, 255-257, 297, 351, 388,
392, 394, 456, 462, 470, 529, 555

listing names of (See FILES com-
mand)

margin, 118, 221, 223, 289-290, 293,
512, 517, 556, 573

moving,95, 100, 114-115, 121-122,
125, 283, 291, 304, 517

multiple, 125
naming, 25, 33, 75, 90, 100, 104, 106,

109-112, 114-115, 118, 121, 129-
130, 151, 191, 198, 202, 207, 224,
229, 255-257, 284, 296-297, 302,
305, 327, 346-347, 390-392, 407,
425, 430, 437, 440, 444-445, 447-
448, 451, 520, 523, 525-526, 541,
544, 555, 557, 566, 569, 589

numbers (See Channel numbers)
opening, 23, 25, 29, 90, 109-115, 117,

122-125, 127, 164, 188, 191, 197-
198, 202, 212, 231, 242-243, 271-
272, 295, 299-300, 308, 336, 345-
348, 351, 366, 379, 390, 430, 512-
513, 516-520, 524-525, 528-530,
547, 569, 582

organizing,5, 88, 99, 110-111, 120,
271, 524, 557

output,13, 25, 33, 47, 60-61, 66, 90,
107, 109, 111-113, 115, 117, 119,
121, 123, 125, 127, 129, 133, 145,
221-222, 253, 257, 261-265, 271,
281, 284, 290, 300, 305, 351, 512,

516-518, 520, 539, 556
PCX, 284
PICT, 284, 305, 327, 372-373
PostScript, 512, 519-520, 525-526,

528-529
printing,2, 11, 13, 16, 21, 23-25, 27-

28, 33, 48, 66, 78, 81, 90, 95, 103,
106, 110-117, 127, 130, 133, 191,
197-198, 200, 218, 263, 279, 290,
300, 303, 346-347, 393, 450, 462,
512, 517, 533, 539

random, 110-111, 116, 120-124, 224,
264-265, 271, 283, 287, 291-292,
304, 554

record, 110-113, 120, 123-125, 221,
223-225, 242, 264-265, 271, 283,
291-292, 304, 403, 512, 517-518,
520, 522-525, 530, 554

recsize, 111-113, 121-125, 221, 224,
264-265, 271-272, 283, 288, 291-
292, 305, 512, 517, 520, 522-525,
527, 557, 573

renaming,7, 109, 115, 128-129, 296,
393, 530, 563

saving,25, 75, 100, 109-110, 129, 180-
181, 185, 188, 191, 299, 345, 347-
348, 351, 366, 390-391, 516, 519-
520, 524-525, 582

selection by user, 347, 390
size, 113, 116, 120-122, 124, 129-130,

223-224, 242, 271-272, 287, 291,
297, 512, 517, 520, 522, 524-525,
556-557, 573

stream, 110-112, 114, 119-120, 222,
224, 264-265, 271, 283, 304, 512,
517, 554, 556

switch,108, 133, 158, 404
text, 33, 109-114, 116-120, 123, 125,

127-128, 185, 223-225, 242, 252-
253, 261-262, 264, 271, 284, 289-
290, 293, 296, 298, 300, 315, 333,
431-432, 435-436, 440, 444, 447,
512, 517, 523-524, 530, 557, 569

time last modified, 116, 129, 297
zonewidth, 118, 221, 225, 290, 293,

512, 517
FILLARRAY subroutine, 431
FILLFROM subroutine, 432
Finding, 88, 91, 129, 386, 433, 470
Fixing program errors (See Debugging)
Floating characters, 533-534
FLOOD statement, 137, 144, 245
Floor function (See INT function)
FnHLib library, 555
FOCUS ORDER, 318-319, 593
FONT METRICS, 321, 332-333, 335,

513, 586, 593

FONT NAME,185, 321, 332-333, 335,
363, 385, 513, 586, 593

FONT SIZE, 185-186, 295, 321, 332-
333, 335, 363, 385, 513, 586, 593

FONT STYLE,185, 295, 321, 332-333,
335, 363, 385, 513, 586, 593

Fonts
editor, 185, 586
output, 16, 363

FOR statement, 41-43, 243-244, 246
FOR...NEXT structure, 7, 41-42, 44, 56,

62, 93, 95-96, 213, 238, 243-244,
246, 269, 304, 519, 550, 563-568

Foreground color
current, 137-138, 140-141, 143, 222,

226-227, 245, 262, 277, 288, 482,
484, 488, 490, 495, 497, 556, 558

determining, 141, 143, 220, 222, 556
number of, 223
in Toolkits, 482-483, 486-490, 492-

493, 495, 497-499
FORCE PALETTE, 327, 589
FORE COLOR, 332, 586
Format string, 18-23, 58, 65, 170-171,

263, 280, 302, 370, 516, 525, 531-
533, 535-536, 565, 569, 583

FORMAT utility,538
Formatted output, 18, 24
Formatting (See FORMAT utility)
FP function, 54, 247
Free memory (See Memory)
Function keys, 30-31, 207, 218, 237
FUNCTION statement, 235, 237, 241,

243-244, 247, 256
FUNCTION structure, 237, 241, 247-48
Functions

built-in, 31, 51-55, 57-61, 70, 73, 85,
102, 107-108, 125-126, 273-275,
407-418, 427, 518, 526

external, 85-86, 88, 91-92, 94-95, 97,
99-100, 108, 218, 235, 244-245, 247-
248, 281-282, 397, 407, 473, 487,
493, 544

internal, 60, 88, 92, 94-95, 99, 235-
236, 247-248, 443, 453, 544-545

invoking, 51-53, 85-88, 91, 201, 303
multi-line, 248
numeric, 8, 51-52, 55-56, 60, 207-209,

232-233, 244, 273, 286, 294, 298,
300, 397, 408-413, 415, 418, 428,
452, 511, 526, 553-554

one-line, 247
string, 51-52, 58, 86, 207, 209-211,

273, 420
as structures,4-5, 7, 35, 51, 85-88,

104, 197, 218, 228, 231-232, 237,

632 True BASIC Language System



241-242, 245, 247-249, 286, 295,
302, 473, 487, 493, 511, 567, 577

user-defined, 35, 92, 100, 104, 207,
228-229, 235, 241, 244-245, 247-
248, 281, 473-474, 487, 493, 502,
544-545, 555, 561-564, 566

GET statements
KEY, 27, 30-32, 213, 248
MOUSE, 33, 149-150, 239, 248, 524
POINT, 33, 149, 249, 524

GET_MOUSE subroutine, 27, 33, 149-
150, 218, 239, 248-249, 276, 360,
513, 516, 524, 529, 564

Global variables (See Variables)
GOSUB statement, 249, 270, 285, 525
GOTO statement, 249-250, 253, 270,

283, 304, 549
Graphics

animation, 138, 143-144
drawing lines, 131, 136, 140, 143-144,

146, 149, 161, 179, 182, 227, 250,
277, 319, 325-326, 372, 375, 470,
473-475, 477-478, 480, 485, 487,
491-494, 501, 503-505, 555, 558,
561, 564, 566-567, 574, 589

drawing shapes, 126, 131, 138, 143-
146, 148, 160, 180, 225-227, 231,
239, 288, 521, 553

pictures, 146, 239, 242-245, 274, 276,
293, 523, 544-545

transformations, 146-149, 239
GRAPHICS mode, 245
GRAPHICS mode, 245, 289
Graphics modes (See Screen modes)
Graphics resolution, 135, 180, 299
GraphLib library, 108
Greatest common divisor
GRAPHIC TYPE, 309, 323, 589
Graphic Objects, 183, 310
GRFT_ALINE, 309, 323, 589
GRFT_ARC, 309, 323, 589
GRFT_CIRCLE, 309, 323, 589
GRFT_IMAGE, 309, 324, 589
GRFT_LINE, 309, 323, 589
GRFT_PIE, 309, 323, 590
GRFT_POLYGON, 309, 324, 590
GRFT_POLYLINE, 309, 324, 590
GRFT_RECTANGLE, 309, 323, 590
GRFT_ROUNDRECT, 309, 324, 590

HEADER$ function, 432-433
HANDLER structure, 202, 231, 242,

244, 249-250, 285, 304
Help

files,186, 336, 513

HELP command, 0
Help menu,538
topics,61

HEX$ function, 416
HEXW$ function, 416
HIDE window, 596
Highlighting text (See Text)
HISTOGRAM subroutine, 488-489, 497
HSCROLL,157, 175-176, 178, 184, 188,

309-310, 316, 321, 327, 332, 335,
339-343, 353, 358, 381, 384, 584-
586, 593, 595-597

