
Images Show Concepts
The VINES Project

by John Arscott

Working with images.
Several years ago I decided to write a small program to demonstrate the scope
and flexibility of the graphics functions in TrueBasic. To capture the
imagination of the user, the program would have to be visually attractive, and
use animation. I also wanted to include random elements to sustain the interest
of the user and produce a different result each time the program was run.

Eventually I decided to use the growth of a grape vine as the theme of my
program which I called VINE for obvious reasons. That was the easy bit.

Before you start any program you need to do a little bit of thinking about how
you intend solving the problem in hand. Very often you will jot down a few
notes about all the things you need to consider and the order in which you
intend to tackle them. You should also devote a little bit of time planning how
you intend setting out your program, otherwise it will grow like Topsy and you
will have great difficulty finding your way through the logic.

Here is my nice little simple plan:

1. Program housekeeping
2. Prepare the working images
3. Define the rules
4. Enter a continuous loop
5. Check if the user wants to quit
6. Grow a short length of vine
7. Grow a leaf (randomly)
8. Create more branches or terminate at a bunch of grapes
9. Change the direction of growth (randomly)
10. Repeat the loop

Let’s just take a look at these 10 steps in a bit more detail.

1. Program housekeeping
Under this heading comes a whole bunch of gritty bits pieces, some of which you
have to do and others which you ought to do. If you write a lot of programs you
will soon forget what you have written or even what the program is supposed
to do, so make a habit of starting your programs with a few REM: statements to

D2005: Images Show Concepts – © 1999, True BASIC Inc. 03784-5428 1

remind yourself of the purpose of the program, when you wrote it, who wrote it
(you may be famous one day), when and how it was updated and the current
version number, e.g.

REM: The VINE program
REM: dated 13 DEC 1996
REM: Author J.R.Arscott
REM: Version 2.0 for TBSILVER

REM: developed from the original VINE PROGRAM dated 12 Nov 1995

! This is a demonstration of superimposing irregular images
! onto a background using a masking technique. This involves
! BOX SHOW using 4 and 7. The blank mask is shown first using 4
! to blank out any colors beneath the new image whilst
! leaving the background undisturbed. The new image is then

! shown using 7.
! The routine make_mask generates the blank mask
! Graphics include 4 leaf arrangements and 1 bunch of grapes
! Vine growth and direction is random
! Branchmax limits the number of simultaneous growing shoots
! Exit program by pressing any key
! TC_event not used because it slows down animation

You can then follow this with essential stuff like library statements, any
PUBLIC variables you may be using, a list of dimensioned arrays, any DEF
functions you may need, e.g.

Library "C:\TBV5\TBlibs\TRUEctrl.trc"
Library "C:\TBV5\TBlibs\TRUEdial.trc"

PUBLIC xpix,ypix,trunk,branchmax,message$, leafchance, grapechance
PUBLIC branchx(8),branchy(8),old_branchx(8),old_branchy(8)
PUBLIC direction(8),old_direction(8), trunk, branch
PUBLIC grape$,grapemask$,leaf$(8),leafmask$(8)

If you are using True BASIC Silver then this is also a good time to initialize the
TrueCtrl library, to set your working units, to set the ShowDefault flag and
to create all the windows and objects you may want to use in the rest of the
program. I prefer to do this last chore in a separate sub-routine because it keeps
things nice and tidy; beside I know where to find it if I need to make any
changes, e.g.

CALL TC_init
CALL TC_SetUnitsToPixels
CALL TC_ShowDefault(0)
CALL makemain ! the routine where you create window objects

This is what the makemain routine looks like:

SUB makemain
REM: uses default window-sets size to full screen
CALL TC_Win_SetTitle (0,"The VINE random growth Program")
CALL TC_setRect(0,4,636,476,24)
LET message$="To end this demonstration press any key"

D2005: Images Show Concepts – © 1999, True BASIC Inc. 03784-5428 2

END SUB

The next little task is to display what we have done so far in preparation for
manipulating our graphic images, e.g.

CALL TC_show(0) ! shows the window created in makemain
CALL TC_win_switch(0) ! makes the window active and target

If you are not using Version 5.x then you can ignore all this TC stuff but you will
need to set the graphics mode with:

SET MODE “graphics” ! for the PC
SET MODE “color” ! for the MAC

The True BASIC Silver editons all have paper white screens. If you are using a
classic DOS edition of TrueBasic on a PC you will need to invert black and white
with

SET COLOR MIX (0) 1,1,1 ! this makes the screen white
SET COLOR MIX (15) 0,0,0 ! this is now black

Next you need to set a graphics window in whatever version you are using.
Since you will often need to do this in Version 5.x I have used a prefix similar to
normal TC calls. This routine merely sets the pixel dimensions for the default
window which is already open, e.g.

CALL TCX_win_open ! sets graphics window

2. Prepare the working images
This heading is a bit misleading because in practice I created the original
images on a PC using the “Paintbrush” program, then I converted the BMP
images to boxstring format before saving them as

the files LEAF_A to LEAF_D and GRAPE. These files are in boxstring format
which differs from system to system, so I have adopted the following convention
for filename extensions:

TBX for standard TrueBasic on PCs

MBX for standard TrueBasic on the Mac

WBX for Version 5.x on PCs

VBX for Version 5.x on the Mac

I will explain what the principal differences are later, but for the moment all
you need to worry about is making sure you are using the right filenames.

Our first task is to import these files into our program and we do this by reading
these image files as ordinary byte files using the routine read_image, e.g.

LET extn$=”.WBX” ! image file extension
LET dir$="" ! insert directory if required

D2005: Images Show Concepts – © 1999, True BASIC Inc. 03784-5428 3

LET filename$=dir$ & "grape” & extn$
CALL read_image(filename$,image$)
LET grape$=image$
CALL make_mask(image$,mask$)
LET grapemask$=mask$

This is what the sub-routine read_image looks like:

SUB read_image(filename$,byte$)

 CLOSE #1
 OPEN #1: NAME filename$, CREATE newold, ORG byte
 ASK #1: FILESIZE total
 READ #1, bytes total: byte$
 CLOSE #1
END SUB

It works by opening a byte file called filename$ (the image file) then we ask the
file to tell how big it is total so that we can read in the correct number of bytes
which are stored in the temporary string byte$ which TrueBasic is smart
enough to know is the same as our variable so it transfers the contents of byte$
to image$.

The great thing about boxstrings is that we can now show this image directly on
the screen using BOX SHOW anywhere we want without doing anything more
to the data. What is more you can read images off your hard drive and show
them on screen fast enough for most animation sequences.

Now that we have the bunch of grapes image in the program we need to do one
more thing; we need to make a mask of that image. Why so you ask? Good
question, so pay attention to the technical stuff because here is the answer.

Basically, if you BOX SHOW any image it will appear on the screen like a
postage stamp. What we need is just the shape of the bunch of grapes. We dont
need the background to our bunch of grapes to show. On the contrary we want
whatever is behind the bunch of grapes to show through everywhere except
through the grapes.

The way to get round this problem is to create a mask which is the same shape
as the grapes but is completely opaque with a background which is completely
transparent. Opaque is represented by a color whose bits consist entirely of 1’s
(white) and transparent is represented by a color whose bits consist entirely of
0’s (black). This mask must be shown with:

BOX SHOW mask$ AT x,y USING 4 ! note the use of USING 4

If you are still with me we’ll go on to the second part. If not don’t worry just take
it from me and let the sub-routines do the thinking. The next part of the process
is to show the image itself on top of the mask with:

BOX SHOW image$ AT x,y USING 7 ! note the use of USING 7

BOX SHOW using 7 is the full transparency mode. In other words the colors in

D2005: Images Show Concepts – © 1999, True BASIC Inc. 03784-5428 4

your image will be influenced by any background colors. They will essentially
show through producing all sorts of mixtures except where the background is
white in which case you will see your image in its correct colors. This is exactly
what our mask has done for us. It has blanked out the area of the grapes in
white, leaving the remainder in their normal colors. Get it? Well maybe not but
don’y worry because the sub-routines do it all and they know what’s going on. It
is not necessary to understand how a sub-routine works, you just need to know
how to use it.