Hyperbolic cosine function (See COSH
function)

Hyperbolic sine function (See SINH
function)

Hyperbolic tangent function (See
TANH function)

Hyperbolic functions, 55, 85, 232, 294,
298, 407-410, 412-413, 415, 418,
555-556, 560-561, 572, 574-575

IBEAM subroutine, 489-490
ICONIZABLE, 318, 358, 593
Identifiers, 5, 161, 207-208, 214, 227,

235-236, 239, 247, 249, 266, 275,
281, 295, 303, 309, 523

IDN array constant, 70, 75, 207, 217,
231, 250, 259-260, 269, 273, 305,
511, 520, 551, 565

IEEE 8-byte format, 8, 110, 119, 124-
125, 269, 568

IF MISSING recovery clause, 49, 213,
234, 253, 264, 283, 291, 554

IF statement, 3, 37-38, 48, 238, 241-
242, 250, 270, 517, 549, 565

IF structure, 3, 35, 37-39, 44-45, 62,
232, 241-242, 251, 562

IF THERE recovery clause, 252, 280-
281, 291, 304, 554

IMAGE HEIGHT, 327, 590
IMAGE statement, 251, 280, 554
IMAGE WIDTH, 327, 590
Immediate Mode, xxvii-xxiii
IMMUNE window, 318, 358-359
INCLUDE command, 0
Increments, 42, 95, 177, 364-365, 381-

382, 578, 581-582
Indentation,4-6, 18, 38, 44, 185, 334,

434-436
Index variable (See Variables)
Infinite loops (See Loops)
Inner product (See Dot product)
INPUT PROMPT, 1, 3-5, 7, 10, 28-30,

33, 40, 43-44, 51, 53, 56-57, 59, 62,
64, 67, 74, 78, 82, 94-95, 98, 100,

107, 112, 117, 123, 129-130, 200,
426, 429-430, 433, 453, 459-460,
466-467, 565-567

INSERTION point,186, 586
INT function, 54, 253, 286
INTRIM$ function, 433
INV array function, 237, 254
IP function, 54, 247, 254, 284, 300
Input

box,190-191, 389
continuing, 28
excess, 28
from files,13, 25, 33, 47, 60-61, 66, 90,

107, 109, 111-113, 115-119, 121,
123, 125, 127, 129, 133, 145, 198,
213, 221-222, 251-253, 256-257,
260-265, 271, 281, 284, 290, 300,
305, 351, 430, 511-512, 515-517,
520, 526-527, 554, 556, 565-567

formatted, 66, 197
graphical, 351-359, 367-368, 553-554,

590, 602
integer, 62
items, 27-30, 64, 67, 252-253, 261,

264, 512, 522, 528
key,7, 9, 27, 30-32, 48, 59, 61, 65, 73,

80, 94, 106, 116, 119, 143, 149-150,
152, 200, 212-213, 218, 248, 314,
389, 394-395, 398, 410, 428-430,
444, 447, 450, 472, 474, 476, 483-
484, 486, 488-490, 492, 494, 496,
498-499, 501, 508, 527, 564

line, 3, 27-31, 33, 40, 56-57, 59, 64,
66-67, 94-95, 115, 117-119, 191,
203, 218, 250, 252-253, 256-258,
261-262, 284, 389, 400-403, 426,
440, 444-445, 447, 453, 512, 514-
515, 526-528, 552-554, 566-567, 582

matrix, 12, 51, 63-69, 74-75, 98, 117-
119, 129-130, 207, 215, 218, 250,
258, 260-262, 403, 459-460, 466-
467, 469, 524, 526, 552-553, 566-
567

prompt, 1, 3-5, 7, 10, 28-30, 33, 40, 43-
44, 51, 53, 56-59, 62, 64, 67, 74, 78,
82, 90, 94-95, 98, 100, 107, 112, 117,
123, 129-130, 200, 203, 252-253,
256, 261-262, 426, 429-430, 433,
453, 459-460, 466-467, 554, 565-567

INPUT statement, 3, 12-13, 17, 25, 27-
33, 47, 63-64, 66-67, 69, 89, 110,
116-119, 127, 152, 199-200, 205-
207, 212-213, 215, 251-253, 256-
257, 260-262, 271, 290, 302, 312, 29,
31, 33, 427, 439, 512, 515-516, 522-
524, 527-528, 549, 552, 554

633Index



INPUT PROMPT statement, 10, 28, 62,
64, 98, 117

Insertion point,186, 586
Installation, v, 75, 148-150,179, 407,
INT function, 54, 253, 286
Integer division (See DIVIDE subrou-

tine)
Integer part function (See INT function

and IP function)
Internal color numbers (See Colors)
Internal files (See Files)
Internal format

of files, 110, 119
of numbers, 110, 116-117, 119
of strings, 110, 119

Internal procedures (See Functions and
Subroutines)

Interrupt, 297, 337, 394
INV array function, 73-75, 217, 237,

254, 259-260, 511, 516, 522, 565
IP function, 54, 247, 254, 284, 300

Joining lines, 262, 372
JUSTIFY$ function, 433-434
JUSTIFYARRAY subroutine, 434-435
JUSTIFYFROM subroutine, 435-436

KEEP command, 0
KEEPCHAR$ function, 436
KEY command, 164
KEY EVENTS, 184, 332, 335, 341, 383,

385, 586, 597
Key input, 31-32, 59, 106, 119, 149-150,

212-213, 248, 394-395, 398
Keyboard

buffer, 32, 213, 248, 564
equivalents,162, 164, 310, 537, 592

KEYPRESS, 152, 172, 183-184, 187-
188, 334, 338, 341, 343, 353, 383,
385, 586, 596-597

Keywords,2-5, 12, 37-38, 40, 43, 47, 85,
111-112, 122, 132, 136, 146, 205,
207, 214-215, 218, 220, 228, 235,
237, 241, 245, 247, 250-251, 255,
270-271, 273-274, 281, 303, 521,
549, 553, 555, 569

Laser printer, 127
LBOUND function, 254
LCASE$ function, 254
LEN function, 56, 254
LEFT RELATIVE, 324, 328, 586, 590
LEFT$ function, 437
LET statement, 2-3, 8, 11-12, 27, 29, 47,

51, 67, 69, 86-87, 104, 201, 207, 217,

231, 248, 250, 255, 258, 260, 269,
273-274, 300, 305, 527, 551, 553,
569

LETTERS$ function, 437
Libraries

accessing,75-76, 100-101, 103, 106,
108, 128, 150, 255-256, 309, 407-
408, 529

creating,108, 131-132, 151, 157, 170,
174, 179, 200, 369, 371, 377, 379

files (See Files)
loading, 256, 267

LIBRARY statement,75-76, 100, 103,
106, 108, 128, 150, 255-256, 309,
407-408, 529

Limits,7, 17, 56, 107, 131, 181, 183,
280, 547

LINE INPUT statement, 27, 29-31, 33,
56, 64, 66-67, 115, 117-119, 191,
203, 218, 256-258, 261-262, 440,
444-445, 447, 553, 566-567, 582

LINE INPUT PROMPT statement, 30,
33, 40, 56-57, 59, 94-95, 426, 453,
566-567

Line numbers (See also NUM,
UNNUM, and RENUM utilities),3-
5, 49, 186, 200, 244, 270, 334, 521,
525, 543-544, 547, 549, 553, 563-
564, 569, 572

Lines
blank, 0-6, 11, 14-15, 64, 263, 431-

432, 435
blocks of,448
commenting,3, 5, 281, 284, 571
copying, 525
deleting,426
indenting,18, 434-436
joining, 372
marking, 30, 64
moving,17
restoring, 285, 549
selecting,40, 163, 333, 387, 517
splitting, 0

LINES IN PAR, 332, 334, 336, 513, 586
LJUST$ function, 438
Loaded Workspaces, 605-607
LOCAL statement, 88, 91, 97-98, 257,

267, 293, 529, 544
Local variables (See Variables)
Locking records, 512, 517, 526
LOG function, 257
LOG10 function, 257
LOG2 function, 258
Logical expressions (See Expressions)
Logical operators

AND, 36, 145, 211

NOT, 36, 211, 320, 362, 376, 589, 592
OR, 36, 211

LOOP statement, 42-43, 232, 238, 243,
258

Loops
DO (See DO...LOOP structure)
FOR (See FOR...NEXT structure)
infinite, 42-43, 246
nested, 44, 66

Lower bounds (See Subscripts)
LTRIM$ function, 58, 92, 217, 258, 286,

300, 420, 433, 443, 566
LOWER$ function, 438
LTRIM$ function, 258
LVAL function, 439