Now you know why we need a mask so its time to look at the routine which does
the job:

SUB make_mask(image$,mask$)
 REM: this routine will vary according to MAC or PC
 LET mask$=image$
 LET width=unpackb(image$,1,8)
 LET height=unpackb(image$,17,8)
 LET bitlength=(int((width+7)/8))*8 ! nearest byte boundary
 LET startbit=64 ! TBX images use 64 - WBX images use 96
 FOR row=1 to height
 FOR col=1 to width
 LET pix$=""
 LET bitposition=startbit+(row-1)*bitlength*4+col
 LET k=unpackb(image$,bitposition,1)
 LET pix$=pix$ & str$(k)
 LET k=unpackb(image$,bitposition+bitlength,1)
 LET pix$=pix$ & str$(k)
 LET k=unpackb(image$,bitposition+2*bitlength,1)
 LET pix$=pix$ & str$(k)
 LET k=unpackb(image$,bitposition+3*bitlength,1)
 LET pix$=pix$ & str$(k)
 IF pix$<>"0000" then ! colour present so blank in mask
REM: PC box strings are on 4 planes each 1 bitfield apart
 CALL packb(mask$,bitposition,1,1)
 CALL packb(mask$,bitposition+bitlength,1,1)
 CALL packb(mask$,bitposition+2*bitlength,1,1)
 CALL packb(mask$,bitposition+3*bitlength,1,1)
 END IF
 NEXT col
 NEXT row
END SUB

This is the routine for the PC where the image data is stored in four consecutive
bitfields. In simple terms the routine scans the whole image pixel by pixel in
rows and columns to check if the image has any color other than the
background. If so it paints a white pixel in the corresponding position in the
mask.

The pixel row and column are used to calculate which bit in the boxstring we
are looking at bitposition . The size of the bitfield bitlength determines where
the other planes are located to give us all four bits which make up the pixel
color. These four bits are separately extracted using the function UNPACKB. If
these bits are anything other than all zeros then the pixel must have a color so

D2005: Images Show Concepts – © 1999, True BASIC Inc. 03784-5428 5

the corresponding bits are set to 1 in the mask boxstring using the routine
PACKB to insert these 1s.

Each boxstring carries a series of bytes containing information about the size of
the image which this routine reads. As a result you can use this routine to
generate masks for any boxstring. Just feed it an image and it will send back a
mask.

If you are using a PC with Version 5.x the startbit number must be changed to
96. If you are using a Macintosh you will need to use the sub-routine
make_mac_mask instead because these boxstrings are not formatted the same
way as the PC.

The Mac boxstrings are much larger because they service a larger color range
and because the string also contains a full 256 color palette. In fact the actual
image data only begins after the first 2108 bytes which is why the startbit is set
at 16864 (bits). The remainder of the routine is similar to the PC routine in that
the whole image is scanned by rows and columns. Instead of bit planes the Mac
images use a complete byte to determine the color so the mask is prepared one
byte at a time.

So we now have the grapes in the bag, but we still need the leaves. Why so many
you ask? Well the number of leaf positions is quite arbitrary but I chose four
positions mainly on the basis that it was easy to draw one leaf and flip it
horizontally and vertically to create leaf images in the other positions. More of
this later. For the moment let us concern ourselves with reading these four
images into our program. In fact all we need to do is repeat what we did for the
grapes, and just change the filename four times, e.g.