MacOS,151, 153, 158, 161, 164, 180-
181, 188, 191, 230, 284, 305, 314,
317, 323, 327, 345-346, 358-359,
365, 373, 388-390, 394, 399, 537-
541, 551

Main program, 2, 85, 88, 90-95, 98-103,
107-108, 113, 146-148, 163, 197,
201-202, 215, 241, 245, 255-256,
281, 456, 459, 473, 487, 493, 524,
526-527, 529-530, 544, 562

MANYDATAGRAPH subroutine, 491-
492, 505, 508

MANYFGRAPH subroutine, 492-493
MAPCHAR$ function, 439
Margins

default, 16-17, 118, 128, 290, 332, 543
determining, 17, 118, 128, 221, 223,

383, 530, 556, 586
in files, 118, 221, 223, 289-290, 293,

512, 517, 556, 573
on printer, 128
on screen, 16-17, 118, 138-140, 223,

231, 289-290, 298, 387, 431, 531,
543, 556, 573

setting, 17, 24-25, 118, 128, 138-139,
184, 223, 280, 287, 289-290, 387,
447, 512, 517, 522, 530, 573, 580

MAT assignment statement, 67, 231,
250, 258, 269, 305, 551, 553

MAT constants, 69-70, 207, 231, 250,
269, 305, 555

MAT statements
INPUT, 63-64, 66-69, 75, 98, 117-118,

258, 260-261, 469, 552-553, 566
LINE INPUT, 64, 66-67, 117, 258,

261-262, 553, 567
PLOT, 262
PLOT AREA, 138, 262, 567
PLOT LINES, 137, 262, 567
PLOT POINTS, 137, 262, 567

634 True BASIC Language System



PRINT, 63-66, 69, 71-77, 79, 81, 118,
130, 258, 263, 430, 461-462, 465-
466, 468-469, 552, 567

READ, 15-16, 63-67, 69, 71, 73-75, 80-
82, 93, 103-105, 123, 149, 161-162,
164, 166, 168-169, 173-175, 215,
258, 263-264, 366, 390, 431, 435,
448, 457-458, 460, 463-464, 475,
483-484, 486, 489-490, 492, 494,
496, 498-499, 567

REDIM, 66-69, 77, 79, 81, 129-130,
137, 237, 258, 260, 264, 311, 325-
326, 472, 515, 520, 551, 567

WRITE, 123, 258, 265, 567
Math coprocessor (See Coprocessor)
Mathematical functions, 53, 55
MAX function, 265
MAXLEN function, 210, 217, 236, 266,

553, 567
MAXNUM function, 55, 60, 126, 201,

207, 217, 266, 273, 290, 395, 402,
428, 447, 452, 518-519, 526, 547, 567

MAXSIZE function, 217, 266, 553, 567
Memory

available, 10, 63, 68, 218, 220, 223,
230, 547

MENT_BAR, 310, 591
MENT_ITME, 591
MENU TYPE, 335, 513, 591
Menu bar,151, 158, 161, 310, 314, 317
Menu item

SEPARATOR,310, 323, 335, 366-367,
513, 592

TEXT,151, 161, 164-165, 310, 366-
367, 577-578, 592

Menus
creating,33, 151, 154-155, 161-165,

186, 309-310, 353
disabling, 164, 310, 323, 368, 578, 591
equivalents (See Keyboard)
items,31, 154, 161-165, 167, 186, 310,

312, 323, 335, 339, 366-368, 513,
537, 577-578, 584, 591-592, 596

MENUS command, 164
operation,167, 537
pop-up,151

Metanames, 205
MID$ function, 440
MIN function, 266
Minus operator (See Arithmetic opera-

tors)
MKEY, 323, 592
MOD function, 53, 266
Modes (See Screen modes)
Modules

and chaining, 229

header, 98, 101-103, 234, 267, 273-
274, 281, 293, 543

initialization, 101, 103-105, 107, 113,
229, 267

loading, 229, 267
name, 101, 103, 105-106, 257, 267
structure, 101, 113, 242, 266, 568
using, 101-103, 105-106, 267

MORE logical expression, 36, 48, 114,
211

Mouse
button,149, 173, 248-249, 338-342,

346, 348, 380, 564, 595-597
clicking,159, 162, 173, 183, 297, 337-

342, 355, 370, 579, 596-597
cursor,149, 230, 370, 564
device,524
double-clicking,173, 341, 595
dragging,183
driver, 524
pointer,149, 230, 370, 564
position,33, 149, 248, 319, 338, 342,

361, 564
operation of,149-150, 159, 339-342,

360-361, 389, 524, 564
state, 33, 149-150, 239, 248, 516, 524

MOUSE MOVE, 187, 319, 338, 342, 360,
593

MS-DOS (See DOS)
MULTIBAR subroutine, 482, 495-496
MULTIHIST subroutine, 477, 479, 496-

497, 500, 504
Multiplication (See Arithmetic opera-

tors)
Music, 193-195, 276, 570

NCPOS function, 56-57, 59, 217, 233,
267-269, 278-279, 568

NCPOSR function, 56-57, 217, 233, 268-
269, 278-279, 568

Negation, 36, 211, 320, 362, 376, 589,
592

Negative increments, 42
Nested loops, 44, 66
Networks, 109, 116, 127, 253, 512
NEXT statement, 41-42, 137, 193, 238,

243, 246, 269, 276, 300, 519, 550
NEXTWORD subroutine, 421, 441
NICEDATE$ function, 441-442, 451
NICETIME$ function, 442-443
NOLET command, 521
Nonfatal exceptions, 231, 243, 252-253,

257, 261-263, 272, 281, 291-292,
298, 511-512, 514-515, 517, 522,
526-529, 531, 551, 554

NOSPACE$ function, 433, 442
NOT (See Logical operators)
NOW$ function, 442-443
NPLUGCHAR$ function, 443-444
NREPCHAR$ function, 444
NUL$ array constant, 269
Null string, 10-11, 30, 47, 59, 63, 70, 87,

92, 94-95, 115, 129, 141, 155, 169-
170, 172, 180-181, 183, 185, 187,
191, 200, 206, 210, 222, 224, 228,
232-234, 244-245, 252, 255, 257,
259, 265, 267-268, 278, 284, 298,
315, 327, 338, 345-348, 352, 361,
363, 366, 370-371, 375, 385, 390,
395, 397, 400, 421-422, 432-434,
436-438, 440-441, 448-450, 505-506

NUM function, 125, 264, 269, 283, 521
Num lock, 540
NUM$ format (See IEEE 8-byte format)
NUM$ function, 125, 264, 269, 283, 521
Numbers

accuracy of, 15, 116-117, 119, 218, 547
as arguments, 31, 52-55, 57-58, 73, 76-

77, 85-86, 90, 104, 112, 167, 208,
214, 228, 237, 247-248, 254, 260,
280, 289, 294-296, 307, 317, 398,
408-413, 426-428, 451-452, 511, 515,
518, 522, 529-530

in arrays, 8, 61-63, 65-68, 70-71, 73,
75-82, 87, 90, 99, 101-102, 163, 173,
179, 192, 207-208, 214-215, 227-228,
231, 236, 239, 246-248, 254, 259-
260, 262, 264-265, 294, 296, 300,
305, 311, 317, 349, 429-430, 456,
458-459, 461-463, 465-466, 468, 482-
483, 490-491, 495, 499, 511, 522,
544, 560-561, 564, 567-568, 572, 574

binary, 78, 82, 275, 320, 362-363, 376,
413-414, 459-460, 466-467, 558, 560

as constants (See Constants)
converting to strings (See STR$ and

NUM$ functions)
decimal, 509
display of,13-16, 18-19, 28-29, 33, 39,

41, 44, 48-49, 52-53, 56, 59, 65, 78,
117, 135, 273, 279, 346, 430, 433,
514, 518, 531-533, 535, 554

in expressions (See Expressions)
formatting, 8, 15, 19, 65, 170-171, 184,

340, 371, 414, 426, 533, 583
hexadecimal, 108, 407-408, 414, 416,

509, 560, 564-565
octal, 108, 407-408, 414, 417, 560, 569
packing, 59-60, 110, 126-127, 274,

301, 525
rounding, 20, 52-53, 218, 286, 507, 572
two's complement, 416

635Index



as variables (See Variables)
Numeric coprocessor (See Coprocessor)

OBJECT subroutine, 132, 151, 173,
269, 298, 307, 309, 311-313, 315,
317, 319, 321, 323, 325-327, 329,
331, 333, 335, 352-355, 367, 555

OBJM_COPY, 308, 310, 584
OBJM_CREATE, 308-310, 329, 584
OBJM_ERASE, 308, 311, 584
OBJM_FREE, 308, 312, 584
OBJM_GET, 308, 311, 317, 321-323,

327, 339-341, 354, 584
OBJM_PAGESETUP, 309, 584
OBJM_PRINT, 308, 315, 584
OBJM_SCROLL, 309, 584
OBJM_SELECT, 308, 312, 584
OBJM_SET, 308-309, 311, 317, 319,

321-323, 325-328, 353, 584
OBJM_SHOW, 308, 311, 584
OBJM_SYSINFO, 308, 315, 354, 584
OBJM_TXE_ADD_PAR, 309, 316, 584
OBJM_TXE_APPEND_PAR, 309, 316,

584
OBJM_TXE_DEL_PAR, 309, 316, 584
OBJM_TXE_HSCROLL, 309, 316, 584
OBJM_TXE_RESUME, 309, 316, 584
OBJM_TXE_SUSPEND, 309, 316, 585
OBJM_TXE_VSCROLL, 309, 316, 585
OBJM_UPDATE, 308, 312, 585
OBJT_CONTROL, 309, 584
OBJT_GRAPHIC, 309, 584
OBJT_GROUP, 309-310, 329, 584
OBJT_MENU, 309-310, 584
OBJT_WINDOW, 309, 584
OCT$ function, 417
Odometer order, 64, 261-265
ON GOSUB statement, 218, 270, 525,

549
ON GOTO statement, 218, 270, 525,

549
ON radio button, 167
Open-clause

ACCESS, 271
CREATE, 25, 271
definition, 270-271
ORGANIZATION, 271
RECSIZE, 112, 121, 124, 264, 271,

283, 527
OPEN statements

with files, 25, 33, 107, 109-113, 115,
121, 124, 133-134, 156, 198, 270-
271, 304, 516-518, 520, 523-525,
529-530, 544

PRINTER, 23-24, 66, 127, 270-272,

365, 432, 436, 512, 516, 569
SCREEN, 107, 132, 134, 225, 231,

270, 272, 355, 360, 501, 508, 517,
527, 569

Operators
arithmetic (See also Arithmetic oper-

ators), 8, 70, 73, 208
logical (See also Logical operators),

35-36, 211
string (See Concatenation)

OPTION statements
ANGLE, 55, 105, 146-148, 180, 219-

220, 225, 232-233, 237, 240-241,
267, 272-273, 282, 286, 293, 298,
408, 521, 543, 545, 569

ARITHMETIC, 272-273, 569
BASE, 206, 215, 254, 267, 272-273,

294, 521, 543, 545, 569
COLLATE, 272-273, 569
NOLET, 2-3, 12, 207, 255, 267, 272-

274, 521, 543, 545, 569
TYPO,97-98, 101-102, 257, 267, 272,

274, 521, 529, 543, 545, 569
USING, 272, 274, 536, 569
usage, 101-102, 267, 272, 545

Options menu, 163-164
OR (See Logical operators)
ORD function, 31, 59, 274, 509, 522
Order of evaluation (See Expressions)
ORG clause (See ORGANIZATION

clause)
ORGANIZATION clause (See Open-

clause)
Output

command window,539
to files,13, 25, 33, 47, 60-61, 66, 90,

107, 109, 111-113, 115, 117, 119,
121, 123, 125, 127, 129, 133, 145,
221-222, 253, 257, 261-265, 271,
281, 284, 289-290, 293, 300, 305,
351, 512, 516-518, 520, 539, 556

font (See Fonts)
formatting, 18, 24
full screen, 131, 518
listing program,24-25, 27, 56, 66-68,

76-77, 79, 92, 98, 100, 103, 126, 173,
175, 197, 234, 264, 270, 281, 283,
543

printing graphics,13, 16, 114, 131,
138, 141, 156, 178, 263, 297, 315,
323, 365

printing matrices, 27, 49, 63-66, 69-
77, 79, 81, 118-119, 130, 150, 213,
258, 263, 280, 390, 408-413, 415,
418, 430, 457-466, 468-469, 528,
552, 567

printing text, 110, 116, 127-128, 271,
315, 365

Output Window,13, 16, 110, 131, 162,
176, 197, 295, 304, 361-363, 539

OVAL HEIGHT, 326, 590
OVAL WIDTH, 326, 590

PACKB format, 59
PACKB subroutine, 59-60, 126, 217,

274-275, 301-302, 525, 569
PAGE HORIZONTAL, 322, 593
PAGE VERTICAL, 322, 593
PAGEDOWN,178, 188, 339-340, 342,

353, 381, 596
PAGELEFT, 178, 188, 339-340, 342,

353, 381, 596
PAGERIGHT, 178, 188, 339-340, 342,

353, 381, 596
PAGEUP,178, 188, 339-340, 342, 353,

381, 596
Parameters

and arguments, 51-52, 86-92, 95-96,
227-229, 247-248, 281, 296, 317,
529

arrays as,86-87, 90-92, 98, 228, 236-
237, 247-248, 317, 522, 530, 543

channel numbers as, 90, 107, 112-
113, 146, 398, 543

expressions as, 86
to functions,51-52, 85-88, 90-92, 95,

98, 112, 227, 237, 247-248, 281-282,
293, 348, 397, 546

numbers as, 52, 83, 85-87, 90, 96, 107,
112, 146, 224, 228-229, 236-237,
247-248, 281-282, 317, 338, 386,
398, 401, 511, 522, 529, 544

passing by reference, 89-92, 228, 239,
247-248

passing by value, 86, 90-92, 97, 228-
229, 247-248, 296, 309-310, 323,
421, 427-428, 434, 441, 451, 471,
485-486, 500-501, 503, 505, 521

passing mechanism, 86, 90, 229, 239,
247-248, 275, 281

strings as, 52, 83, 86-87, 89, 95-96,
236, 247-248, 309, 315, 317, 397,
511

to subroutines, 88-92, 96, 112-113,
167, 227-228, 236-239, 275, 299,
317, 348, 364, 381-382, 397-398

Pasting text (See Text)
Paths,75-82, 100, 108-109, 111, 115,

119, 128-129, 150, 153, 157, 161-
162, 164, 166, 168, 170, 172, 174-
175, 179, 188-190, 200, 314-315,
319, 347, 375, 390-393, 407, 556

PAUSE statement, 275

636 True BASIC Language System



PBP_BDIAG, 320, 589, 592
PBP_CROSS, 320, 589, 592
PBP_DIAGCROSS, 320, 589, 592
PBP_FDIAG, 320, 589, 592
PBP_HOLLOW, 319-320, 589-590, 592-

593
PBP_HORZ, 320, 589, 592
PBP_RUBBER, 319, 590, 593
PBP_SOLID, 319-320, 589-590, 592-

593
PBP_VERT, 320, 589, 592
PC-DOS (See DOS)
PEEK function, 120
PEN COLOR, 182, 319, 325, 361-362,

375, 590, 593
Pen modes, 320, 325, 362, 376, 576,

581, 589, 592
PEN PATTERN, 319, 325, 335, 361,

375, 513, 590, 593
PEN STYLE, 163-164, 182, 319, 325,

361, 375, 590, 594
PENS_DASH, 319, 590, 594
PENS_DOT, 319, 590, 594
PENS_SOLID, 319, 590, 594
PI function, 55, 275
PICT file (See Files)
Pictures

PICTURE statement, 146, 242, 244-
245, 274, 293, 544-545

PICTURE structure, 35, 85, 92, 99,
131, 146-147, 207, 215, 242, 245,
247-248, 275-276, 281, 523-524,
544-545, 550, 570

transformations on (See Transforma-
tions)

PIECHART subroutine, 480, 498, 505
Pixels

in current window, 135, 221, 224, 557
determining color of, 135, 145-146,

245, 320, 361, 375
resolution, 135, 180

PLAY statement, 193-195, 276, 294,
519

PLOT statements (See also MAT)
abbreviated form,41, 136-137, 148,

150, 157, 262, 277
AREA, 137-138, 262, 277
LINES, 136-137, 277
POINTS, 136, 277
TEXT, 138-139, 278

PLUGCHAR$ function, 444-445
PLUGMIX$ function, 445
PLUGSTR$ function, 446
Plus operator (See Arithmetic opera-

tors)