FOR n=1 to 4
 LET filename$=dir$ & "leaf_" & chr$(n+64) & extn$
 CALL read_image(filename$,image$)
 LET leaf$(n)=image$
 CALL make_mask(image$,mask$)

 LET leafmask$(n)=mask$
NEXT n

Note how the filename has been generated using the counter (n). By adding 64 to
the counter and converting this number into a character from the alphabet we
can generate the letters A through D.

D2005: Images Show Concepts – © 1999, True BASIC Inc. 03784-5428 6

3. Defining the rules
In this section I will set the rules which govern how the vine will grow and
what determines whether it grows leaves or produces bunches of grapes. In
other words the rules of the game.

Rule 1 The vine must grow to a minimum height trunk before it can
form leaves or grapes or make extra branches.

Rule 2 The vine stem grows in short lengths stemlength before it can
change direction.

Rule 3 The maximum number which can grow simultaneously is
determined by the type of computer which running the program.
For most machines a value of branchmax = 4 works well. This can
be increased on faster machines.

Rule 4 The direction the vine stem grows is random but limited to 45
degrees either side of its current direction. A total of 8 directions is
therefore possible.

Rule 5 The vine must not grow beyond the edges of the window or below
the minimum height trunk .

Rule 6 Leaves can only grow at the end of a period of stem growth
stemlength

Rule 7 Leaf growth is random. The percentage chance of a leaf growing is
determined by leafchance .

Rule 8 The leaf axis is in line or at 45 degrees to the direction of stem
growth. A total of four leaf images are therefore necessary to cover
the 8 stem directions.

Rule 9 Grapes can only grow when the stem direction is down.

Rule 10 Grape formation grapechance. is random. Grape formation
automatically stops the stem from growing any more.

So let’s define all our starting parameters, e.g.

REM: set up growth start position
LET trunk=150 ! minimum height of main vine stem
LET branch=1 ! number of branches currently growing
LET branchmax=4 ! maximum number of branches
LET stemlength=8 ! one pixel per unit = 8 pixels
LET direction(1)=1 ! upwards
LET branchx(1)=xpix/2 ! start position for main stem (x)
LET branchy(1)=ypix-10 ! start position for main stem (y)
LET leafchance=30 ! percentage chance of leaf growth
LET grapechance=50 ! percentage chance of forming grapes
RANDOMIZE ! seeds the random number generator

D2005: Images Show Concepts – © 1999, True BASIC Inc. 03784-5428 7

4. Enter a continuous loop

After all that hard stuff you are going to like this bit. Just one thing before we do
the loop, perhaps it would be a good idea to let the user know what to do. We can
keep it simple like “Press any key to quit”. If you are using Version 5.x then you
can use a message dialog box to show this instruction, e.g.

CALL TD_Message("INFORMATION",message$," OK ",1,result)

We are not really interested in the response from the user who only presses the
OK button to clear the dialog box so we have no need to test the variable result .

If you are working with standard TrueBasic then a PLOT TEXT statement will
be sufficient, e.g.

PLOT TEXT message$ AT 30,ypix-30

Now we can start the loop going with:

DO
 REM: The rest of the program goes here
LOOP

Here is a little tip for you. There will be times when you write programs which
contain complicated nested DO LOOPS or nested IF THEN structures and it is
very easy to lose your way. Every time you write a DO make some space and
write a LOOP as well, then carry on writing your program in the space you have
made. Do this for IF THEN and END IF as well as FOR and NEXT loops. This
way you will always have the correct number of loop terminations. This tutorial
follows this practice so that you can see more clearly how each part works.

5. Check if the user wants to quit

The rest of the program is inside a DO loop and each time the loop is cycled we
can check to see if the user wants to quit with:

IF key input then ! check if user wants to end demo
 EXIT DO
END IF

This checks to see if a key has been pressed and if it has key input becomes true
so the EXIT DO instruction is executed. Version 5.x users could have used
TC_event here, but this particular all singing and dancing routine is so busy
doing other things as well that it slows down our program and makes the
animation a bit lumpy.