Pointer (See Mouse)
Points (See PLOT statements)
Ports

modem, 559
serial, 397, 403

POS function, 56-57, 278
POSITION HORIZONTAL, 322, 594
POSITION VERTICAL, 321-322, 594
POSR function, 278
PostScript

files, 512, 519-520, 525-526, 528-529
journalling, 512, 519-520, 526, 529

Precision (See Numbers)
Preface bytes (See Assembly language)
Preprocessors (See DO utilities)
Print separators,2, 14-18, 20, 22, 28, 45,

56, 64-65, 75, 98, 118-119, 199, 207,
225, 263, 280, 426, 532-533

PRINT statement,2, 13-15, 17-18, 22,
25, 27-28, 33, 45, 51, 58, 62, 64-65,
89, 93-95, 113, 116-119, 127, 136-
140, 225, 242, 263, 279-280, 295,
298, 365, 517, 524, 528, 531, 536,
552

PRINT USING statement, 7, 13, 15, 18-
25, 58, 65, 73, 117-118, 251, 263,
274, 302, 516, 525, 531-536, 551,
554, 565, 567, 570

Print zones, 16, 18, 45, 64, 225, 263,
280, 531, 557, 573

Printers
margin, 128
opening a channel to, 23-24, 66, 114,

127-128, 270-272, 365, 432, 436,
512, 516, 569

ports (See Ports)
trouble-shooting, 127, 272, 284, 289,

291, 302, 305, 512, 516, 528-529
PRIVATE statement, 101-104, 218,

227-228, 267, 281, 550, 571
Procedures (See Functions and Subrou-

tines)
PROGRAM statement, 206, 229, 281,

522-524
Program units, 2, 47, 55, 92-94, 97-99,

101-104, 112, 197, 200, 202, 205,
207, 209, 211, 213, 215, 218, 227,
234, 236, 257, 267, 526, 543

Programs
closing, 102, 113
compiled,98-99, 101, 110, 124, 229,

271, 516, 518, 524-525, 530
creating,93, 110, 124, 128, 159, 161,

178
editing,4, 175, 183, 331, 516, 524
extensions, 0

formatting,116, 426, 518, 523
listing names of (See FILES com-

mand)
naming,118, 143, 235-236, 526, 541,

544
opening,23-25, 29, 111, 113, 118, 295,

525, 544
printing,2, 11, 13, 16, 21, 23-24, 27-

28, 33, 48, 78, 81, 95, 103, 106, 197,
200, 218, 300, 303, 533

renaming,109
running, 0-2, 4-5, 7-10, 12, 18, 22, 24,

31, 42, 47, 52, 54-55, 61, 63, 70, 75,
93, 98-99, 109, 111, 113, 119, 125,
132, 150, 197, 202, 209, 220, 228,
281-282, 287, 360, 399, 407, 511,
515-516, 518, 525

saving,25, 524-525
stopping,29, 31-32, 40, 42, 59, 62-63,

106, 109, 113, 152, 197-198, 200,
202, 229, 241, 245, 249, 275, 303,
360, 398, 516, 575

switch, 108, 133, 158
Programmer’s Workbench, 607-626
PROPORTION HORIZONTAL, 322,

594
PROPORTION VERTICAL, 322, 594
PSORTN subroutine, 456-457, 463, 468
PSORTS subroutine, 82, 458, 464, 469
PUBLIC statement, 102-104, 235-236,

257, 267, 274, 282, 293, 296, 493,
520, 529-530, 543-544

PUNCT$ function, 446

Quadratic equations, 38-39
Quitting, 0-1, 4-5, 31, 53, 78, 152, 161-

164, 189-191, 366, 426, 453, 459-
460, 466-467, 537-539

Quote mark, 10, 47, 206-207, 234, 256,
446, 515, 520

RAD function, 55, 282
Raising to a power (See Arithmetic

operators)
Random files (See Files)
RANDOMIZE statement, 54, 282, 286,

544
READ statement, 12, 47-49, 64, 67,

105, 120, 122-125, 127, 207, 212-
213, 263-264, 282-283, 291-292,
302, 427, 439

READCPIXEL, 282
READPIXEL, 282
Reclaiming memory (See Memory)
Record files (See Files)
Recovery clauses, 213

637Index



RECSIZE clause (See Open-clause)
RECTANGLE, 135, 143-147, 178-179,

181-182, 226-227, 309-311, 316-317,
319, 323-332, 335, 358-359, 372-
374, 513, 577, 587, 590, 594

Recursion, 85, 87-88
Redimensioning, 66-67, 77, 218, 264
Relational operators, 35, 40, 212, 456-

458, 460-462, 519
REM statement, 5, 243, 284
REMAINDER function, 53, 284
Renaming files (See Files)
REPCHAR$ function, 445-446
REPEAT$ function, 52, 58, 285
Repeating statements (See Loops)
REPMIX$ function, 445, 447
REPSTR$ function, 446, 448
Reserved words, 207, 273-274, 524
RESET statement, 114, 118, 285, 517
RESIZE BOX, 157, 161, 314, 318, 358,

594
Resolution (See Graphics resolution

and Pixels)
RESTORE statement, 49, 234, 285, 553
RETRY statement, 199, 250, 285, 303
RETURN (See CHAIN statement)
Return key, 351-352, 359-366, 371-372,

400-405, 556-557
RETURN statement, 249, 270, 285
REVERSE$ function, 94-95, 448
REVERSEN subroutine, 77, 79, 465,

468
REVERSES subroutine, 78, 465, 469
RIGHT RELATIVE, 324, 328, 587, 590
RIGHT arrow,314, 322, 339-340, 596
RIGHT$ function, 449
RJUST$ function, 449
RND function, 53-54, 282, 285-286, 544
RNDSTR$ function, 450-451
ROMAN$ function, 451
ROTATE transformation (See Trans-

formations)
ROUND function, 52-53, 286, 428, 452,

523
RTRIM$ function, 286
Run menu,538-539, 541
Running programs (See Programs)
RUNTIME function, 286

Saving
files (See Files)
images (See BOX KEEP statement)
programs (See Programs)
screens, 110, 144, 347
workspaces (See STORE command)

SCALE transformation (See Transfor-
mations)

Scientific notation (See Exponential
notation)

Scope, 92, 97, 99, 112, 249, 270, 543-
545, 549, 553

Screen
clearing, 106, 141, 144, 146, 226, 362,

376
coordinates, 131-133, 135, 156-157,

225-226, 299, 317, 348, 352, 357-
359, 388, 517

editor, 116
modes (See Screen modes)
reversing, 145-146, 352
scrolling, 176

Screen modes (See also individual
modes)

default, 172, 290, 331
determining, 221, 223, 557
graphics, 245, 289
switching, 194

Scripts, xxvi
files (See Files)

Scroll bar
PAGE INCREMENT, 176, 364-365,

382
POSITION, 176-178, 321, 330, 363-

364, 381, 578, 581-582, 587, 594
PROPORTION, 322, 587, 594

Searching and replacing (See CHANGE
and TRY commands)

SEARCHN subroutine, 458, 466
SEARCHS subroutine, 78, 460, 467
SEC function, 286
SECH function, 85, 418
Secant function (See SEC function)
SELECT CASE structure, 32, 35, 39,

228, 286-287, 523, 559, 572
SELECT window, 342, 596
Selecting text (See Text)
SELECTION MODE, 172, 331, 379,

587
Semicolon (See Print separators)
SENSITIVE,328, 332, 355, 588
Serial ports (See Ports)
SET statements

BACK, 141-142, 222, 287-288, 572
BACKGROUND COLOR (See SET

BACK statement)
COLOR MIX, 142, 222, 287, 289, 319-

320, 573
COLOR, 140-144, 147, 222, 287-289,

319-320, 525, 572-573
CURSOR, 17-18, 24-25, 32-33, 118,

138, 222, 280-281, 287, 289, 298,
518, 573

DIRECTORY, 115, 128, 222, 287,
289, 573

MARGIN, 17, 24-25, 118, 128, 138,
223, 280, 287, 289-290, 334, 387,
447, 512, 517, 522, 530, 573

MODE, 287, 290, 573
NAME, 115, 288, 290
POINTER, 114, 118, 120, 122-123,

224, 265, 285, 288, 290-291, 304-
305, 512, 520, 573

RECORD, 111, 120-125, 224-225,
283, 285, 288, 291-292, 512, 517,
520, 524, 557, 573

RECSIZE, 113, 121, 124-125, 224,
264-265, 271, 283, 288, 291-292,
305, 512, 517, 523-524, 573

TEXT JUSTIFY, 139-140, 199-200,
225, 278, 288, 292, 522, 573

WINDOW, 41, 106, 126, 131, 134-138,
140, 142-144, 146, 156, 165, 180,
225, 275-276, 288, 292, 319, 328,
352, 513, 516-517, 527, 530, 573