6. Grow a short length of vine

At this point we need to think about what our program is going to look like when
it is running. In other words we need to account for the speed of animation. We

D2005: Images Show Concepts – © 1999, True BASIC Inc. 03784-5428 8

don’t want things to go so slow like watching paint dry, on the other hand we
don’t want things to fly about like an F111. My intention was for the vine to grow
like time lapse photography. To get that effect we need to grow each branch by
one pixel each time and we need 8 of these units to make up a stemlength .
Once we have grown a stem we can think about adding leaves and grapes, then
we go round the loop again.

If we grow each branch by a stemlength then move on to the next branch the
effect on the screen will be sudden bursts of jerky action in each branch. On the
other hand if we grow each branch in turn by just a small unit and keep
repeating this unit all have grown a stemlength then the result will be nice
smooth action all round. This defines which way round we arrange our FOR
NEXT loops, e.g.

FOR growth=1 to stemlength ! growth increments
 FOR b=1 to branchmax ! most frequent inner loop
 IF branchx(b)<>0 and branchy(b)<>0 then ! is stalk growing
 CALL drawbranch(b) ! draws branches
 REM: The rest of the program goes here
 END IF
 NEXT b
 NEXT growth

The variables branchx (b) and branchy (b) are the current screen co-ordinates
of the branch number b . If branches are not growing then these two variables
are zero which is why we check to see if the branch is growing before we start
drawing.

The variable branch keeps track of how many branches are growing and at the
start we set the value to 1 so only one branch will grow at first until the rule is
satisfied for more branches to grow.

The routine drawbranch doesn’t actually draw the 1 pixel increments of stem
growth, instead it checks the current direction of growth and then calls the
appropriate drawing routine. You will recall that Rule 4 requires the stem to
only grow in any one of eight possible directions. I have numbered these from 1
through 8 clockwise, starting at noon. This is why the initial direction for the
first branch was set at 1.

Instead of eight separate drawing routines I have simplified them to just three;
straight on, left or right. They are all very similar so we just need to look at one,
the straight ahead version:

SUB branch_on(x,y,b)

 LET x=branchx(b)

 LET y=branchy(b)

 SET COLOR 6 ! muddy yellow

 PLOT x-2,y

 SET COLOR 4 ! dark red

D2005: Images Show Concepts – © 1999, True BASIC Inc. 03784-5428 9

 PLOT x-1,y

 PLOT x,y

 PLOT x+1,y

 SET COLOR 15 ! black-remember we reversed it

 PLOT x+2,y

END SUB

The stem increment is 5 pixels wide with a light pixel on the left and a dark
pixel on the right to give the stem shadow.

Note that SET COLOR 15 is only necessary if you are using standard TrueBasic
and you have reversed black and white to give you a white background. In all
other cases you would use SET COLOR 0.

When control passes back to the drawbranch routine the current values of
branchx(b) and branchy(b) are up-dated to the latest position. The
direction(b) variable remains the same until we have drawn a complete
stemlength because Rule 2 says we can only change direction at this point.

7. Draw a leaf randomly

First of all we need to check that we have drawn a full stemlength, e.g.

IF growth=stemlength then ! end of growth increments
 CALL drawnewleaf(b) ! draws leaves
 CALL remember(b) ! remembers old positions
 REM: The rest of the program goes here
END IF

If only things were that simple. We have a small problem. Our lengths of stem
are just like sticks and if we change their direction we will have little gaps left
because each stem is 5 pixels wide. We need a routine which fills in these gaps
at the nodes because leaf growth is random and there will not always be a leaf to
hide these gaps. This is why we need the routine branch_node. This routine is
very similar to the normal stem drawing routine except that it essentially draws
a rectangular knob on the end of each stem.