ZONEWIDTH, 17, 24-25, 64, 118,
128, 138, 225, 280, 288, 290, 293,
512, 517, 530, 573

SETANGLE subroutine, 476, 500, 502
SETBARTYPE subroutine, 477, 496-

497, 500
SETFONT function, 160-161, 185, 363,

385, 580-581
SETGRAIN subroutine, 473, 477, 487,

494, 501
SETGRAPHTYPE subroutine, 478,

500, 502
SETGRID subroutine, 479, 502
SETHLABEL subroutine, 479, 503
SETLAYOUT subroutine, 480, 482,

484, 489-490, 495, 497, 504
SETLS subroutine, 480, 504
SETTEXT subroutine, 480, 482, 484,

486-487, 489-490, 492, 494, 496,
498, 503, 505-506

SETTITLE subroutine, 481, 505-506
SETVLABEL subroutine, 481, 506
SETYSCALE subroutine, 507
SGN function, 219, 293
SHARE statement, 102, 106, 113, 237,

267, 293, 529, 544
Shared variables (See Variables)
SHEAR transformation (See Transfor-

mations)
Shell commands,559
SHIFT transformation (See Transfor-

mations)

638 True BASIC Language System



SHORTDATE$ function, 442, 451
Signum function (See SGN function)
Simple-statement, 250, 270, 549
SIN function, 293
Sine function (See SIN function)
SINGLE HORIZONTAL, 322, 594
SINGLE INCREMENT, 330, 364-365,

382, 588
SINGLE VERTICAL, 322, 594
SINGLE button, 172, 174, 191, 389
SINH function, 294
SIZE function, 68, 294
SKIP REST clause, 122, 282-283, 512,

517, 528, 554
Slash operator (See Arithmetic opera-

tors)
Slider,176-178, 308, 321-322, 330, 339-

340, 363-365, 381-382, 578, 581-
582, 587, 594-597

SOLID MIX, 320, 594
SORTN subroutine, 76, 461, 466-468,

507-508
SORTPOINTS subroutine, 471, 486,

507-508
SORTPOINTS2 subroutine, 491, 507-

508
SORTS subroutine, 75-78, 462, 467-469
SOUND statement, 193, 195, 276, 294
Source window, 0
Splitting lines, 0
Square root function (See SQR func-

tion)
SQR function, 51-52, 294
Stand-alone programs (See Applica-

tions)
START ARROW, 326, 591
START RANGE, 322, 330, 588, 594
START RANGE HORIZONTAL, 322,

594
START RANGE VERTICAL, 322, 594
START X, 178, 326, 591
START Y, 178, 326, 591
Startup file (See Scripts)
Step size, 246, 403
Stopping a program run (See Pro-

grams)
STOP statement, 241, 295
STOP X, 326, 591
STOP Y, 326, 591
STR$ function, 58-59, 120, 139-140,

153, 177, 210, 217, 279, 295, 462,
575

Stream file, 110-112, 114, 120, 222,
224, 264-265, 271, 283, 304, 512,
517, 556

Strings
as arguments, 31, 52, 56, 58-59, 77,

89, 95-96, 129, 160, 178, 180, 230,
267-268, 315, 317, 353-354, 395,
426-428, 432-433, 436, 439, 442,
448, 451, 511, 541, 553

in arrays, 10, 61, 64-65, 67, 70, 75-82,
86-87, 96, 116, 174, 185, 191, 207,
209-211, 214, 218, 227, 236, 247-
248, 259-260, 264-266, 269, 273,
311, 351, 384, 429, 456-457, 460,
462, 464-465, 467-469, 511, 522,
527, 541, 553, 561, 568, 572, 580

concatenating (See Concatenation)
as constants (See Constants)
converting to numbers (See VAL and

NUM functions)
expressions (See Expressions)
formatting, 18-23, 58, 65, 170-171,

181, 263, 269, 280, 302, 327, 370-
371, 426, 451, 516, 525, 531-533,
535-536, 565, 569, 583

joining (See Concatenation)
maximum length, 10, 22, 111, 121,

124, 209-211, 236, 253, 255, 257,
260-262, 264, 266, 283, 292, 395,
401, 403, 511, 527, 535, 547, 551,
553, 561, 567

packing, 59-60, 126, 274, 301, 569
quoted, 10, 29-30, 119, 205-207, 209-

210, 259-260, 515, 531, 536
substrings, 10-12, 56, 58, 60, 209-210,

220, 255, 259-260, 403, 437, 440,
447-449, 456, 553, 575

unquoted, 205-207, 252, 257
as variables (See Variables)

Structures (See individual structures)
STRWIDTH function, 217, 295, 575
SUB structure, 87, 89, 91, 242, 295
Subdirectories (See Directories)
Subroutines

built-in,53-54, 59-60, 75, 102, 108,
126, 128, 151, 188, 217, 219, 221,
223, 225, 227, 229, 231, 233, 235,
237, 239, 241, 243, 245, 247, 249,
251, 253, 255, 257, 259, 261, 263,
265, 267, 269, 271-281, 283, 285,
287, 289, 291, 293, 295, 297, 299,
301, 303, 305, 307, 337, 345, 351,
354, 388, 392, 403, 407, 555

external, 85, 88, 91, 93-97, 99, 113,
227, 245, 281, 296, 397, 461, 541,
544, 546

internal, 90, 93-97, 99, 202, 227, 296,
355, 544-546

invoking, 54, 75-76, 82, 85, 88-91, 94,
96, 112-113, 150, 201, 217, 227-228,

239, 296, 303, 312, 315, 345-348,
421, 429-430, 432, 436, 441, 456,
471, 474-475, 482, 484, 489-490,
495-497, 504, 523, 541-542, 558

as structures, 5, 35, 43, 51, 85, 88-89,
112-113, 146, 202, 218, 228, 231,
241-242, 245, 247, 249-250, 276,
303, 355, 367-368, 523, 550, 562,
567, 577

Subscripts
lower bound, 63, 68, 214-215, 254,

357, 377
range of, 64, 68, 215, 237, 239, 260
upper bound, 63, 67-68, 214-215, 301

Substrings (See Strings)
Subtraction (See Arithmetic operators)
SUPERVAL subroutine, 428, 452
Switching directories (See Directories)
Switching disk drives (See Disk Drives)
Switching files (See Files)
Switching modes (See Screen modes)
Syntax, 205, 209, 229, 236, 259, 408-

418, 420-458, 460-468, 470, 473-
474, 476-483, 485, 487-489, 491,
493, 495-496, 498, 500-508, 513

SYSTEM subroutine, 128, 296, 352,
392

SYS_EVENT subroutine,249, 297-298,
331, 335, 337, 339-343, 352

TAB function, 17-18, 24-25, 118, 199,
281, 298, 528, 551

Tab key, 0
TAN function, 298, 515
Tangent function (See TAN function)
TANH function, 55, 217, 298, 408-410,

412-413, 415, 418, 428, 452, 553,
575

TBD subroutine, 299, 308, 345-349, 388
TBDX, 188, 217, 299, 345, 347-349, 388,

575
TC_CHECKBOX_CREATE, 168, 170,

369, 575
TC_CHECKBOX_GET, 168, 369, 575
TC_CHECKBOX_SET, 168-169, 369,

575
TC_CLEANUP, 153, 155, 163, 166-167,

352, 575
TC_EDIT_CHECKFIELD, 170-171,

371, 576
TC_EDIT_CREATE, 170, 370, 576
TC_EDIT_GETTEXT, 171, 370, 576
TC_EDIT_SETFORMAT, 170, 172,

370-371, 576
TC_EDIT_SETTEXT, 172, 370, 576
TC_ENV_SET, 358, 576

639Index



TC_ERASE, 154-156, 158-160, 354,
576, 579

TC_EVENT, 150, 152-155, 160, 162-
163, 166-168, 171, 173-175, 177,
184, 187, 249, 337, 352-353, 360,
366-367, 380-386, 576

TC_FONTSAVAILABLE, 160, 186,
357, 385, 576

TC_FREE, 155-156, 161, 355, 576
TC_GET, 354, 576
TC_GETRECT, 356, 576
TC_GETSCREENSIZE, 157, 357, 576
TC_GETSYSINFO, 354, 576
TC_GETTEXT, 357, 576
TC_GRAPH_CREATE, 178-181, 372-

373, 576
TC_GRAPH_GETIMAGETOBOX, 180,

374, 576
TC_GRAPH_SCALE, 179, 182, 372,

374, 576
TC_GRAPH_SETALINE, 179, 373, 576
TC_GRAPH_SETARC, 179, 373, 576
TC_GRAPH_SETBRUSH, 182-183,

375-376, 576
TC_GRAPH_SETDRAWMODE, 376,

576
TC_GRAPH_SETIMAGE, 373, 577
TC_GRAPH_SETIMAGEFROMBOX,

180-181, 374, 577
TC_GRAPH_SETIMAGEFROMFILE,

180-181, 373-374, 577
TC_GRAPH_SETPEN, 182, 375, 577
TC_GRAPH_SETPOLY, 179-180, 373,

577
TC_GRAPH_SETROUNDRECT, 179,

373, 577
TC_GRAPH_SHIFT, 182, 374, 577
TC_GROUPBOX_CREATE, 169-170,

377, 577
TC_INIT, 153, 155, 157, 161-162, 164,

166, 168, 170, 172, 174-176, 179,
352, 360, 577

TC_LISTBOX_CREATE, 172-173, 379,
577

TC_LISTBOX_GET, 173-174, 379, 577
TC_LISTBOX_SET, 173, 379, 577
TC_LISTBTN_CREATE, 174, 377, 379,

577
TC_LISTBTN_GET, 174, 377, 577
TC_LISTEDIT_CREATE, 175, 378-

379, 577
TC_LISTEDIT_GET, 175, 378, 577
TC_MENU_ADDITEM, 165, 366, 577
TC_MENU_ADDMENU, 165, 367, 577
TC_MENU_DELITEM, 165, 367, 577
TC_MENU_DELMENU, 165, 367, 577

TC_MENU_FREE, 155, 165, 355, 368,
578

TC_MENU_GETCHECK, 368, 578
TC_MENU_GETENABLE, 164, 368,

578
TC_MENU_GETTEXT, 165, 367, 578
TC_MENU_SET, 154, 162, 164, 366-

367, 578
TC_MENU_SETCHECK, 154, 162-164,

367, 578
TC_MENU_SETENABLE, 164, 368,

578
TC_MENU_SETTEXT, 165, 366-367,

578
TC_PIXTOUSER, 355, 578
TC_PUSHBTN_CREATE, 154, 165-

166, 380, 578
TC_RADIOGROUP_CREATE, 166-

167, 380, 578
TC_RADIOGROUP_ON, 167, 380-381,

578
TC_RADIOGROUP_SET, 166-167, 381,

578
TC_RADIOGROUP_SETTEXT, 381,

578
TC_SBAR_CREATE, 175-177, 381, 578
TC_SBAR_GETINCREMENTS, 176-

177, 382, 578
TC_SBAR_GETPOSITION, 153, 176-

177, 382, 578
TC_SBAR_GETRANGE, 176-177, 382,

578
TC_SBAR_SETINCREMENTS, 176-

177, 381-382, 578
TC_SBAR_SETPOSITION, 176-177,

381, 578
TC_SBAR_SETRANGE, 176-177, 381-

382, 578
TC_SELECT, 172, 354, 578
TC_SENSITIZE, 355, 579
TC_SET, 160, 353, 579
TC_SETLIST, 154, 172-173, 175, 357,

377-379, 577, 579
TC_SETRECT, 160, 356, 579
TC_SETRECTPIXELS, 356, 579
TC_SETRECTUSERS, 160, 356-357,

579
TC_SETTEXT, 153, 169-170, 177, 357,

369-370, 380, 383, 579
TC_SETTEXTJUSTIFY, 169-170, 357,

579
TC_SETUNITSTOPIXELS, 352, 355,

358-359, 369-370, 372, 377-378,
380-381, 383, 579

TC_SETUNITSTOUSERS, 355, 358-
359, 369-370, 372, 377-378, 380-

381, 383, 579
TC_SHOW, 153-159, 161-162, 166, 168,

170, 172, 174-176, 180, 354, 358-
359, 372, 576, 579

TC_SHOW_DEFAULT, 154, 354, 579
TC_STEXT_CREATE, 169-170, 176-

177, 383, 579
TC_TXED_APPEND, 384, 579
TC_TXED_COPY, 186, 386, 579
TC_TXED_CREATE, 183, 383, 385,

579
TC_TXED_CUT, 186, 386, 579
TC_TXED_FIND, 186, 386, 579
TC_TXED_GETCURSOR, 387, 579
TC_TXED_GETSELECTION, 387, 579
TC_TXED_GETTEXT, 185, 384, 579-

580
TC_TXED_PASTE, 186, 386, 579
TC_TXED_READTEXTFROMARRAY,

185, 384, 580
TC_TXED_READTEXTFROMFILE,

185, 384, 580
TC_TXED_RESUME, 185, 385, 580
TC_TXED_SETCOLOR, 186, 385, 580
TC_TXED_SETCURSOR, 387, 580
TC_TXED_SETCUTCOPYPASTE, 186,

386, 580
TC_TXED_SETFONT, 185, 385, 580
TC_TXED_SETMARGIN, 184, 387, 580
TC_TXED_SETSELECTION, 186, 386-

387, 580
TC_TXED_SETTEXT, 185, 384, 580
TC_TXED_SETTRAPCHAR, 185, 384-

385, 580
TC_TXED_SUSPEND, 385, 580
TC_TXED_WRITETEXTTOARRAY,

185, 384, 580
TC_TXED_WRITETEXTTOFILE, 185,

384, 580
TC_USERTOPIX, 355-356, 580
TC_WINHSBAR_GETINCREMENTS,

176, 365, 581
TC_WINHSBAR_GETPOSITION, 176,

364, 581
TC_WINHSBAR_GETRANGE, 176,

364, 581
TC_WINHSBAR_SETINCREMENTS,

176, 364, 581
TC_WINHSBAR_SETPOSITION, 176,

363, 581
TC_WINHSBAR_SETRANGE, 176,

364, 581
TC_WINVSBAR_GETINCREMENTS,

176, 365, 581
TC_WINVSBAR_GETPOSITION, 176,

364, 582

640 True BASIC Language System



TC_WINVSBAR_GETRANGE, 176,
364, 582

TC_WINVSBAR_SETINCREMENTS,
176, 365, 582

TC_WINVSBAR_SETPOSITION, 176,
363, 582

TC_WINVSBAR_SETRANGE, 176,
364-365, 582

TC_WIN_ACTIVE, 158-159, 355, 360,
580

TC_WIN_CHILDCREATE, 352, 359,
580

TC_WIN_CREATE, 154, 156-161, 175-
176, 352, 358, 383, 580

TC_WIN_GETTITLE, 160, 361, 580
TC_WIN_MOUSEMOVE, 360, 580
TC_WIN_NOHIDE, 360, 580
TC_WIN_PAGESETUP, 365, 580
TC_WIN_PRINT, 365, 581
TC_WIN_REALIZEPALETTE, 362,

581
TC_WIN_SETBRUSH, 182-183, 361-

362, 376, 581
TC_WIN_SETCURSOR, 160, 361, 581
TC_WIN_SETDRAWMODE, 362, 581
TC_WIN_SETFONT, 160-161, 363, 581
TC_WIN_SETPEN, 182, 361, 375, 581
TC_WIN_SETTITLE, 157, 160-162,

360-361, 581
TC_WIN_SWITCH, 156, 158-160, 164,

355, 360, 581
TC_WIN_SWITCHCURRENT, 360,

581
TC_WIN_TARGET, 156, 158-159, 355-

356, 359-360, 581
TC_WIN_UPDATE, 365, 581
TC_WIN_VALID, 161, 360, 581
TD_ASKDELIMITER, 391, 582
TD_GETFILE, 191, 390-391, 582
TD_GETTIMEOUT, 189, 391, 582
TD_INPUT, 190, 389, 391, 582
TD_LINEINPUT, 191, 389, 582
TD_INPUTM, 191, 389-391, 582
TD_LIST, 192, 391, 582
TD_MESSAGE, 189-190, 388-389, 391,

582
TD_SAVEFILE, 191, 388, 390-391, 582
TD_SETDELIMITER, 391, 582
TD_SETTIMEOUT, 189, 391, 582
TD_SETLOCATION, 388, 582
TD_WARN, 171-172, 189-190, 388-389,

391, 582
TD_YN, 190, 389, 582
TD_YNC, 190, 389, 582
Temporary files, 450

Text
attribute bytes,242, 310, 316, 318-

320, 323-324, 327, 329-336, 349,
384, 513, 576, 579, 584-585, 592,
597

changing,128
copying,110, 186, 386
cursor (See Cursor)
cutting,186, 386, 579
deleting, 309, 540
files (See Files)
finding,4-5, 7, 12, 17, 22, 25, 27, 29,