Now we can get on with the interesting bit of drawing leaves with the routine
drawnewleaf:

SUB drawnewleaf(b)
 REM: draws leaf at previous node
 REM: leaf type depends on direction of growth
 REM: chance of leaf growth depends on random number
 REM: cannot grow leaves on main trunk

 IF old_branchx(b)=0 and old_branchy(b)=0 then
 ! branch not growing
 EXIT SUB
 END IF

D2005: Images Show Concepts – © 1999, True BASIC Inc. 03784-5428 10

 LET leaf_percent=100*rnd ! random leaf growth if<leafchance

 IF old_branchy(b)<ypix-trunk and leaf_percent<leafchance then

 SELECT CASE old_direction(b)
 CASE 5,6
 LET lx=old_branchx(b)-20
 LET ly=old_branchy(b)+20
 LET leafnumber=1
 CASE 7,8
 LET lx=old_branchx(b)-20
 LET ly=old_branchy(b)+15
 LET leafnumber=2
 CASE 1,2
 LET lx=old_branchx(b)-5
 LET ly=old_branchy(b)+10
 LET leafnumber=3
 CASE else
 LET lx=old_branchx(b)-5
 LET ly=old_branchy(b)+20
 LET leafnumber=4
 END SELECT

 BOX SHOW leafmask$(leafnumber) at lx,ly using 4
 BOX SHOW leaf$(leafnumber) at lx,ly using 7
 END IF

END SUB

As you can see, this routine:

(a) checks to see if the branch is still growing

(b) generates a random number for leaf growth

(c) checks to see if the branch is above the trunk line

(d) checks the direction of growth to select the right leaf image

(e) shows the mask and leaf images

Note that this routine uses old_branchx(b) and old_branchy(b) . These are
the co-ordinates of the previous stemlength not the current one. After all, leaves
grow from nodes not from the end of the stalk.

The other point you will notice is that these co-ordinates are modified by various
numbers depending on the leaf position. The reason for this is that all images
are referenced to the bottom left hand corner of the original rectangular image.
We want the leaf to be positioned in a realistic manner in relation to the stem
node so these numbers are necessary to adjust the leaf image so that it looks
right on the stem.

Under Rule 8 we are allowed to use one leaf to cover two stem directions hence
the SELECT CASE uses pairs of directions. Once again we are using
old_direction(b) because this is the direction the previous stem was growing
and not its current direction.

D2005: Images Show Concepts – © 1999, True BASIC Inc. 03784-5428 11

The variable leaf_percent is a random number between 0 and 100. This routine
checks that this number is less than our defined limit of leafchance i.e. 30%

8. Grow more branches or terminate with grapes

In our main program this is yet another simple sub-routine call:

CALL more_branches(b,branch) ! creates more

Here is the routine more_branches:

SUB more_branches(b,branch)
 IF direction(b)=5 then ! select newbranch or grape
 IF branch<branchmax then ! make more branches
 CALL newstalk(branch,b)
 ELSEIF branch>1 then ! saves the remaining branch
 CALL grow_grapes(branch,b) ! also kill branch growth
 END IF
 END IF
END SUB

This routine checks to see if the current direction is downwards (direction
number 5) and if so it first all checks to see if the full quota of braches are
growing - if not it creates a new growing stem using the routine newstalk:

SUB newstalk(branch,b)
 REM: tacks new branch onto existing branch
 FOR j=1 to branchmax
 IF branchx(j)=0 and branchy(j)=0 then
 LET branchx(j)=branchx(b)
 LET branchy(j)=branchy(b)
 LET branch=branch+1
 EXIT FOR
 END IF
 NEXT j
END SUB

If the branch quota is full then it checks out the chance of growing a bunch of
grapes using the routine grow_grapes:

SUB grow_grapes(branch,b)
 LET grape_percent=100*rnd ! random grape growth

 IF grape_percent<grapechance then
 BOX SHOW grapemask$ at branchx(b)-13,branchy(b)+34 using 4
 BOX SHOW grape$ at branchx(b)-13,branchy(b)+34 using 7

 LET branchx(b)=0 ! indicates growth has stopped
 LET branchy(b)=0 ! indicates growth has stopped
 LET branch=branch-1 ! number of branches still growing
 END IF
END SUB

D2005: Images Show Concepts – © 1999, True BASIC Inc. 03784-5428 12

Notice that growth is stopped by declaring the branch co-ordinates are zero and
that when this is done we need to up-date the counter which is keeping track of
how many branches are still growing, i.e. branch

9. Change the direction of growth randomly

So far we have grown branches, spread some leaves around or grown bunches
of grapes. What we need to do now is slightly change the direction of growth.
After all, plants don’t grow in straight lines. WE do this with the routine
change_direction, e.g.

CALL change_direction(b) ! changes direction

Here is the routine itself:

SUB change_direction(b)
 REM: check to see if branches are near window edges
 REM: if so ignore random direction change and just deflect
branch

 IF branchx(b)<40 then ! left hand side of window
 IF direction(b)=1 or direction(b)=8 or direction(b)=7 then
 LET direction(b)=direction(b)+1
 ELSEIF direction(b)=5 or direction(b)=6 then
 LET direction(b)=direction(b)-1
 END IF
 ELSEIF branchx(b)>xpix-40 then ! right hand side
 IF direction(b)=4 or direction(b)=5 or direction(b)=3 then
 LET direction(b)=direction(b)+1
 ELSEIF direction(b)=1 or direction(b)=2 then
 LET direction(b)=direction(b)-1
 END IF
 ELSEIF branchy(b)<50 then ! top of window
 IF direction(b)=3 or direction(b)=1 or direction(b)=2 then
 LET direction(b)=direction(b)+1
 ELSEIF direction(b)=7 or direction(b)=8 then
 LET direction(b)=direction(b)-1
 END IF
 ELSEIF branchy(b)>ypix-trunk then ! top of main trunk
 IF direction(b)=5 or direction(b)=6 or direction(b)=7 then
 LET direction(b)=direction(b)+1
 ELSEIF direction(b)=3 or direction(b)=4 then
 LET direction(b)=direction(b)-1
 END IF
 ELSE

 LET new_direction=int(rnd*10) ! random change of direction

 IF new_direction<4 then
 LET direction(b)=direction(b)-1
 ELSEIF new_direction>6 then
 LET direction(b)=direction(b)+1
 END IF
 END IF

D2005: Images Show Concepts – © 1999, True BASIC Inc. 03784-5428 13

 REM: check new directions do not fall outside limits
 IF direction(b)>8 then
 LET direction(b)=direction(b)-8
 ELSEIF direction(b)<1 then
 LET direction(b)=direction(b)+8
 END IF

END SUB

You can see that this routine first of all checks to see if the branch direction
complies with Rule 5 and is not about to grow outside the window or below the
trunk height. If the growth is within the limits then the routine uses a random
number newdirection between 0 - 10 to decide which way the stem will grow
next. If the number is less than 4 then it will go right by 45 degrees and if it is
greater than 6 then it will go left by 45 degrees if the number lies between then
the branch will just keep going on its present course. Finally we have a double
check to make sure we have not produced a direction which is outside the limits.
In other words if the direction is less than 1 or greater than 8.

10. Repeat the loop

Because we took the earlier precaution of adding loops and end if statements all
along the way, now that we are at the end of the program we need do no more.

Once the user has elected to quit the program it is good practice to clear up our
mess and return everything just as it was. Version 5.x users will know that
mopping up is done with:

CALL TC_cleanup

Standard TrueBasic users working with a PC should return the normal colors
with:

SET COLOR MIX (0) 0,0,0 ! this makes the screen black
SET COLOR MIX (15) 1,1,1 ! this is now white again

All the sub-routines are located at this point in the program followed by:

END

Now it is time to check out the program listing to see what it all looks like when
everything is put together. Then run the program to see how the vine forms.

John Arscott
26 October 1998
engine@clara.net

D2005: Images Show Concepts – © 1999, True BASIC Inc. 03784-5428 14