33, 41-45, 66-68, 99-100, 107-116,
118, 121-124, 128-135, 140-141,
145-148, 159-175, 183-184, 186,
202-203, 313-314, 369-370, 374-381,
385-386, 390-400, 479-480, 489-490,
501-502, 515-526, 528-530

justification (See SET TEXT JUS-
TIFY statement)

modes (See Screen modes)
output, 16, 127, 131, 138-140, 185,

271
pasting,186, 386, 579
selecting,170, 172, 174, 183, 185-186,

188, 308, 331-334, 377, 385-387,
389, 540, 577, 579, 582, 587-588

TEXTEDIT,10, 105, 132, 151, 153-160,
166-167, 169-170, 172-173, 175,
178-180, 182-183, 217, 240, 269,
295, 298-299, 307-313, 315-317,
319, 321-331, 333, 335-336, 338,
349, 351-356, 363, 367, 372-376,
382, 513, 543, 545, 555, 569, 576-
577, 579, 584-585, 587-589, 591-594

text editor
ACTIVE, 312, 332, 346, 355, 385, 585
BACK COLOR, 288, 332
BORDER, 184, 332, 585
BORDER COLOR, 332, 585
LINE,14-15, 17-18, 33, 40, 56, 64,

139, 186, 191, 253, 289, 334, 384,
386-387, 431-432, 435-436, 575,
579, 582, 586-587

MARGIN, 128, 138, 140, 183-184,
231, 289, 308, 332, 383, 387, 431,
580, 586

MAX WIDTH, 138, 231, 421-422, 434,
438, 449, 559, 565-566, 572, 586

MOUSE EVENTS, 184, 335, 341,
586-587, 597

NUM CHARS, 334
NUM LINES, 332, 587
NUM PARS, 332, 587
TXE_MOUSE, 184, 188, 341, 343,

384, 587, 597

TIME function, 60, 129, 286, 299, 442
Time, setting, 7, 133-134, 169-170, 173,

176, 183-184, 288, 292, 299, 316,
318, 357, 361, 366, 370, 378, 380-
381, 383, 402, 563

TIME$ function, 60, 129, 286, 299, 442
TIMEOUT input option, 253, 257, 261-

262, 512, 522, 524, 528, 554, 582
Timing a program (See Programs)
TODAY$ function, 442, 453
TOP RELATIVE, 325, 328, 588, 591
TRACE utility

options, 0
TRACE statement, 235, 299-300, 554
and variables, 126

Transformations
and BOX statements, 146, 148, 226,

239, 355
combining, 131
and DRAW statements, 146-148, 217,

239-240, 276-277, 374
matrices, 149
on pictures, 147-149, 217, 226, 239,

248-249, 276
ROTATE, 146-148, 217, 239-240, 273
SCALE, 146, 148, 217, 239
SHEAR, 148, 217, 239, 273
SHIFT, 147-149, 182, 217, 239-240,

374
Transpose (See TRN array function)
TRAP CHAR, 332, 334, 588, 597
Trigonometric functions, 52, 54-55, 218,

273, 408, 569
TRIM$ function, 300
TRN array function, 73-75, 217, 259-

260, 300, 583
TRUNCATE function, 53, 300
TXE HSCROLL, 309, 316, 341, 343,

353, 584, 597
TXE KEYPRESS, 184, 188, 341, 343,

353, 383, 385, 586, 597
TXE MOUSE, 184, 188, 341, 343, 384,

587, 597
TXE VSCROLL, 309, 316, 341, 343,

353, 585, 597

UBOUND function, 301
UCASE$ function, 301
Undo command,433, 538
UNIQ$ function, 454
UNIX,229, 297, 313, 327, 358, 366, 576
UNLOCK statement, 218, 512, 517,

526, 530
Unlocking records, 512, 517
UNPACKB function, 60, 126-127, 217,

274-275, 301-302, 403, 525, 583

641Index



Unquoted strings (See Strings)
UNSAVE statement, 113-114, 128, 302,

312
UNTIL (See DO loop)
Upper bounds (See Subscripts)
UPPER$ function, 454
USE statement, 198, 202, 302-303
USING (See PRINT USING statement)
USING$ function, 56, 58, 302, 426, 433,

516, 525, 531

VAL function, 58-59, 203, 217, 302, 370,
414, 427-428, 439, 453, 526-529

Variables
environment,315
global, 88, 91-92, 96, 99, 102, 104,

546, 571
index, 41-42, 44-45, 56, 519, 565
local,85, 92, 94-99, 103, 257, 267, 296,

327, 529, 544, 566
numeric,7-11, 21, 27, 30, 41, 48, 52,

56, 59, 61-62, 73, 78, 83, 86, 90, 92,
96, 99, 101-102, 116-117, 120, 124-
125, 141, 149, 157, 207-208, 218,
228, 234, 236, 246, 252, 260, 283,
309, 353, 428-429, 452, 518, 521,
524, 528, 530, 544, 551, 553, 561,
565, 571

public,98, 102-104, 154, 236, 267, 282,
296, 307, 309, 474, 493-494, 529-
530, 544, 561, 571

shared,85, 92-93, 96, 98, 101-103,
106, 154, 247-248, 257, 267, 282,
293, 529, 544, 574

string, 7, 10-13, 19, 30, 48, 59, 61, 86,
89, 96, 111-112, 117, 120-121, 124,
126, 128, 141, 144, 157, 160, 185-
186, 207, 209-211, 220, 227, 230,
234, 236, 252, 260, 266, 283, 311,
313, 315, 327, 358-359, 389, 518,
521, 527, 530-531, 541, 553, 561-65

Vectors (See Arrays)
VISIBLE window, 155-59, 312, 360-61
VSCROLL,157, 175-178, 184, 188, 309-

310, 316, 321, 327, 332, 335, 339-
343, 353, 358, 381, 384, 585, 588,
595, 597

VSCROLL,157, 175-178, 184, 188, 309-
310, 316, 321, 327, 332, 335, 339-
343, 353, 358, 381, 384, 585, 588,
595, 597

WEEKDAY function, 454-455
WEEKDAY$ function, 454-455
WHEN ERROR IN, 112, 198-203, 450,

519, 526, 583
WHEN ERROR USE, 202, 583
WHEN structure, 112, 197-199, 201,

203, 218, 228, 242, 244, 249-250,
280, 298, 302-303, 526, 550, 562

WHILE (See DO loop)
WINDOW statement, 107, 131, 133-

135, 156, 158-160, 165, 225, 292,
298, 304, 352, 360, 517-518, 527,
530

Windows
activating, 158-161, 187-188, 231,

297, 308, 312, 337-339, 360, 541,
580-581, 584

clearing, 16, 105-107, 140, 142, 157,
230, 243, 288, 320, 362-363, 372,
559

closing, 133, 155, 157, 161, 231, 317,
319, 339, 360, 539, 592

coordinates, screen, 131-135, 156-
157, 225-226, 249, 299, 317, 345,
348, 352, 356-359, 388, 517, 576

coordinates, window, 106-107, 131-
132, 134-135, 137, 146, 149, 156-
159, 165, 231, 292, 313, 317, 328,
342, 351-352, 355-359, 369-383,
513, 557, 573

default, 107, 157, 162, 166, 168, 170,
172, 174-175, 180, 543-544

framing, 144, 156
identifying, 131-132, 158, 161, 176,

359
opening, 13, 107-108, 110, 114, 132-

134, 146, 156, 158, 224, 295, 304,
355, 360, 517-518, 527, 538, 569

switching, 107-108, 133, 139, 146,
156, 158-160, 355, 360, 518, 581,
583

WINT_DOC, 317, 594
WINT_DOUBLE, 317, 594
WINT_NOBORDER, 594
WINT_PLAIN, 317, 594
WITH (See CHAIN statement and

DRAW statement)
Workspaces, 0
WRITE statement, 122-125, 181, 265,

304, 524

XOR function, 418
XREF utility, 0

ZER array constant, 70, 305
Zonewidth, 17, 24-25, 64, 118, 128, 138,

221, 225, 263, 280, 288-290, 293,
511-512, 517, 522, 530, 543, 547,
557, 573

642 True BASIC Language System


	Table of Contents
	Using the True BASIC v6 Editor
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16
	Chapter 17
	Chapter 18
	Chapter 19
	Chapter 20
	Chapter 21
	Chapter 22
	Chapter 23
	Chapter 24
	Chapter 25
	Chapter 26
	Chapter 27
	Appendices
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K

	CHAIN Update
	Index

